Responsive Polymers for Analytical and Biosensing...

13
To whom correspondence should be addressed. E mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abstract Key Words responsive polymers, sensor, bimolecular, analytical application, molecularly imprinted polymer Polymerization Quarterly, 2014 Volume 4, Number 2 Pages 59-71 ISSN: 2252-0449 Responsive Polymers for Analytical and Biosensing Applications Laleh Adlnasab * , Azadeh Pirisedigh, Samira Osati Department of Polymer and Petrochemicals, Standard Research Institute, P.O. Box: 31745-139, Karaj, Iran Received: 9 September 2013, Accepted: 28 June 2014 T hese days responsive polymers are used in a wide range of applications. Around the world researchers have made efforts on responsive polymers with high performance which respond to a variety of stimuli. The stimuli-responsive polymers have the ability to respond physically and chemically in response to environmental changes. Also, these materials have enormous potential in a wide range of modern industries. The environmental In this paper, we focus on the analytical and biosensing applications. While polymer-based systems can be engineered to respond to a single stimulus, they can also be made to respond to multiple stimuli. Many applications associated with health, energy and the environment. With so much chemical versatility and a wide reaching array of applications, the future is bright for stimuli-responsive polymers. [email protected]

Transcript of Responsive Polymers for Analytical and Biosensing...

To whom correspondence should be addressed.E mail

...................................................................................................................................................

Abstract

Key Wordsresponsive polymers,

sensor,bimolecular,

analytical application,molecularly imprinted polymer

PolymerizationQuarterly, 2014

Volume 4, Number 2Pages 59-71

ISSN: 2252-0449

Responsive Polymers for Analytical and Biosensing Applications

Laleh Adlnasab*, Azadeh Pirisedigh, Samira OsatiDepartment of Polymer and Petrochemicals, Standard Research Institute, P.O. Box:

31745-139, Karaj, Iran

Received: 9 September 2013, Accepted: 28 June 2014

These days responsive polymers are used in a wide range of applications. Around the

world researchers have made efforts on responsive polymers with high performance

which respond to a variety of stimuli. The stimuli-responsive polymers have the ability

to respond physically and chemically in response to environmental changes. Also, these

materials have enormous potential in a wide range of modern industries. The environmental

In this paper, we focus on the analytical and biosensing applications. While polymer-based

systems can be engineered to respond to a single stimulus, they can also be made to respond

to multiple stimuli. Many applications associated with health, energy and the environment.

With so much chemical versatility and a wide reaching array of applications, the future is

bright for stimuli-responsive polymers.

[email protected]

...................................................................................................................................................

pH

[email protected]

ISSN: 2252-0449

DNA

pH

PNIPAM

(lower critical solution

°C temperature, LCST)

PNIPAM

LCST

pH

PNIPAM

(pNIPAm-co-acrylic acid, AAC PNIPAM

AAC

PNIPAM

pH

pH

PNIPAM-co-AAC

pH> Pka AAc

N N N

poly(2-(2-methoxyethoxy

-ethyl methacrylate-b-oligo(ethylene glycol)methacrylate-b

poly(N-isopropylacrylamide)

(hydrodynamic diameter, DH) DH ± nm pNIPAm-co-AAc

acrylic acid))

pH

°C °C

pH

pH

pKa

pH

ATRP

PNIPAM

PNIPAM HPLC

PIPAAm-brush-grafted silica-bead column(IP-B PIPAAm

poly(tert-butylacrylamide (tBAAm)-b-IPAAm) brush-grafted silica-bead column (tBIP-B

