RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires...

20
RLI 2011 1 RLI Réseaux Locaux et Interconnexions L3 Informatique Cours : Jean-Jacques Pansiot [email protected] TD/TP : Pascal Mérindol [email protected] RLI 2011 2 LAN Canal partagé Câble, canal radio Réseau local : Méthode d’accès Limites en étendue, débit RLI 2011 3 Interconnexion : pont Pont Pont/commutateur ethernet Filtrage Suppression des boucles => Réseau local « étendu »

Transcript of RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires...

Page 1: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 1

RLI

Réseaux Locaux et InterconnexionsL3 Informatique

Cours : Jean-Jacques [email protected]

TD/TP : Pascal Mé[email protected]

RLI 2011 2

LAN

Canal partagé Câble, canal radio

Réseau local :Méthode d’accès

Limites en étendue,débit

RLI 2011 3

Interconnexion : pont

Pont

Pont/commutateur ethernetFiltrageSuppression des boucles=> Réseau local « étendu »

Page 2: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 4

Interconnexion : routeurs

R

RLAN = sous-réseau IPRouteurRoutage adressageEx : réseau d’entreprise

RLI 2011 5

Interconnexion : inter-domaineR

R

R

R

R

R

R

RRouteurs frontièrePolitique de routage

RLI 2011 6

Réseaux Locaux

• LAN : Local Area Network– concept apparu début années 80– Local : quelques mètres à quelques kilomètres– distances faibles

• débits élevés à moindre coût• infrastructure privée

– moins de contraintes réglementaires– propriétaire du réseau = propriétaire des murs

– En général réseau d’égal à égal• toute station avec toute autre

Page 3: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 7

Réseaux Locaux

• Infrastructure partagée– Niveau 0 gaines, tubes, armoires, …– Niveau 1 support de transmission

• câbles métalliques (paires torsadées, coaxial)• fibres• Canal radio (Wifi)• répéteurs/hub, transceiver, « modems »

– Niveau 2• ponts/switch

– Eventuellement niveau 3 et + (routeurs,firewall,…)

RLI 2011 8

Réseaux Locaux

• Objectifs– fournir connectivité de tous vers tous

• fiable• équitable• transparente• extensible (débit, nombre de machines,

étendue ?)– à faible coût (installation, maintenance, …)

• => PARTAGE

RLI 2011 9

Réseaux Locaux

• LAN = multiplexeur distribué• Comment contrôler accès au réseau :

– éviter les conflits (« collisions »)• ou les résoudre

– accès équitable– délai d’attente limité

• => méthodes d’accès

Page 4: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 10

Réseau partagé

Si S1 SN S2 S4 S3

infrastructure partagée (câble, canal radio, …)

Quand peut-on émettre ?

RLI 2011 11

Méthodes d’accès (1)

• Certaines inspirées du multiplexage– méthodes statiques– méthodes dynamiques centralisées– méthodes dynamiques distribuées

• préventives (pas de conflit)• curatives (résolution des conflits)

RLI 2011 12

Méthodes d’accès (2)

• Méthodes statiques– multiplexage en fréquence ou temporel– peu adaptées aux flux informatiques à

débit variable• Méthodes dynamiques centralisées

– Polling• entité maître interroge les esclaves• donne droit d’émettre• extensibilité ? fiabilité ?

Page 5: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 13

Méthodes d’accès (3)

• Méthodes dynamiques distribuées– méthodes distribuées préventives :– ex : méthodes à jeton– jeton = message donnant droit à émettre– nombreuses variantes méthodes– dépendent

• topologie du réseau (anneau, bus)• architecture matérielle

– Exemple : bus à jeton (token bus)

RLI 2011 14

Bus à jeton

• topologie en bus– support partagé– tout le monde entend tout le monde– 2 (ou +) émetteurs simultanés = collision

• => trames erronées

• Algorithme déterministe :– qui peut émettre ? Token bus

RLI 2011 15

Réseau en bus

Si S1 Sn S2 S4 S3

Emission trame S1Emission simultanée S4collision

Page 6: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 16

Principe

• Stations organisées en anneau logique– S1, S2, …, Sn

– fonction successeur• succ(Si) = si i < n alors Si+1 sinon S1 fsi

• jeton circule sur anneau– jeton (= petite trame spéciale) adressé– Si envoie jeton à succ(Si)– toute station « voit » le jeton (bus)– seul destinataire « capture » le jeton

RLI 2011 17

Principe (2)

• Lors de la réception du jeton par Si= le jeton lui est adressé

–si trame à émettre• envoyer une (ou plusieurs) trames de données• En général quantité limitée (ex : 1 trame)

–envoyer jeton à succ(Si)• Données :

–les trames de données (adressées) atteignentdirectement leur(s) destinataires(s) : bus–Possibilité de diffusion (broadcast)

RLI 2011 18

Fiabilité

• Panne station ne coupe pas le réseau– Physiquement (mais perte jeton ?)

