RHEOLOGICAL BEHAVIOUR OF ETHYLENE GLYCOL BASED …epublication.cheme.utm.my/23/1/RHEOLOGICAL...

18
RHEOLOGICAL BEHAVIOUR OF ETHYLENE GLYCOL BASED TITANIA NANOFLUIDS KHAIRUNNISA BINTI ABDUL HALIM A project report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering (Chemical) Faculty of Chemical Engineering Universiti Teknologi Malaysia JANUARY 2013

Transcript of RHEOLOGICAL BEHAVIOUR OF ETHYLENE GLYCOL BASED …epublication.cheme.utm.my/23/1/RHEOLOGICAL...

RHEOLOGICAL BEHAVIOUR OF ETHYLENE GLYCOL BASED TITANIA

NANOFLUIDS

KHAIRUNNISA BINTI ABDUL HALIM

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Chemical)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

JANUARY 2013

v

ABSTRACT

The purpose of this study is to investigate the rheological behaviour of

ethylene glycol (EG) based titania nanofluids. Generally, rheology is the study of

the deformation and flow of the matter. Nanofluids are dilute liquid suspensions of

nanoparticles which at least one critical dimension smaller than ~100nm in which is

used to enhance the thermal heat coefficient. Nanofluids have better heat

characteristics and have larger thermal conductivities compared to the base fluids,

however, the thermal behaviour of nanofluids correlates well with the rheological

behaviour of the nanofluids. This indicates the significance of studying the rheology

of nanofluids. In order to study the rheology of nanofluids, a set of stable nanofluids

have to be prepared with several different concentration and pH value. Then the

characterization of nanofluids will be done in terms of stability and viscosity; at

different temperature (27 ⁰C, 40 ⁰C, 50 ⁰C and 60 ⁰C); and concentration of titania

nanoparticles. Later the viscosity of the nanofluids were analysed to understand the

rheology. Titania nanoparticles were dispersed in the EG as the base fluid by two-

step method. A surfactant, Sodium Lauryl Sulphate (SLS) was used to stabilize the

nanofluids. SLS surfactant helps to reduce agglomeration in the titania nanofluids.

From the observation, the samples were stable for not more than a week. For both

pH of titania nanofluids (pH 3 and pH 11), the viscosity was increasing with the

increment of weight percentages and decrease with the temperature. Furthermore,

the shear stress decreases with the temperature and increases with weight percentage.

vi

ABSTRAK

Tujuan kajian ini adalah untuk menyiasat kelakuan rheologi bendalir-

nano titania berasaskan glikol etilena (EG). Secara umumnya, rheologi adalah

kajian terhadap perubahan dan aliran sesuatu jisim. Bendalir-nano adalah

cairan cecair nanopartikel yang mengandungi sekurang-kurangnya satu

dimensi kritikal yang lebih kecil daripada ~100nm yang mana digunakan

untuk meningkatkan pekali haba terma. Bendalir-nano mempunyai sifat-sifat

haba yang lebih baik dan mempunyai pekali terma yang lebih besar jika

dibandingkan dengan bendalir asas. Walau bagaimanapun, perlakuan terma

bersangkut paut dengan perlakuan rheologi bagi cecair nano. Hal ini

menerangkan kepentingan kajian terhadap perlakuan rheologi cecair nano.

Untuk menyiasat perlakuan rheologi tersebut, satu set sampel titania-EG

cecair nano perlu disediakan dengan beberapa kepekatan titania nano-partikel

yang berbeza, pH dan suhu yang berbeza (27 ⁰C, 40 ⁰C, 50 ⁰C and 60 ⁰C).

