Robert Cooper L. Garrison, L. Rebenitsch, R. Tayloe, R. Thornton.

download Robert Cooper L. Garrison, L. Rebenitsch, R. Tayloe, R. Thornton.

If you can't read please download the document

Transcript of Robert Cooper L. Garrison, L. Rebenitsch, R. Tayloe, R. Thornton.

  • Slide 1
  • Robert Cooper L. Garrison, L. Rebenitsch, R. Tayloe, R. Thornton
  • Slide 2
  • INTRODUCTION
  • Slide 3
  • MI-12 Neutron Background Run Neutrons ~18 m from target 40 days on target (60 days total) In-line behind beam target (ground) 1 kg EJ-301 detector motivated SciBath placement
  • Slide 4
  • MI-12 Neutron Background Run Neutrons ~18 m from target 40 days on target (60 days total) In-line behind beam target (ground) 1 kg EJ-301 detector motivated SciBath placement
  • Slide 5
  • THE SCIBATH DETECTOR
  • Slide 6
  • Design Concept Bath of liquid scintillator ~40 cm length cubic volume 3D array, crossed wave- length shifting fiber readout 768-channel with 64-anode PMT system (x12) IU custom-built DAQ ($70 per channel with PMT)
  • Slide 7
  • The SciBath Detector 80 L liquid scintillator (LS) 88% mineral oil 11% pseudocumene 1% PPO 768 (3-16x16) array wavelength-shifting fibers (x,y,z axes) 1.5 mm diameter 2.5 cm spacing UV blue
  • Slide 8
  • The SciBath Detector Pulsed LED calibration
  • Slide 9
  • The SciBath Detector N 2 and LS plumbing
  • Slide 10
  • The SciBath Detector Electronics readout & PMTs
  • Slide 11
  • The SciBath Detector Electronics readout & PMTs
  • Slide 12
  • Sample Event
  • Slide 13
  • Anticipated Sensitivity (n events)
  • Slide 14
  • n / Particle Discrimination
  • Slide 15
  • muons
  • Slide 16
  • n / Particle Discrimination neutrons
  • Slide 17
  • PRELIMINARY NEUTRON ENERGY SPECTRUM
  • Slide 18
  • Beam Spill Time / PE Structure Bin 6 Bin 10 Bin 11 Bin 12Bin 13Bin 16 Bin 20
  • Slide 19
  • Beam Spill Time / PE Structure Softening of PE spectrum in time
  • Slide 20
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 21
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 22
  • SciBath In-Beam PE Spectrum PEs
  • Slide 23
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 24
  • Proton Response and Quenching Birks Law used to convert to energy deposit Handles quenching for large dE / dx
  • Slide 25
  • Proton Response and Quenching Birks Law used to convert to energy deposit Handles quenching for large dE / dx
  • Slide 26
  • Energy Deposit Spectrum Assume everything is a proton recoil and apply quenching formula 300 MeV protons can range-out in SciBath.
  • Slide 27
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 28
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers n p EpEp EnEn
  • Slide 29
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers
  • Slide 30
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers
  • Slide 31
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers
  • Slide 32
  • Unfolded Neutron Spectrum
  • Slide 33
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 34
  • Detection Efficiency (MC)
  • Slide 35
  • Predicted Neutron Spectrum
  • Slide 36
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 37
  • Neutron Spectrum per Beam Spill 3 neutrons per spill (1 neutron > 40 MeV)
  • Slide 38
  • NEXT STEPS
  • Slide 39
  • Underway Implement MC unfolding Least squares fit or maximum likelihood? POT analysis Explore effect of n- capture tagging, fiducial cuts, and PID Directional analysis Double scatter analysis More Aggressive n / discrimination Validate with cosmic ns