Robert W. Brodersen EECS140 Analog Circuit...

35
ROBERT W. BRODERSEN LECTURE 1 EECS140 ANALOG CIRCUIT DESIGN INTRODUCTION University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science Robert W. Brodersen EECS140 Analog Circuit Design

Transcript of Robert W. Brodersen EECS140 Analog Circuit...

ROBERT W. BRODERSEN LECTURE 1

EECS140 ANALOG CIRCUIT DESIGN INTRODUCTION

University of CaliforniaBerkeley

College of EngineeringDepartment of Electrical Engineering

and Computer Science

Robert W. BrodersenEECS140

Analog Circuit Design

ROBERT W. BRODERSEN LECTURE 1

EECS140 ANALOG CIRCUIT DESIGN INTRODUCTION

EECS 140ANALOG INTEGRATED CIRCUITS

Robert W. Brodersen, 2-1779, 402 Cory Hall, [email protected]

This course will focus on the design of MOS analog integrated circuits with extensive use of Spice for the simulations. In addition, some applications of analog integrated circuits will be covered which will include RF amplification and dis-crete and continuous time filtering. Though the focus will be on MOS implementations, comparison with bipolar circuits will be given.

Required Text Analysis and Design of Analog Integrated Circuits, 4th Edition, P.R. Gray, P. Hurst, S. Lewis and R.G. Meyer, John Wiley and Sons, 2001

Supplemental TextsB. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.Thomas Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 1998

The SPICE Book, Andre Vladimirescu, John Wiley and Sons, 1994

Prerequisites EECS 105: Microelectronic Devices and Circuits

I-1

ROBERT W. BRODERSEN LECTURE 1

EECS140 ANALOG CIRCUIT DESIGN INTRODUCTION

IC Design Course Structure at Berkeley

EE40

EE105

EE141EE142EE140

Linear/Analog DigitalNon-Linear

Linear Design

Sensors, Transducers

InterfaceCircuits

DigitalProcessing

Amplifiers, Filters, A/D & D/A’s

I-2

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

University of CaliforniaBerkeley

College of EngineeringDepartment of Electrical Engineering

and Computer Science

Robert W. BrodersenEECS140

Analog Circuit Design

Lectureson

MOS DEVICE MODELS

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

Assumed Knowledge

a) KCL, KVL - Kirchoff Laws

b) Voltage, Current Dividers

c) Thevenin, Norton Equivalents

d) 2-Port Equivalents

e) Phasors, Frequency Response

M-1

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

+- aν ν in⋅ν in +-Vs

Rs+

-Rin RL

Rout+

-

νout

i in iout

2-Port Equivalent Circuit

+- aν1 ν in1⋅νin1 +-Vs

+

-Rin1 Rin2

Rout1+

-

νout1

i in

Rinνin

iin

-----iout 0→

RL ∞→

=

Routνout

iout

-------RS ν in 0= =

=

νout

νin

-------RL ∞→

=

aν2 ν in2⋅+-

Rout2+

-

νout

iout

+

-

νin2

νout aν2 νin2⋅ aν2 νout1⋅ aν2 aν1 ν in1Rin2

Rout1 Rin2+------------------------

⋅ ⋅ ⋅= = =

(Voltage in - Voltage out)M-2

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

VDS

IDS

VDSAT

Linear

Saturation

Cutoff

n-channelD

G B

S

VGS

NMOS

IDS

n n

L

G

S D

p

B

MOS Large Signal EquationsM-3

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

MOS Large Signal Equations (Cont.)

VGS VT<

VGS VT>

VDS VDSAT< VGS VT–=

Cutoff :

Linear :

IDS k' WL----- VGS VT–

VDS

2-------–

VDS⋅⋅ ⋅=

Saturated :VGS VT>

VDS VDSAT> VGS VT–=

IDSk'2--- W

L----- VGS VT–( )2 1 λ VDS⋅+( )⋅ ⋅=

M-4

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

MOS Large Signal Equations (Cont.)