Kemudian, pencirian cecair nano dilakukan dalam bentuk kestabilan dan

kelikatan; pada suhu dan kepekatan berbeza. Partikel-nano dari titania telah

diserakkan di dalam EG sebagai cecair dasar oleh kaedah dua langkah. Satu

bahan penyelerak, Sodium Lauril Sulfat (SLS) telah digunakan untuk

menstabilkan bendalir-nano. SLS membantu untuk mengurangkan

penumpuan dalam bendalir-nano titania. Melalui pemerhatian yang

dijalankan, bendalir-nano dari cairan EG stabil hanya untuk tidak lebih dari

satu minggu. Bagi kedua-dua nilai pH untuk bendalir-nano titania (pH 3 dan

pH 11), kelikatan telah meningkat dengan kenaikan peratusan berat dan

penurunan dengan. Tambahan pula, tegasan ricih berkurangan dengan suhu

dan meningkat dengan peratusan berat.

vii

TABLE OF CONTENT

CHAPTER TITLE

DECLARATION

PAGE

ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENT vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xv

LIST OF SYMBOLS xvii

LIST OF APPENDIX xviii

1 INTRODUCTION

1.1 Background of Study 1

1.2 Problem Statement 4

1.3 Objective of Study 6

1.4 Scope of Study 6

1.5 Significant of Study 6

2 LITERATURE REVIEW

2.1 Rheological Behavior of Nanofluids 8

2.2 Experimentally Measured Rheological Data for

Nanofluids

11

viii

2.2.1 Effects of Newtonian and non-Newtonian

Behaviour

12

2.2.2 Effects of High Shear Viscosity 14

2.2.3 Effects of Shearing Time 18

2.3 Nanofluids 20

2.3.1 Properties of Nanofluids 20

2.3.2 Preparation of Nanofluids 21

2.3.3 Addition of Surfactant 22

2.3.4 Effects of Base Fluids on the Heat Transfer

Properties

23

2.4 Viscosity of Nanofluids 24

2.5 Factors that Affects Viscosity of the Nanofluids 25

2.5.1 Temperature 25

2.5.2 Weight Fraction 28

2.5.3 Particle Size and Shape 30

2.6 Stability Investigation 30

3 METHODOLOGY

3.1 Materials 33

3.2 Experimental Procedures 34

3.2.1 Preparation of Nanofluids 34

3.2.2 Stability Investigation 36

3.2.3 Viscosity Measurement 36

3.3 Process Flow Diagram 37

4 RESULT AND DISCUSSION

4.1 Introduction 39

4.2 Result and Discussion 39

4.2.1 Synthesis of EG based Titania Nanofluids 40

4.2.1 Stability Investigation 41

4.2.3 Factors that Affected Viscosity of Nanofluids 44

4.2.3.1 Wt% of TiO2 Nanoparticles 44

ix

4.2.3.2 Temperature 58

4.2.4 Rheological Behavior of EG based Titania

Nanofluids 65

4.2.4.1 Effects of Newtonian and non-

Newtonian Behavior 65

4.2.4.2 Effects of Shearing Time 71

5 CONCLUSIONS AND RECOMMENDATIONS 75

REFERENCES 77

APPENDIX 89

REFERENCES

Abdulagatov, M. I. and Azizov, N. D. (2006). Experimental Study of the Effect of

Temperature, Pressure and Concentration on the Viscosity of Aqueous NaBr

Solutions. Journal of Solution Chemistry. 35(5): 705–738.

Aladag, B., Halefadl, S., Doner, N., Mare, T., Duret, S., and Estelle, P. (2012).

Experimental Investigations of the Viscosity of Nanofluids at Low

Temperatures. Applied Energy. (97): 876-880.

Alias, H., and Ho., P. W. (2009). Synthesis and Flow Behaviour of Carbon

Nanotubes Nanofluids. Jurnal Teknologi. 51(F): 143-156.

Assael, M. J., Metaxa, I. N., Arvanitidis, J., Christofilos, D., and Lioutas, C. (2005).

Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon

Multi-Walled and Double-Walled Nanotubes in the Presence of Two

Different Dispersants. Int. J. Thermophys. 26(3): 647–664.

Batchelor, G. K. (1977). Effect of Brownian-Motion on Bulk Stress in a Suspension

of Spherical-Particles. Journal of Fluid Mechanics. 83(1): 97–117.

Bikales, N. M., Overberger, G. C., and Menges, G. (1988). Encyclopedia of Polymer

Science and Technology Vol 14. (455). New York: Wiley Publications.

Brenner, H., and Condiff, D. W. (1974). Transport mechanics in systems of orietable

particles, Part IV. Convective Transprort. Journal of Colloid and Interface

Science. 47(1):199–264.