• bus : tout le monde peut surveiller le jeton– circulation jeton

• absence jeton et trame de données (silence)=> perte jeton et/ou panne station

• si Si ne ré-émet pas le jetonSi-1 peut lui renvoyer (perte jeton ?)

• si pas de résultat (panne Si ?) Si-1 peut l’envoyer à Si+1nécessite de connaître successeur du successeur

=> écoute du jeton par exemple

Page 7: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 19

Insertion station

• Comment ajouter une station ?– Nouveau ne peut se faire connaître

• car on ne lui donne pas la parole (le jeton)– idée :

• nouvel arrivant écoute bus• à intervalle régulier

– possesseur du jeton Si envoie requête (broadcast)« Y a-t-il un (des) nouveau(x) » ?

– Nouveau répond avec son identité X– Si lui envoie succ(Si) et change de successeur : X– X s’insère donc entre Si et Si+1

• Si plusieurs nouveaux en même temps ?– collision ré-essayer après délai aléatoire : voir CSMA/CD

RLI 2011 20

Garanties de délai/débit

• Durée de rotation du jeton– Ex :

• jeton de 200 bits, trames de données 10 000 bits max• réseau 10 Mb/s, 100 stations, propagation 10µs

– « à vide » jeton fait un tour en• 100 * (200/107 + 10µs) = 3 ms minimum• Attente moyenne à vide 1,5 ms• Débit max 10 000/(10 000/107+0,003) = 2,5 Mb/s (≠ 10 Mb/s !!)

– « à pleine charge » (chaque station envoie 10 000 bits)• Rotation : 100 (10 000/107 + 200/107 + 10µs ) = 103 msDébit garanti = 10 000/0.103 = 97 Kb/s (théorique) Total ?

RLI 2011 21

Synthèse jeton sur bus

• Possibilité de garanties délai et débit– Déterminisme (en l’absence de panne/insertion)– rotation jeton « lente »

• Pénalise à faible charge• Bonne utilisation à forte charge

• panne station détectable• Difficulté insertion station

– peu adapté réseaux dynamiques• A été utilisé réseaux industriels « temps

réel » (ieee 802.4)

Page 8: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 22

Méthodes d’accès curatives

• Méthodes utilisées– réseaux à diffusion

• réseau radio ou• bus physique

– exemples• Aléatoire pure (Aloha)• CSMA• CSMA/CD• CSMA/CA

RLI 2011 23

Méthode Aloha

• Contexte : réseau radio– stations partagent le même canal radio

=> émissions « simultanées » = collision– Algorithme

si trame à émettrealors émettre trame

– Délai avant émission nul– si collision : trames perdues

• ré-émission prise en charge par couche supérieure fiable– ex TCP– => délai élevé en cas de collision, perte bande passante

RLI 2011 24

Performances Aloha

– Hypothèses (pas toujours réalistes)• nombre arbitrairement grand de stations• émetteurs indépendants suivant loi de Poisson• D = débit maximal théorique en trames/s

– ex : 1 Mb/s trames de L = 1000 bits : D = 1000 trame/s– durée émission trame t = 1/D = 1 ms

• G = charge totale émissions + ré-émissions– G = nombre de trames (ré)-émises /D– ex 100 émetteurs envoient chacun 8 trames/s => G = 0,8– G peut être supérieur à 1 (mais problème !)

• Proba(k émetteurs pendant t) = Gk e-G /k!0 émetteurs pendant t : e-G , 2t : e-2G

Page 9: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 25

Performances Aloha (2)

– Débit utile en fonction charge• période de contention dure 2t :[ t0 - t , t0+ t ] si la trame est émise en t0• Proba (émission réussie) = proba (0 émission en 2t)• Débit utile (en trames par période t)= G e-2G

• Débit utile maximal pour G = 1/2 et vaut 1/2e = 0,184(voir Tanenbaum pour les calculs)ex G=1/2 => 500 trames/t dont 184 « passent »

18,4% OK, 31,6% collision, 50% videG < 1/2 => moins de collisions mais moins de débit

G > 1/2 => collisions augmentent• Si G tend vers l’infini, débit utile tend vers 0

RLI 2011 26

Problèmes Aloha

– Nombre de collisions• croissant avec la charge• => peut-on en éviter tout ou partie ?