VT VTo γ 2 φ f⋅ VSB+( )12---

2 φf⋅( )12---

–[ ]⋅+=

VTo Threshold Voltage @ VSB≡ 0=

VSB 0>( )

φ f Fermi Potential 0.3≈≡

γ Body Effect Factor≡

λ Short Channel Effect≡

W Width of Device≡L Length≡

k' µ Cox⋅=

Oxide Capacitancemobility

E = VDS/L

E

µ

νε

M-5

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

MOS Large Signal Equations (Cont.)

VTo γ VSB

12---

⋅+VT

VTo

VBS

0

γ 1Cox

------ 2 q ε NA⋅ ⋅ ⋅⋅=

n n

G

S D

Body Effect :

+ + + + + + + +

M-6

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

MOS Large Signal Equations (Cont.)

Short Channel Effect (λ):

Ldrawn

S G D

XJ = Junction Depth

LD = Lateral Diffusion ~ 0.75 XJ

XD

L Ldrawn 2 LD⋅–=

LEFF L XD–=

XD f VDS( )=

M-7

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

MOS Large Signal Equations (Cont.)

IDA( ) k'

2--- W

LEFF

-------- VGS VT–( )2⋅ ⋅=

IDB( ) k'

2--- W

L----- VGS VT–( )2 1 λ VDS⋅+( )⋅ ⋅ ⋅=

VDS∂∂ID

B( )

λ IDS⋅=

Modeled as

VDS∂∂ID

A( ) k'2---– W

LEFF2

-------- VGS VT–( )2

VDSddLEFF⋅ ⋅ ⋅=

VDS∂∂ID

A( ) ID

LEFF

--------VDSd

dXD⋅ λ ID⋅= =

M-8

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

λ 1LEFF

--------VDSd

dXD

1

L---

VDSddXD

⋅≈⋅=

MOS Large Signal Equations (Cont.)

Weak function of VDS

XD2 ε VDS VDSAT–( )⋅ ⋅

q NA⋅-------------------------------------------

12---

NA Substrate doping=

Fixed ε→ Dielectric constant of silicon=

VDSddXD 1

2--- 2 ε⋅

q NA⋅-------------

12--- 1

VDS VDSAT–------------------------

12---

⋅ ⋅=

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

VDS

IDS

Longer Channel(Increasing L)

λIDS

Ideal

MOS Large Signal Equations (Cont.)

L

W

G

DS

W/L is the parameter of interest

CG W L COX⋅ ⋅∝

M-9

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

MOS Small Signal Model (Low Frequency)

IDS

VGS

VSB

DG

S B

+

+

-

-

gmνgs

gmbsνbs

ro

IDS VGSddIDS νgs VBSd

dIDS νbs VDSddIDS νds⋅+⋅+⋅=

gm gmbs 1/ro

M-10M-11

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.)

In Saturation :

gm VGSddIDS k' W

L----- VGS VT–( ) 1 λ VDS⋅+( )⋅ ⋅ ⋅= =

gm k' WL----- VGS VT–( )⋅ ⋅≈ k' W

L----- VDSAT⋅ ⋅ 2 k' W

L----- IDS⋅ ⋅ ⋅

12---

= =

IDSk'2--- W

L----- VGS VT–( )2⋅ ⋅ k'

2--- W

L----- VDSAT

2 and from above,⋅ ⋅= =

+

-VGS VT VDSAT+=

What is VDSAT ?

VDSAT2 IDS⋅

k' W L⁄⋅--------------------

12---

=

gm k' WL----- VDSAT so,⋅ ⋅=

G

S

M-12

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.)

gmbs gmb VBSddIDS k– ' W

L----- VGS VT–( ) 1 λ VDS⋅+( )

VBSddVT⋅ ⋅ ⋅ ⋅= = =

gm

gmbs k' WL----- VGS VT–( ) 1 λ VDS⋅+( )⋅ ⋅ ⋅ χ⋅=

gmbs

gm

------- χ=

VBSddVT γ

2 2 φf VSB+⋅( )0.5⋅----------------------------------------- χ–≡–=

χγ

2 2 φ f VSB+⋅( )0.5⋅-----------------------------------------=

gmbs calculation :