78

Brickman H.C. (1952). The Viscosity of Concentrated Suspension and Solution.

Journal of Chem. Phys. (20): 571-581.

Chadwick, M. D., Goodwin, J. W., Vincent, B., Lawson, E. J., and Mills, P. D. A.

(2002). Rheological Behaviour of Titanium Dioxide (Uncoated Anatase) in

Ethylene Glycol. Colloids and Surfaces A: Physicochem. Eng. Aspects. (196):

235-245.

Chen, H. S., Ding, Y. L., He, Y. R. and Tan, C. Q. (2007a). Rheological Behaviour

of Ethylene Glycol based Titania Nanofluids. Chemistry Physics Letter.

444(4–6): 333–337.

Chen, H.S., Ding, Y.L., He, Y.R., Tan, C.Q. (2007b). Rheological Behaviour of

Nanofluids. New Journal of Physics 367(9): 1–25.

Chen, H. S., Yang, W., He, Y. R., Ding, Y. L., Lapkin, A. A., Bavykin, D. V., and

Tan, C. Q. (2008). Heat Transfer and Flow Behaviour of Aqueous

Suspensions of Titanate Nanotubes under the Laminar Flow Conditions.

Powder Technology. 183(1): 63–72.

Chen, H. S., Ding, Y. L., Lakpin, A. A., and Fan, X. L. (2009). Rheological

Behaviour of Ethylene Glycol - Titanate Nanotube Nanofluids. Journal of

Nanoparticle Research. 11: 1513–1520.

Chen, H., and Ding, Y. (2009). Heat Transfer and Rheological Behaviour of

Nanofluids. Advances in Transport Phenomena. ADVTRANS (1): 135–177.

Cheng, L. (2009). Nanofluid Heat Transfer Technologies. Recent Patents on

Engineering. (3): 1-71.

Choi, S.U.S. (1995). FED 231/MD 66, ASME, New York: 99.

79

Das, S. K., Putra, N., and Roetzel, W. (2003a). Pool Boiling Characteristics of Nano-

fluids. Int. J. Heat Mass Transfer. (46): 851–62.

Das, S. K., Putra, N., Thiesen, P. and Roetzel, W. (2003b). Temperature Dependence

of Thermal Conductivity Enhancement for Nanofluids. Journal of Heat

Transfer. (125): 567–574.

Ding, Y. L., Alias, H., Wen, D. S., and Williams, R. A. (2006). Heat Transfer of

Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids). International

Journal of Heat and Mass Transfer. (49): 240–250.

Ding, Y., Chen, H., He, Y., Lapkin, A., Yeganeh, M., Šiller, L., and Butenko, Y. V.

(2007). Forced Convective Heat Transfer of Nanofluids. Advanced Powder

Technology. Vol. 18(6): 813–824.

Duangthongsuk, W., and Wongwises, S. (2010). Comparison of the Effects of

Measured and Computed Thermophysical Properties of Nanofluids on Heat

Transfer Performance. Experiment Thermal Fluid Science. 34(5): 616–624.

Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. (2001).

Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-

Based Nanofluids. Appl. Phys. Lett. (78): 718-720.

Eastman, J. A., Phillpot, S., Choi, S., and Keblinski, P. (2004). Thermal Transport in

Nanofluids (1). Annu. Rev. Mater. Res. (34): 219-246.

Einstein, A. (1906). Eine neue Bestimmung der Molekul-dimension (A new

Determination of the Molecular Dimensions). Annalen der Physik 19(2):

289–306.

Einstein, A. (1911). Berichtigung zu meiner Arbeit: Eine neue Bestimmung der

Molekul-dimension (Correction of my work: A New Determination of the

Molecular Dimensions). Annalen der Physik. 34(3): 591–592.

80

Fedele, L., Colla, L., Bobbo, S., Barison, S., and Agresti, F. (2011). Experimental

Stability Analysis of Different Water-Based Analysis. Nanoscale Research

Letter. (6): 300.

Gaur, B., and Rai, J. S. P. (1993). Rheological Behaviour of Vinyl Ester Resin. Eur.

Polym. Jour. 29(8): 1149.