pH

PDPA PDEA

pH PDPA pH PDEA

PDPA HCl PDPA

pH PAA

pH

pH

pH

pH

FeCl3 CaCl2

pH

DNA

PBA

PNIPAM PBA

PDEA PDPA pH

pH

pH APBA

APBA

AAC PNIPAM

PHA PHA

PHA-Biotion PHA

PHA-Biotion

AAC NIPAM pH

A

PNIPAM

DNA

PHA-BIOTIN

PNIPAm-co-Aac PHA-BIOTIN

FTIR

PDMS

IT0 PET

LTM

Fe3O4 Fe2O3

NIPAM

MRI

TNT

ng/mL mm

DNB

cmps

TNT

su-8

ppb

MIP

TNT

PS

CPS

PS

NIPAM RAFT

NIPAM

MIP

molecular imprinting

MIP

MIPC (molecu- mol

larly imprinted polymer capacitive

II MIP

II

MIP

A/μmol μ mol

III

CNTPE

SS-N26Gpul

LCST

1. Black C.T., Guarini K.W., Milkove K.R., Baker S.M., Russell

T.P., and Tuominen M.T., Integration of Self-assembled Di-

block Copolymers for Semiconductor Capacitor Fabrication,

Appl. Phys. Lett., 79, 409-411, 2001.

2. Chen J.P., Markiewicz D., Lee V.Y., Klaerner G., Miller R.D.,

-

odes Through Incorporation of Charge Transporting Compo-

nents in Tri-Block Polymers Synthetic Metals, Synthetic Met.,

107, 203-207, 1999.

3. Abu-Lail N.I., Kaholek M., LaMattina B., Clark R.L., and Za-

usher S., Micro-Cantilevers With End-Grafted Stimulus-Re-

sponsive Polymer Brushes for Actuation and Sensing, Sensor

Actuator, 114, 371-378, 2006.

4. Schild H.G., Poly(N-isopropylacrylamide): Experiment, The-

ory and Application, Prog. Polym. Sci., 17, 163-249, 1992.

5. Hoare T. and Pelton R., Engineering Glucose Swelling Re-

sponses in Poly(N-isopropylacrylamide)-Based Microgels,

Macromolecules, 40, 670-678, 2007.

6. Parasuraman D. and Serpe M.J., Poly(N-isopropylacrylamide)

Microgels for Organic Dye Removal from Water, ACS Appl.

Mater. Interfaces, 3, 2732-2737, 2011.

7. Nagase K., Kobayashi J., Kikuchi A., Akiyama Y., Kanazawa

CNTPE

PPY

mmol mmol mmol

mmol

s s

°C

pH

H., and Okano T., High Stability of Thermoresponsive Poly-

mer-Brush-Grafted Silica Beads as Chromatography Matrices,

ACS Appl. Mater. Interfaces, 4, 1998-2008, 2012.

8.

Color-Tunable Poly(N-isopropylacrylamide) Microgel Based

Etalons, Adv. Mater., 23, 4088-4092, 2011.

9. Islam M.R. and Serpe M.J., Penetration of Polyelectrolytes

into Charged Poly(N-isopropylacrylamide) Microgel Layers

Macromolecules, 46, 1599-

1606, 2013.

10. Ionov L. and Minko S., Mixed Polymer Brushes with Locking

Switching, ACS Appl. Mater. Interfaes, 4, 483-489, 2012.

11. Nagase K., Kobayashi J., Kikuchi A., Akiyama Y., Kanaza-

wa H., and Okano T., Thermoresponsive Polymer Brush on

Monolithic-Silica-Rod for the High-Speed Separation of Bio-

active Compounds, Langmuir, 27, 10830-10839, 2011.

12. Wang Y., Yuan Z.C., and Chen D.J., Thermo- and pH-Sensi-

tive Behavior of Hydrogels Based on Oligo (Ethylene Glycol)

Methacrylates and Acrylic Acid, J. Mater. Sci., 47, 1280-1288,

2012.

13. Fielding L.A., Edmondson S., and Armes S.P., Synthesis of

pH-Responsive Tertiary Amine Methacrylate Polymer Brush-

es and Their Response to Acidic Vapour, J. Mater. Chem., 21,

11773-11780, 2011.