– Durée d’une collision (= temps perdu)• durée d’une trame complète• => peut-on réduire cette durée ?

– Durée de réparation d’une collision• retransmission par une couche supérieure• délai de garde (TCP, …)• => peut-on réduire ce délai ?

RLI 2011 27

Amélioration Aloha

– Amélioration possible• diminuer période de contention• Aloha en tranche (ou discrétisé)

– émetteurs synchronisés : 1 top tous les t (= tranche)– Émetteur(s) n’envoie(nt) qu’à un top– => période de contention dure t (au lieu de 2t)– Débit utile (rendement ) = G e -G– => maximum atteint pour G = 1– rendement max 1/e = 0,368 (double d’Aloha pur)

– Autre amélioration• diminuer nombre de collisions : CSMA

Page 10: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 28

CSMA

– Carrier Sense Multiple Access• Réseau à diffusion et écoute du signal• Principe : émetteur écoute le canal avant d’émettre

– Suppose que l’émetteur peut aussi recevoir• Algorithme

Si trame à émettreSi canal occupé attendre recommencerSinon émettre trame

RLI 2011 29

CSMA (2)

• Plusieurs stratégies suivant politique d’attente– émission dès que le canal est libre : CSMA persistant

» - risque d’accumuler les collisions après une trame» deux stations attendent qu’une troisième ait fini» + délais courts

– attendre un délai aléatoire avant d’écouter de nouveau» CSMA non persistant» avantage et inconvénients inversés

• Collisions toujours possibles– émissions « simultanées »

» au temps de propagation près» quelques dizaine de µs dans ethernet (contention)» alors qu’émission de 10 000 bits à 10 Mb/s = 1 ms

• Temps perdu pendant les collisions émission d’une trame complète => amélioré par CSMA/CD

RLI 2011 30

CSMA/CD

• CSMA with Collision Detection• CSMA avec détection de collision (par les émetteurs)• Suppose que physiquement un émetteur

– émet une trame– simultanément écoute le signal (donc réception particulière)– principe : signal émis ≠ signal reçu => collision détectée

• Algorithmesi trame à émettre

attendre canal libre suivant CSMA persistant ou noncommencer à émettre la trametant que émission non terminée

si collision détectéearrêter émission,attendre un certaine délairecommencer au début

Page 11: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 31

CSMA/CD (2)

• A priori s’il y a une collision– détectée après au plus 2t– Où t = temps de propagation aller– au bout de t toutes les stations reçoivent signal– => émettent au plus tard en t- ε– signal collision revient en au plus t : total < 2t– nécessite que le premier soit encore en émission

• Réduction temps perdu par collision ( ~ 2t)– intéressant si 2t << temps émission trame complète

• collision détectée rapidement => ré-émission plus rapide

RLI 2011 32

CSMA/CD (3)

• CSMA/CD et taille des trames– L taille trame minimale– D débit binaire– t = temps de propagation aller maximal entre 2 stations

Station A

Station B

Emission trame : L/D

t t

collision détectée si A émet encore

1er bit de B arrive en A1er bit de A arrive en B

Condition L/D > 2t

RLI 2011 33

CSMA/CD : attente avant ré-émission

• Combien de temps attendre avant ré-émission ?– délais fixes identiques => collision se répète– délais fixes différents => priorités– délais aléatoires

» intervalle court => attente faible, répétition collisionfréquente

» intervalle long : l’inverse– Binary Exponential Backoff– à la kième ( k≥ 0) tentative de retransmission d’une trame

» tirer i aléatoirement dans [0, 2k[» attendre un temps i . T où T est l’unité de temps > 2t

– Collision se répète si et seulement si parmi les i tirés» 2 émetteurs ont tiré la (même) valeur minimale

Page 12: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 34

CSMA /CD : attente (2)

– Exemple Binary Exponential Backoff avec 2 émetteurs» première collision chaque émetteur tire 0 ou1

proba 1/2 de répéter collision» deuxième essai chaque émetteur tire 0, 1, 2 ou 3

=> proba 1/4 de répéter collision» décroît très rapidement quand k augmente

– Note» possibilité de collisions multiples (plus de 2 émetteurs)