Ghadimi, A., Saidur, R., and Metselaar, H. S. C. (2011). A Review of Nanofluid

Stability Properties and Characterization in Stationary Conditions.

International Journal of Heat and Mass Transfer. (54): 4051–4068.

Goodwin, J. W. (2003). Colloids and Interfaces with Surfactants and Polymers- An

Introduction. Cjschester: Wiley.

Gowda, R., Sun, H., Wang, P., and Majid, C. (2010). Effects of Particle Surface

Charge, Species, Concentration, and Dispersion Method on the Thermal

Conductivity of Nanofluids. Advances in Mechanical Engineering. Article ID

807610.

He, Y. R., Jin, Y., Chen, H. S., Ding, Y. L., Cang, D. Q., and Lu, H. L. (2007). Heat

Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles

(Nanofluids) Flowing Upward through a Vertical Pipe. International Journal

of Heat and Mass Transfer. (50): 2272-2281.

Heris, S. Z., Esfahany, M. N., and Etemad, S. G. (2007). Experimental Investigation

of Convective Heat Transfer of Al2O3/Water Nanofluid in a Circular Tube.

International Journal of Heat and Fluid Flow. (28): 203-210.

Hiemenz, P. C. (1984). Polymer Chemistry. Markcel Dekker Inc.

Hwang, Y., Lee, J. K., Lee, J. K., Jeong, Y. M., Cheong, S. I., Ahn, Y. C., and. Kim,

S. H. (2008). Production and Dispersion Stability of Nanoparticles in

Nanofluids. Powder Technology. 186(2): 145–153.

81

Hwang,Y. J., Ahn, Y. C., Shin, H. S., Lee, C. G., Kim, G. T., Park, H. S., and Lee, J.

K. (2006). Investigation on Characteristics of Thermal Conductivity

Enhancement of Nanofluids. Curr. Appl Phys. 6(6): 1068–1071.

Hwang, Y., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G., Ku, B. C.,

and Jang, S. P. (2007). Stability and Thermal Conductivity Characteristics of

Nanofluids. Thermochim. Acta. 455(1-2): 70–74.

Jailani, S., Franks, G. V., and Healy, T. W. (2008). Zeta-Potential of Nanoparticles

Suspensions: Effect of Electrolyte Concentration, Particle Size, and Volume

Fraction. Journal of the American Ceramic Society. (91): pp. 1141-1147.

Jang, S. P., and Choi, S.U.S. (2006). Cooling Performance of a Micro Channel Heat

Sink with Nanofluids. Applied Thermal Engineering. (26): 2457-2463.

Jiang, L., Gao, L., and Sun, J. (2003). Production of Aqueous Colloidal Dispersions

of Carbon Nanotubes. J. Colloid Interface Sci. 260(1): 89–94.

Jin, H., Xianju, W., Qiong, L., Xueyi, W., Yunjin, Z., and Liming, L. (2009).

Influence of pH on the Stability Characteristics of Nanofluids, in: Symposium

on Photonics and Optoelectronics. SOPO 2009: pp. 1–4.

Kanagaraj, S., Varabda, F. R., Fonseca, A., Ponmozhi, J., Lopez da Silva, J. A., and

Oliveira, M. S. A. (2008). Rheological Study of Nanofluids at Different

Concentration of Carbon Nanotubes. 19th National and 8th

ISHMT-ASME,

Heat Mass Transfer Conf. Hyderabad, India, Paper NFF-7.

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K. (1999). Research

News Titania Nanotubes Prepared by Chemical Processing. D-69469

Weinheim.

Keblinski, P., Eastman, J. A., and Cahill, D. G. (2005). Nanofluids for Thermal

Transport. Mater Today. 8(6): 36–44.

82

Khanafer, K., Vafai, K., and Lightstone, M. (2003). Buoyancy Driven Heat Transfer

Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids.

International Journal of Heat and Mass Transfer. (46): 3639-3653.

Kole, M., and Dey, T. K. (2010). Thermal Conductivity and Viscosity of Al2O3

Nanofluid based on Car Engine Coolant. J Phys D Appl Phys. (43): 315-501.

Kulkarni, D. P., Debendra, K. D., and Ravikanth, S. V. (2009). Application of

Nanofluids in Heating Buildings and Reducing Pollution. App Energy. (86):

2566-2573.