14. Bousquet A., Lbarboure E., Teran F.J., Ruiz L., Garay M.T.,

Laza J.M., Vilas J.L., Papon E., and Rodriguez-Hernandez

J., pH Responsive Surfaces with Nanoscale Topography, J.

Polym. Sci. A., 48, 2982-2990, 2010.

15. Li C. and Lotsch B.V., Stimuli-Responsive 2D Polyelectrolyte

Photonic Crystals for Optically Encoded pH Sensing, Chem.

Commun., 48, 6169-6171, 2012.

16. Hoare T. and Pelton R., Engineering Glucose Swelling Re-

sponses in Poly(N-isopropylacrylamide)-Based Microgels,

Macromolecules, 40, 670-678, 2007.

17. Islam M.R. and Serpe M.J., Polyelectrolyte Mediated Intra

and Intermolecular Crosslinking in Microgel-Based Etalons

for Sensing Protein Concentration in Solution, Chem. Com-

mun., 49, 2646-2648, 2013.

18. Kim J., Serpe M.J., and Lyon L.A., Hydrogel Microparticles

as Dynamically Tunable Microlenses, J. Am. Chem. Soc., 126,

9512-5113, 2004.

19. Miayata T., Asami N., and Uragami T., A Reversibly Antigen-

responsive Hydrogel, Nature, 399, 766-769, 1999.

20. Maeda Y., Matsumoto A., Miura Y., and Miyahara Y., Prepa-

Saccharide-Protein Interactions Using The Smart Gel-Modi-

Nanoscale Res. Lett., 7, 108-

116, 2012.

21. Kuroki H., Ito T., Ohashi H., Tamaki T., and Yamaguchi T.,

Biomolecule-Recognition Gating Membrane Using Biomo-

lecular Cross-Linking and Polymer Phase Transition, Anal.

Chem., 83, 9226-9229, 2011.

22. Feng X.L., Xu Q.L., Liu L.B., and Wang S., A New Light-

Harvesting Conjugated Polyelectrolyte Microgel for DNA and

Enzyme Detections, Langmuir, 25, 13737-13741, 2009.

23. Ouyang H., Xia Z., and Zhe J., Voltage-Controlled Flow

Brushes, , 9, 915-922, 2010.

24. Lietor J.J., Gasser U., Varin R., Hu Z.B., and Fernandez-Nieves

A., Structural Changes of Poly(N-isopropylacrylamide)-Based

Microgels Induced by Hydrostatic Pressure and Temperature

Studied by Small Angle Neutron Scattering, J. Chem. Phys.,

133, 034901-034907, 2010.

25. Fan F.R., Lin L., Zhu G., Wu W.Z., Zhang R., and Wang Z.L.,

Transparent Triboelectric Nanogenerators and Self-Powered

Pressure Sensors Based on Micropatterned Plastic Films,

Nano Lett., 12, 3109-3114, 2012.

26. Seeboth A., Loetzsch D., and Ruhmann R., Piezochromic

Polymer Materials Displaying Pressure Changes in Bar-Rang-

es, Am. J. Mater. Sci., 1, 139-142, 2011.

27. Wu W.T., Shen J., Gai Z., Hong K.L., Banerjee P., and Zhou

S.Q., Multi-Functional Core-Shell Hybrid Nanogels for pH-

Dependent Magnetic Manipulation, Fluorescent pH-Sensing,

and Drug Delivery, Biomaterials, 32, 9876-9887, 2011.

28. Papaphilippou P.C., Pourgouris A., Marinica O., Taulescu A.,

Athanasoulos G.I., Vekas L., and Krasia-Christoforou T., Fab-

rication and Characterization of Superparamagnetic and Ther-

moresponsive Hydrogels Based on Oleic-Acid-Coated Fe3O4

Nanoparticles, Hexa (Ethylene Glycol) Methyl Ether Meth-

acrylate and 2-(Acetoacetoxy) Eethyl Methacrylate, J. Magn.

Mater., 323, 557-563, 2011.