=> toutes les stations n’ont pas forcément le même k– En pratique dans ethernet

» i tiré dans dans [0, 2min(k,10)[ : attente < T * 210

» k limité à 16» => au delà de 16 retransmissions la trame est abandonnée

RLI 2011 35

Synthèse CSMA/CD

+ Attente nulle si réseau peu chargé• comme Aloha

+ Collisions limitées et retransmission rapideniveau LAN (indépendant couches hautes)

- Pas de garantie de délai- exemple T = 50 µs, => 210 T = 51,2 ms

- Pas de garantie que la trame sera transmise !!- Pas de garantie de débit minimum+ Mais en pratique fonctionne très bien (ethernet)

- si peu d’émetteurs- ou réseau non saturé (exemple 30%)

RLI 2011 36

CSMA/CA

– CSMA/CD pas toujours possible• impossibilité émettre/écouter simultanément ou• signal autre émetteur non audible

– exemple du terminal caché réseaux sans fil» distance trop grande entre émetteurs» ou obstacles

– CSMA/CA Collision Avoidance• « évitement de collision »

Page 13: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 37

Terminal caché

portée de A

A CB

portée de C

A n’entend pas C : collision en B

RLI 2011 38

Terminal exposé

portée de B

A DB

C entend B qui émet pour AC n’émet donc pas alors que D hors de portée de B

C

RLI 2011 39

Ex : MACA

– Multiple Access with Collision Avoidance• émetteur potentiel envoie trame RTS

– Ready to Send avec taille trame à émettre, destinataire» tout ceux à sa portée sont au courant

• récepteur (s’il a reçu RTS) envoie trame CTS– Clear To Send (taille trame)

» tout ceux à sa portée sont au courant• si émetteur reçoit CTS => envoie trame• récepteur envoie acquittement dans la foulée

– Echec (pas de CTS) : recommencer plus tard (aléatoirecomme CSMA/CD)

• améliorations : écouter avant d’émettre• envoyer courte trame d’acquittement (remplace CD)• principe utilisé dans WiFi 802.11

Page 14: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 40

RTS/CTS

portée de B

A DB

B veut émettre vers C B envoie RTS(C, L) A attend (~durée L) C envoie CTS(L) D attend ( ~durée L) B envoie trame (durée L) C envoie Ack A et D débloqué

CRTSRTS

CTS CTS

trametrame

Délai LDélai LDélai L

Ack Ack

RLI 2011 41

Normalisation des LAN

• Comité 802 de l’IEEE– normalise les LAN– premières normes en 1985– certaines normes accessibles par internethttp://standards.ieee.org/getieee802/802.html

• Certaines des normes reprises par l’ISOex IEEE802.3 => ISO 8802-3

RLI 2011 42

Architecture IEEE802

• La couche liaison (2 de l’ISO)– découpée en deux sous-couches

• couche MAC : Medium Access Control– définit une méthode d’accès (CSMA, …)

• couche LLC : Logical Link Control– commune aux différentes couches Mac– définit un protocole de liaison

» lien « virtuel » entre deux stations» 3 types de protocole suivant le service» LLC type 1 : datagramme non fiable (le + utilisé)» LLC type 2 : avec connexion, fiable (à la HDLC)» LLC type 3 : sans connexion, avec acquittements

Page 15: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 43

Architecture IEEE802 (2)

• Réseau local normalisé défini par– une méthode d’accès (couche Mac)– une couche physique

• caractérisée par plusieurs paramètres– support (paire torsadée, coaxial, fibre, canal radio)– débit– encodage (adapté au support et au débit)– paramètres du réseau (distance, nombre

équipements, …)

RLI 2011 44

Architecture IEEE802 (3)

Mac1

Phy

Mac2

Phy

Mac3

Phy

Macn

Phy… …

LLC

Management, bridging 802.1

802.2

802.3,4,5…

couche 2OSI

couche 1OSI

RLI 2011 45

Types de LAN IEEE

• Quelques exemples– 802.3 : CSMA/CD « ethernet »

• nombreux débits et supports– 802.4 : Token Bus - Bus à jeton– 802.5 : Token Ring - Anneau à jeton

• plusieurs débits et supports– 802.11 : Wireless « WiFi »

• plusieurs débits et « supports »– 802.15 : Wireless Personal Area Networks « Bluetooth »– 802.16 : Broadband Wireless Metropolitan Area Networks