Kwak, K., and Kim, C. (2005). Viscosity and Thermal Conductivity of Copper Oxide

Nanofluid Dispersed in Ethylene Glycol. Koraa-Australia Rheology J. (17):

35–40.

Lee, D., Kim, J., and Kim, B. (2006). A New Parameter to Control Heat Transport in

Nanofluids: Surface Charge State of the Particle in Suspension. J. Phys.

Chem. B. 110(9): 4323-4328.

Lee, J. (2009). Convection Performance of Nanofluids for Electronics Cooling. Ph.D,

Stanford University, United States, California.

Lee, S., and Choi, S.U.S. (1996). Application of Metallic Nanoparticle Suspensions

in Advanced Cooling Systems. International Mechanical Engineering

Congress and Exhibition. Atlanta, USA.

Li, Q., and Xuan, Y. M. Convective Heat Transfer and Flow Characteristics of Cu-

Water Nanofluids. (2002). Science in China. Series E (45): 408-416.

Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., and Li, H. (2008). Thermal

Conductivity Enhancement Dependent pH and Chemical Surfactant for Cu–

H2O Nanofluids. Thermochim. Acta. 469(1–2): 98–103.

83

Li, X., Zhu, D., and Wang, X. (2007). Evaluation on Dispersion Behaviour of the

Aqueous Copper Nano-Suspensions. Journal of Colloids and Interface

Science. (310): 456–463.

Liu, M. S., Lin, M. C. C., Huang I. T., and Wang, C. C. 2005. Enhancement of

Thermal Conductivity with Carbon Nanotube for Nanofluids. International

Communications in Heat and Mass Transfer. (32): 1202–1210.

Lixin, C. (2009). Nanofluid Heat Transfer Technologies. Recent Patents on

Engineering. (3): 1-7

Madni, I., Hwang, C. Y., Park, S. D., Choa, Y. H., and Kim, H. T. (2010). Mixed

Surfactant System for Stable Suspension of Multi Walled Carbon Nanotubes,

Colloids Surface. A Physicochem. Eng. Aspects. 358(1–3): 101–107.

Mahbubul, I. M., Saidur, R., and Amalina, M. A. (2011). Pressure Drop

Characteristics of TiO2–R123 Nanorefrigerant in a Circular Tube.

Engineering e-Transaction. 6(2): 131-138.

Maré, T., Halelfadl, S., Sow, O., Estellé, P., Duret, S., and Bazantay, F. (2011).

Comparison of the Thermal Performances of Three Nanofluids at Low

Temperature in a Plate Heat Exchanger. Exp Thermal Fluid Sci. (35): 1535-

1543.

Mewis, J., and Wagner, N. J. (2009). Thixotropy. Adv Colloid Interface Sci. (147–

148): 214–227.

Mohammeda, H. A., Al-aswadia, A. A., Shuaiba, N. H., and Saidurb, R. (2011).

Convective Heat Transfer and Fluid Flow Study over a Step using Nanofluids:

A Review. Renewable and Sustainable Energy Reviews. (15): 2921– 2939.

Nanna, A. G. A., Fistrovich, T., Malinski, K., and Choi, S. U. S. (2005). Thermal

Transport Phenomena in Buoyancy-Driven Nanofluids. Proceedings of 2005

84

ASME International Mechanical Engineering Congress and RD&D

Exposition. November 15-17, 2004. Anaheim, California, USA.

Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., and Maré, T. (2007).

Temperature and Particles-Size Dependent Viscosity Data for Water-Based

Nanofluids –Hysteresis Phenomenon. Int J Heat Fluid Flow. (28): 1492-1506.

Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Butcher, S., and

Mintsa, H. A. (2008). Viscosity Data for Al2O3 –Water Nanofluids-

Hysteresis: is Heat Transfer Enhancement using Nanofluids Reliable. Int J

Thermal Sci. (47): 103-111.

Nnanna, A. G. A., and Routhu, M. (2005). Transport Phenomena in Buoyancy-

Driven Nanofluids – Part II. Proceedings of 2005 ASME Summer Heat

Transfer Conference. July 17-22, 2005. San Francisco, California, USA.