29. Kang-Ho Lee, Jeong Oen Lee, Sukhwan Choi, Jun-Bo Yoon,

Gyu-Hyeong Cho, Yang C.H., Kuo L.S., Chen P.H., Yang

C.R., and Tsai Z.M., A CMOS Label-Free DNA Sensor Using

Electrostatic Induction of Molecular Charges, Biosens. Bio-

electron., 31, 349-356, 2012.

30. Lee E.S.M., Shuter B., Chan J., Chong M.S.K., Ding J., Teoh

S.H., Beuf O., Briguet A., Tam K.C., Choolani M., and Wang

S.C., The Use of Microgel Iron Oxide Nanoparticles in Stud-

ies of Magnetic Resonance Relaxation and Endothelial Pro-

genitor Cell Labeling, Biomaterials, 31, 3296-3306, 2010.

31. Marsella M.J., Carroll P.J., and Swager T.M., Design of Che-

moresistive Sensory Materials: Polythiophene-Based Pseudo-

polyrotaxanes, J. Am. Chem. Soc., 117, 9832-9841, 1995.

32. Chu F. and Yang J., Coil-Shaped Plastic Optical Fiber Sensor

Heads for Fluorescence Quenching Based TNT Sensing, Sens.

Actuat. A: Phys., 175, 43-46, 2012.

33. Rosso P.G., Almassio M.F., Palomar G.R., and Garay R.O.,

Nitroaromatic Compounds Sensing. Synthesis, Photophysi-

cal Characterization and Fluorescence Quenching of a New

Amorphous Segmented Conjugated Polymer with Diphenyl-

Sens. Actuat. B Chem., 160, 524-532,

2011.

34. Wang Z., Wang Z.Y., Ma J., Bock W.J., and Ma D., Effect of

Film Thickness, Blending and Undercoating on Optical De-

tection of Nitroaromatics Using Fluorescent Polymer Films,

Polymer, 51, 842-847, 2010.

35. Seena V., Fernandes A., Pant P., Mukherji S., and Rao V.R.,

Polymer Nanocomposite Nanomechanical Cantilever Sen-

sors: Material Characterization, Device Development and Ap-

plication in Explosive Vapor Detection IOP Nanotechnology,

Nanotehnology, 22, 295501-295512, 2011.

36. Stringer R.C., Gangopadhyay S., and Grant S.A., Detection

of Nitroaromatic Explosives Using a Fluorescent-Labeled Im-

printed Polymer, Anal. Chem., 82, 4015-4019, 2010.

37. Morimoto N., Qiu X.P., Winnik F.M., and Akiyoshi K., Dual

Stimuli-Responsive Nanogels by Self-Assembly of Polysac-

charides Lightly Grafted with Thiol-Terminated Poly (Niso-

propylacrylamide) Chains Macromolecules, Macromolecules,

41, 5985-5998, 2008.

38. Alizadeh T., Ganjali M.R., and Zare. M., Application of an

Hg2+ Selective Imprinted Polymer as a New Modifying Agent

for the Preparation of a Novel Highly Selective and Sensitive

Electrochemical Sensor for the Determination of Ultra Trace

Mercury Ions, Anal. Chim. Acta., 689, 52-59, 2011.

39. Fan Y., Liu J.H., Yang C.P., Yu M., and Liu P., Graphene–Poly-

Determination of 4-Aminophenol, Sens. Actuat. B Chem., 157,

669-674, 2011.

40. Kotanen C.N., Tlili C., and Guiseppi-Elie A., Chaker Tlili and

Anthony Guiseppi-Elie “Bioactive Electroconductive Hydro-

gels: The Effects of Electropolymerization Charge Density on

The Storage Stability of an Enzyme Based Biosensor, Appl.

Biochem. Biotech., 166, 878-888, 2012.

41.

Outcomes Following Trauma-Induced Hemorrhage, Anal.

Bioanal. Chem., 399, 403-419, 2011.