« Wimax »

Page 16: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 46

IEEE802.3

• Protocole CSMA/CD– première norme en 1985– basée sur ethernet (Digital/Intel/Xerox),

• avec quelques différences

– évolution constante débits/supports• norme actuelle > 2600 pages

RLI 2011 47

IEEE802.3 : trame

• La trame 802.3adresse

destinationadressesourcepréambule données FCSlongueur

ou typeSFD

tous les champs : nombre entier d’octets préambule : synchronisation 7 octets 10101010 (début peut être perdu) SFD : Start of Frame Delimiter 1 octet 10101011 exemple en 10baseT, dépend de la couche physiqueadresse destination : 6 octetsadresse source : 6 octetslongueur ou type (ethertype) : 2 octetsdonnées : 46 à 1500 octets ( + y compris bourrage éventuel)FCS : Frame Check Sequence : 4 octets code polynomial détecteurX32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1

RLI 2011 48

IEEE802.3 : adresses• codées sur 6 octets « adresses mac »

– premier bit (= bit poids faible 1er octet)• 0 : adresse individuelle (= adresse d’interface réseau)• 1 : adresse de groupe multicast (seulement destination)

– ex : 01:80:c2:00:00:00 (protocole spanning tree)– cas particulier ff:ff:ff:ff:ff:ff broadcast

– deuxième bit• 1 : adresses allouées localement, ou non universelles

– Ex : adresses multicast• 0 : adresses universelles 24 bits fabricant, 24bits #série

– ex 00:0d:93:c8:91:9c 00:0d:93 = Apple– voir http://standards.ieee.org/regauth/oui/oui.txt– adresse Mac non volatile sur la carte

Page 17: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 49

IEEE802.3 (2)

• Longueur de la trame (hors préambule) :– garantir Lmin/D > 2t (car CSMA/CD)

• choix Lmin = 64 octets– => 2t < 51,2 µs à D = 10Mb/s : limite taille réseau

• si données < 46 octets : padding

• Même champ peut coder le type (ethertype)– hérité de l’ethernet initial ( ≠ 802.3)

• identifie protocole supérieur• Ex en hexa : 0800 => IPv4, 0806 => ARP, 86DD => IPv6http://www.iana.org/assignments/ethernet-numbers• valeurs disjointes avec longueurs possibles• => cohabitation 2 types de trames même réseau

RLI 2011 50

Encapsulation 802.2 + SNAP

– 802.2 en mode datagramme (le + courant)– Entête 802.2 SSAP (1 octet) DSAP (1 o) Commande (1 o)– si SSAP = DSAP = 0xAA et Commande = 0x03

• transporte couche SNAP– Subnetwork Access Protocol : voir RFC 1042– 5 octets : 3 octets « autorité » , 2 octets « ethertype »– pour protocoles internet , autorité = 0

– Permet de transporter des protocoles différents• Au dessus de 802.3+802.2• Valable aussi pour d’autres couches mac

RLI 2011 51

Exemples de trames

• Broadcast ethernet protocole ARP00:05:85:8a:5c:5d > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 64: arp• Multicast 802.3 + 802.2 Spanning tree Protocol00:0e:d7:ff:1c:50 > 01:80:c2:00:00:00, 802.3, length 64: LLC, dsap STP (0x42),

ssap STP (0x42), cmd 0x03, 802.1d• Ethernet : protocole IP unicast00:0d:93:c8:91:9c > 00:00:5e:00:01:33, ethertype IPv4 (0x0800), length 122: IP

130.79.90.153 > 130.79.200.11• Ethernet protocole IPv6 (et multicast)00:05:85:82:f8:3e > 33:33:00:00:00:09, ethertype IPv6 (0x86dd), length 1070:

fe80::205:8500:282:f83e.521 > ff02::9.521:802.3 + 802.2 + SNAP + IPX• 00:00:74:9d:2c:f4 > ff:ff:ff:ff:ff:ff, 802.3, length 64: LLC, dsap SNAP (0xaa), ssap

SNAP (0xaa), cmd 0x03, (NOV-ETHII) 00000000.00:00:74:9d:2c:f4.4100 >00000000.ff:ff:ff:ff:ff:ff.0452:ipx-sap-nearest-req 0004

Page 18: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 52

Algorithme récepteur

• Interface ethernet peut accepter plusieurs adresses• adresse de la carte (par défaut ou modifiée par ifconfig),

adresse broadcast + liste adresses multicast (si configurées)