Numburu, P. K., Kulkarni, D. P., Dandekar, A., and Das, D. K. (2007). Experimental

Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids.

Micro Nano Lett. (2): 67-71.

Pak, B. C., and Cho, Y. (1998). Hydrodynamic and Heat Transfer Studies of

Dispersed Fluids with Submicron Metallic Oxide Particles. Experimental

Heat Transfer. (11): 151-170.

Palabiyik, I., Witharana, S., Musina, Z., and Ding, Y. (2012). Stability of Glycol

Nanofluids - The Consensus between Theory and Measurement. Powder

Technology. ID:1208.4207.

Pantzali, M. N., Mouza, A. A., and Paras, S. V. (2009). Investigating the Efficiency

of Nanofluids as Coolants in Plate Heat Exchangers (PHE). Chem. Eng. Sci.

64(14): 3290–3300.

85

Paritosh, G., Jorge, L. A., Marsh, C., Carlson, T. A., Kessler, D. A., and Annamalai,

K. (2009). An Experimental Study on the Effect of Ultrasonication on

Viscosity and Heat Transfer Performance of Multi-Wall Carbon Nanotube-

based Aqueous Nanofluids. Int Journal Heat Mass Transfer. (52): 5090.

Prasher, R., Song, D., and Wang, J. (2006a). Measurements of Nanofluid Viscosity

and Its Implications for Thermal Applications. Application Physics Letter.

(89): 133108-1-3.

Prasher, R., Phelan, P. E., and Bhattacharya, P. (2006b). Effect of Aggregation

Kinetics on Thermal Conductivity of Nanoscale Colloidal Solutions

(Nanofluids). Nano Letter. 6(7): 1529–1534.

Raja, M., Arunachalam, R. M., and Suresh, S. (2012). Experimental Studies on Heat

Transfer of Alumina/Water Nanofluid in A Shell and Tube Heat Exchanger

with Wire Coil Insert. International Journal of Mechanical and Materials

Engineering. 7(1): 16-23.

Rashidi, F., and Nezamabad, N. M. (2011). Experimental Investigation of

Convective Heat Transfer Coefficient of CNTs Nanofluid under Constant

Heat Flux. Proceeding of World Congress on Engineering 2011 (WCE 2011).

July 6-8, 2011. London, U.K., Vol III.

Sato, M., Abe, Y., Urita, Y., Di Paola, R., Cecere, A., and Savino, R. (2009).

Thermal Performance of Self-Rewetting Fluid Heat Pipe Containing Dilute

Solutions of Polymercapped Silver Nanoparticles Synthesized by Microwave-

polyol Process. Proceedings of the ITP.

Sharma, P., Baek, I. H., Cho, T., Park, S., and Lee, K. B. (2011). Enhancement of

Thermal Conductivity of Ethylene Glycol Based Silver Nanofluids: Powder

Technology. (208): 7–19.

86

Sun, T., and Teja, A. (2003). Density, Viscosity, and Thermal Conductivity of

Aqueous Ethylene, Di-ethylene, and Tri-ethylene-Glycol mixtures between

290K And 450K. J. Chem. Eng. Data. (48): 198–202.

Von, S. M. (1917). Versuch Einer Mathematischen Theorie der Koagulations Kinetic

Kolloider Losunger, Z, Phys. Chem. (92): 129.

Walleck, C. (2009). Development of Steady-State, Parallel-Plate Thermal

Conductivity Apparatus for Poly-Nanofluids and Comparative Measurements

with Transient HWTC Apparatus. M.S. Northern Illinois University, United

States– Illinois.

Wang, B. X., Zhou, L. P., and Peng, X. F. (2003). A Fractal Model for Predicting the

Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles.

International Journal of Heat and Mass Transfer. vol. 46.

Wang, J. X., Zhu, H. T., Zhang, C. Y., Tang, Y. M., Ren, B., and Yin, Y. S. (2007).

Preparation and Thermal Conductivity of Suspensions of Graphite

Nanoparticles-Carbon. (45): p. 226.

Wang, X. J., Zhu, D. S., and Yang, S. (2009). Investigation of pH and SDBS on

Enhancement of Thermal Conductivity in Nanofluids. Chem. Phys. Lett.