M-13

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.)

gmbs

gm

------- χ=

VBS

γ = 0.5φf = 0.3k’ = 90e-6λ = 0.01VTo=0.7

-5V 0V

0.1

0.23

n n

G

S D

Cjs

Cox

χCjs

Cox

------=

Qchannelduetovbs Cjs νbs⋅≈

Qchannelduetovgs Cox νgs⋅≈

M-14

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.)

ro calculation :

1ro

--- gmds VDSddIDS

VDSdd k'

2--- W

L----- VGS VT–( )2 1 λ VDS⋅+( )⋅ ⋅ ⋅

= = =

1ro

--- k'2--- W

L----- VGS VT–( )2 λ⋅ ⋅ ⋅=

1ro

--- λ IDS⋅=

r0

1λ IDS⋅-------------=

M-15

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.)Comparison with Spice Level 1:

KP k' µ Cox nmos 50 100µ AV2-----–→∼⋅= =

LAMBDA λ 0.01 0.1→∼=

PHI 2 φf 0.6∼⋅=

VTO VTo 0.5 1.0V→∼=

GAMMA γ 0.05 0.5→∼=

pmos 13---nmos≈

M-16

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

MOS Small Signal Model (Cont.)Summary:

gm 2 k' WL----- IDS⋅ ⋅ ⋅

12---

≈ k' WL----- VDSAT⋅ ⋅

2 IDS⋅VDSAT

-------------= =

gmbs χ g⋅ m=

χγ

2 2 φ f VSB+⋅( )0.5⋅-----------------------------------------=

VDSAT2 IDS⋅

k' W L⁄⋅--------------------

12---

=

r0

1λ IDS⋅-------------=

IDS

gm

----- VGS VT–2

------------------ VDSAT

2----------= =

VDSAT VGS VT–=

VGS VT2 IDS⋅

k' W L⁄⋅--------------------

12---

+=

IDSk'2--- W

L----- VGS VT–( )2⋅ ⋅=

VT VTo γ 2 φ f⋅ VSB+( )12---

2 φ f⋅( )12---

–[ ]⋅+=

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

University of CaliforniaBerkeley

College of EngineeringDepartment of Electrical Engineering

and Computer Science

Robert W. BrodersenEECS140

Analog Circuit Design

Lectureson

SPICE

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-1Spice Transistor Model :

M1 1 2 3 4 nch L=1µ W=10µ

AD=( ) AS=( ) PD=( ) PS=( ) NRD=( )

L

W

G

DS

area of drain

parasitic resistors

1

2

3

4

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-2

Initial Operationg PointDC currents and Voltages

LinearizeAround OP Point

Solve Eqn. DC Converge?

Increment Time

End of Time Interval

No

Yes

No

SPICE

New OperatingPoint

Yes STOP

Analysis Types :DC op point .opDC sweepsAC & Transient

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-3

+-

+ -

12

3

4

I4

I1 R1 R2 R3

R4

VB

VA

Gi = 1/Ri

G1 G4+( ) V1⋅ G1 V2⋅–

G4 V4 I4+⋅–G4 V1⋅–

I4–

G4– V4⋅ I1+Node 1 :G1 V1⋅– G1 G2 G3+ +( )+ V2 G3 V3⋅–⋅

G3 V2⋅– G3 V3⋅+

=

Node 2 :Node 3 :Node 4 :

VAV4–V3–

V1 =

=

=

=

= 0

0

0

0

VB

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

G1+G4 -G1 0 -G4 1 0 V1 0 -G1 G1+G2+G3 -G3 0 0 0 V2 0 0 -G3 -G3 0 0 -1 V3 0 -G4 0 0 -G4 0 1 V4 0 1 0 0 0 0 0 I1 VB 0 0 -1 1 0 0 I4 VA

G F V C

B R I E

=

=Total # of EQNS N=n + nv + nl n = # of circuit nodesnv= # of independent voltage srcsnl= # of inductors