• Récepteur ethernet– vérifie trame valide

• longueur multiple 8 bits, checksum correct• longueur ≥ 64 octets (sinon fragment collision) et ≤ 1518• => sinon ignorée

– si oui et si adresse destination non acceptée• => trame ignorée (sauf mode promiscuous)

– si trame valide et adresse destination acceptée• => trame fournie au « bon » protocole supérieur• (d’après champ ethertype ou SNAP)

RLI 2011 53

Ethernet : couches physiques

• Différentes instances débit/support/codage• Pour chaque instance

– codage (ex : 10 Mb/s : codage Manchester)– limitations sur le dimensionnement

• types et longueurs de câbles• équipement intermédiaires (répéteurs)• limitations globales (CSMA/CD )

• Répéteur (hub)– équipement interconnectant 2 ou plusieurs câbles– répétant le signal de chaque entrée vers toutes les sorties (~ampli)– permet augmentation distances et nombre stations– ne filtre pas : pas de limitation des collisions– câbles + répéteurs = 1 seul domaine de collision

RLI 2011 54

Exemple ethernet 10 Mb/s

– L/D > 2t => 2t < 51,2 µs (= SlotTime)• on doit limiter la taille du réseau

– Ordres de grandeur• traversée d’un répéteur ~2,2 µs• propagation 500 m coaxial ~2,2 µs

– 5 segments de câble reliés par 4 répéteurs• ~ 51 µs aller retour (< 512 bits)

– limite de 4 répéteurs « en série »

– Note : possibilité d’un + grand nombre de répéteurs• S’ils ne sont pas en série (arbre)

Page 19: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 55

Evolution ethernet

– Initialement 10Mb/s bande de base (half-duplex : CSMA/CD)• 10base5 sur coaxial « épais » (segments 500m max)• 10base2 sur coaxial fin (segments de 185m max)• répéteurs coûteux, 2 ports• + liens inter-répéteurs fibre• 10 base FL fibre optique (≤ 2km en PàP, half ou full duplex)

– Apparition du 10baseT• segments de 100m max sur 2 paires torsadées• Point à Point half ou full duplex (si pas de répéteur)• répéteurs avec nombreux ports (8, 16, …)• câblage systématique en étoile• répéteurs, câblage moins coûteux => expansion des LAN

RLI 2011 56

Evolution ethernet (2)

– Apparition du 100Mb/s « fast ethernet »• nécessité de diviser le délai max par 10• 100baseTX jusqu’à 100m sur 2 paires torsadées cat5• 100baseFX en fibre multimode

– jusqu’à 412m en half duplex (2km en FD)• possibilité Full-Duplex• possibilité auto-négociation (10 ou 100, Full ou Half)• Maximum 2 répéteurs classe II ou 1 répéteur « lent » classe I• => réseau de petit diamètre (205m max en cuivre)

– Généralisation des ponts/switchs/commutateurs ethernet• permettre de diviser le domaine de collision• interconnecter des débits différents

RLI 2011 57

Evolution ethernet (3)

– Apparition du 1000Mb/s « gigabit ethernet »• impossibilité de diviser encore le délai max par 10

– trames agrégées en burst si possible– sinon suivies de bourrage– => 4096 bits minimum– +> délai max conservé, mais pertes d’efficacité si petites trames– 1000baseTX (segment cuivre 100m)– 1000baseLX ou SX (fibre)

• En pratique surtout des switchs (plus de CSMA/CD)– Apparition du 10Gb/s

• plus de half duplex (donc ni répéteur ni CSMA/CD)• liens point-à-point entre machines ou switchs

– En cours : ethernet 100G …

Page 20: RLI - unistra.frpansiot/enseignement/rli/Reseaux-locaux.pdf · •câbles métalliques (paires torsadées, coaxial) •fibres •Canal radio (Wifi) •répéteurs/hub, transceiver,

RLI 2011 58

RJ45• Prise RJ45 4 paires torsadées• 2 paires utilisées par 10baseT, 100baseTX, 4 paires pour 1000base-T• Câble droit entre machine et hub ou pont• Câble croisé entre 2 machines (paire émission sur paire réception)

RLI 2011 59

Ex : câble 4 paires torsadées

Source : wikipedia, photo Christophe Jacquet

RLI 2011 60

câblage systématiqueprise bureau local câblagePC Câblage fixe

rocade

Hub, switch, routeur