470(1–3): 107–111.

Wang, X., Xu, X., and Choi, S.U.S (1999). Thermal Conductivity of Nanoparticle-

Fluid Mixture. Journal of Thermophysics and Heat Transfer. (13): 474–480.

Wazer, J. R. V., Lyons, J. W., Kim, K. Y., and Colwell, R. E. (1963) Viscosity and

Flow Measurement, A Laboratory Handbook of Rheology. New York: Wiley-

Interscience.

87

Wen, D. S., and Ding, Y. L. (2004). Effective Thermal Conductivity of Aqueous

Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids). Journal

Of Thermophysics and Heat Transfer. 18(4).

Wen, D. S., and Ding, Y. L. (2004). Experiment Investigation into Convective Heat

Transfer of Nanofluids at the Entrance Region under Laminar Flow

Conditions. International Journal of Heat and Mass Transfer. (47): 5181-

5188.

Wen, D. S., and Ding, Y. L. (2005). Formulation of Nanofluids for Natural

Convective Heat Transfer Applications. International Journal of Heat and

Fluid Flow. (26): 855-864.

Wen, D. S., and Ding, Y. L. (2006). Natural Convective Heat Transfer of

Suspensions of TiO2 Nanoparticles (Nanofluids). Transactions of IEEE on

Nanotechnology. (5): 220-227.

Witharana, S., Chen, H., and Ding, Y. (2011). Stability of Nanofluids in Quiescent

and Shear Flow Fields. Nanoscale Research Letters. (6): 231.

Witharana, S., Hodges, C., Xu, D., Lai, X., and Ding, Y. (2012). Aggregation and

Settling in Aqueous Polydisperse Alumina Nanoparticle Suspensions. Journal

of Nanoparticle Research. (14): 851.

Xuan, Y., and Li, Q. (2000). Heat Transfer Enhancement of Nanofluids.

International Journal of Heat and Fluid Flow. (21): pp. 58-64.

Xuan, Y. M., and Li, Q. (2003). Investigation on Convective Heat Transfer and Flow

Features of Nanofluids. Journal of Heat Transfer. (125): 151-155.

Xuan, Y. M., and Roetzel, W. (2000). Conceptions for Heat Transfer Correlation of

Nanofluids. International Journal of Heat and Mass Transfer. (43): 3701-

3707.

88

Yang, H. G., Li, C. Z., Gu, H. C., and Fang, T. N. (2001). Rheological Behaviour of

Titanium Dioxide Suspensions. Journal of Colloid and Interface Science.

(236): 96–103.

Yang, Y., George, Z. Z., Eric, A. G., William, B. A., and Wu, G. (2005). Heat

Transfer Properties of Nanoparticle in Fluid Dispersions (Nanofluids) in

Laminar Flow. International Journal of Heat and Mass Transfer. (48): 1107–

1116.

Yu, W., and Xie, H. (2012). A Review on Nanofluids: Preparation, Stability

Mechanisms, and Applications. Journal of Nanomaterials. Article ID 435873.

Yu, W., Xie, H., Chen, L., and Li, Y. (2010). Enhancement of Thermal Conductivity

of Kerosene-based Fe3O4 Nanofluids Prepared via Phase-Transfer Method,

Colloids Surface A. Physicochem. Eng. Aspects. 355(1–3): 109-113.

Zhang, X., Gu, H., and Fujii, M. (2007). Effective Thermal Conductivity and

Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical

Nanoparticles. Exp. Thermal Fluid Sci. 31(6): 593–599.

Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., and Li, H. (2009). Dispersion

Behaviour and Thermal Conductivity Characteristics of Al2O3–H2O

Nanofluids. Current Applied Physics. (9): 131–139.

Zhu, H. T., Lin, Y. S., and Yin, Y. S. (2004). A Novel One-Step Chemical Method

for Preparation of Copper Nanofluids. J. Colloid Interface Sci. 277(1): 100-

103.

Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., and Yin, Y. (2007). Preparation and

Thermal Conductivity of Suspensions of Graphite Nanoparticles. Letters to

the Editor/Carbon. 45(1): 203–228.