Current src

Votlage src

SP-4

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-5

a110( ) a12

0( ) a130( )

a210( ) a22

0( ) a230( )

a310( ) a32

0( ) a330( )

x1

x2

x3

b10( )

b20( )

b30( )

=

A x b=

e10( )

e20( )

e30( )

e31( ) e3

0( ) a310( )

a110( )

------ e10( )⋅–=e2

1( ) e20( ) a21

0( )

a110( )

------ e10( )⋅–=e1

1( ) e10( )=

Matrix Solution

we needSolve by Gaussian Elimination

(0) denotes iteration step

Eliminate a21,a31x x x0 x x0 x x

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

Then eliminate a32(1)

e22( ) e2

1( )=e1

2( ) e11( )=

e32( ) e3

1( ) a321( )

a221( )

------ e21( )⋅–=

x x x0 x x0 0 x

Upper triangular matrixcan be solved

a112( ) a12

2( ) a132( )

0 a222( ) a23

2( )

0 0 a332( )

x1

x2

x3

b10( )

b21( )

b32( )

=

x3

b32( )

a332( )

------=

x2

b21( ) a23

1( ) x3⋅–( )a22

1( )---------------------------------=

x1

b10( ) a13

0( ) x3 a120( ) x2⋅–⋅–( )

a110( )

------------------------------------------------------=

Solution

SP-6

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-7Accuracy

Can’t divide by 0 or small numbers, so pivoting is usedto reorder eqn’s (Basically renumbering nodes). Puts maximum values on diagonal.

R1=1Ω

R2=10kΩ1A

1 1–1– 1.0001

V1

V2

10

=

11--- 1

10k---------– G1 G 2+=

If the computer only has 4digits of precision then we get,

1 1–1– 1

V1

V2

10

= V– 1 V2+ 0=V1 V2, ∞=

V1 10 001V,=

V1 V2– 1=

V2 10 000V,=

Actually,

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

To control accuracy

.options PIVTOL = <values> (1018)

This sets the allowable range of conductance values.

*ERROR* : Maximum entry ......atSTEP ....... is less than PIVTOL

-Probably means you have an incorrect elementor floating node

SP-8

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-9Solution of the DC equations with non-linear models

ID IS eVD

VTH---------

1– ⋅=

IG G V⋅=

IG ID

VDIA G

+

-

Need to findthis point

ID,G

IG

ID

IA

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-10Newton-Raphson Iteration :

- Make guess of next operation point in iteration

Start at initial guess and linearize diode eqn.

ID0VD(0)

IA G GD0

+

-

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

ID

Current value

Slope of GD0

Solution finds this point

VD

ID0

Solve for VD,

becomes VD(1) Linearize at this point

Find new point

SP-11

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON SPICE

ROBERT W. BRODERSEN LECTURE 4

SP-12Convergence

Keep iterating until all voltages and currents are within aa tolerance value. Vn

i( ) node voltage n at iteration i=

The convergence check is :

εVn REL V( ) max Vni 1+( ) Vn

i( ),( ) ABS V( )+⋅=

Vni 1+( ) Vn

i( )– εVn≤

REL V( ) 10 4– (Default 10 3– )∼

ABS V( ) 10 6– (Default 50µV )∼

ABS(V) should be at least two orders of magnitude belowrequired accuracy.These values would give 1 part in 104 accuracy down to100µV resolution

EECS140 ANALOG CIRCUIT DESIGN LECTURES ON MOS DEVICE MODELS

ROBERT W. BRODERSEN LECTURE 2

SP-13

Current convergence is broken into two types; MOS and NOT MOS

MOS ABSMOS ABSOLUTE 10 6–( )∼RELMOS RELATIVE 0.5( )∼

NOTMOSABSI ABSOLUTE 10 9–( )∼RELI RELATIVE 0.01( )∼

ITL = # of steps in iteration (200)When you get

*ERROR* no convergence in DC analysis and the last node voltagesThen it hasn’t converged in 200 times - something is probably wrong with your netlist