Research Article New Proof for Balian-Low Theorem of ...Journal of Function Spaces and Applications...

8
Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 530172, 7 pages http://dx.doi.org/10.1155/2013/530172 Research Article New Proof for Balian-Low Theorem of Nonlinear Gabor System D. H. Yuan, 1 S. Z. Yang, 2 X. W. Zheng, 2 and Y. F. Shen 2 1 Department of Mathematics, Hanshan Normal University, Chaozhou, Guangdong 521041, China 2 Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China Correspondence should be addressed to D. H. Yuan; [email protected] Received 27 July 2013; Revised 24 September 2013; Accepted 25 September 2013 Academic Editor: T. S. S. R. K. Rao Copyright Β© 2013 D. H. Yuan et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e main purpose of this paper is to give a new proof of the Balian-Low theorem for Gabor system { (2) ( βˆ’ ), , ∈ Z}, which is proposed by Fu et al. and associated with nonlinear Fourier atoms. To this end, we establish the relationships between spaces 2 (R, ) and 2 (R). We also introduce the concept of frame associated with nonlinear Fourier atoms for 2 (R, ) and obtain many subsidiary results for this kind of (Gabor) frames. 1. Introduction Note that the classical Fourier atoms 2 cannot expose the time-varying property of nonstationary signals [1]. Recently, a kind of specific nonlinear phase function (2) is intro- duced in [2–6]. Note that, for different , the shapes of cos (2) (also those of sin (2)) are different. It is observed that the closer gets to 1, the sharper the graph of cos (2) is. is means that the nontrivial Harmonic waves (2) can represent a conformal rescaling of classic Fourier atoms. us, the nontrivial Harmonic waves are expected to be better suitable and adaptable, along with different choices of , to capture nonstationary features of band-limited signals. In fact, Ren et al. [7] obtained some new phenomena on the Shannon sampling theorem by dealing with sampling points which are nonequally distributed. Motivated by these points, Fu et al. [8] considered a newly Gabor system { (2) ( βˆ’ ), , ∈ Z} generated by a function , where () satisfies certain assumptions. Note that they were not restricted to the conformal phase functions () in their discussion. is freedom allows us to choose phase functions adequate to the necessary nonuniform sampling of the signal [7]. Using the Zak transform technique, they established the Balian-Low theorem for this newly Gabor system. We point out that the Gabor system { (2) ( βˆ’ ), , ∈ Z} proposed by [8] can be related to already existing cases. A particular case of this kind of Gabor system is the nonlinear Fourier atoms (2) which was discussed in [2– 6]. Using the nonlinear Fourier atoms in [2–6], we have that the frequency modulation (2) represents a conformal dilation of the classical modulation 2 on the unit circle. Taking the proposed Gabor systems with different parameters , we can obtain a dictionary of Gabor frames with different dilation parameters in the modulation part. A simple change of variables can establish a clear relation between this system and the system generated by the affine Weyl-Heisenberg group with dilation on the window function [9, 10]. Basing on these points, we can say that establishing relationships between frames for 2 (R, ) and 2 (R) is an interesting issue. In this paper, our main purpose is to give a different proof for the Balian-Low theorem proposed in [8]. For this purpose, we firstly establish the relationships between spaces 2 (R, ) and 2 (R). Basing on this relation- ship, we obtain many properties for general frame system { (2) (), , ∈ Z} and its special case { (2) ( βˆ’ ), , ∈ Z}, where is a nonlinear function. With these results for general Gabor system { (2) ( βˆ’ ), , ∈ Z}, we give a new and simple proof for the Balian-Low theorem proposed in [8]. e rest of the paper is organized as follows. Section 2 is devoted to giving some notations and lemmas. In Section 3, we establish the relationship between spaces 2 (R, ) and 2 (R); we also depict some properties of general frame

Transcript of Research Article New Proof for Balian-Low Theorem of ...Journal of Function Spaces and Applications...

  • Hindawi Publishing CorporationJournal of Function Spaces and ApplicationsVolume 2013, Article ID 530172, 7 pageshttp://dx.doi.org/10.1155/2013/530172

    Research ArticleNew Proof for Balian-Low Theorem of Nonlinear Gabor System

    D. H. Yuan,1 S. Z. Yang,2 X. W. Zheng,2 and Y. F. Shen2

    1 Department of Mathematics, Hanshan Normal University, Chaozhou, Guangdong 521041, China2Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China

    Correspondence should be addressed to D. H. Yuan; [email protected]

    Received 27 July 2013; Revised 24 September 2013; Accepted 25 September 2013

    Academic Editor: T. S. S. R. K. Rao

    Copyright Β© 2013 D. H. Yuan et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    The main purpose of this paper is to give a new proof of the Balian-Low theorem for Gabor system {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(𝑑 βˆ’ 𝑛), π‘š, 𝑛 ∈ Z},which is proposed by Fu et al. and associated with nonlinear Fourier atoms. To this end, we establish the relationships betweenspaces 𝐿2(R, π‘‘πœƒ) and 𝐿2(R). We also introduce the concept of frame associated with nonlinear Fourier atoms for 𝐿2(R, π‘‘πœƒ) andobtain many subsidiary results for this kind of (Gabor) frames.

    1. Introduction

    Note that the classical Fourier atoms 𝑒2πœ‹π‘–π‘›π‘‘ cannot expose thetime-varying property of nonstationary signals [1]. Recently,a kind of specific nonlinear phase function πœƒ

    π‘Ž(2πœ‹π‘‘) is intro-

    duced in [2–6]. Note that, for different π‘Ž, the shapes ofcos πœƒπ‘Ž(2πœ‹π‘‘) (also those of sin πœƒ

    π‘Ž(2πœ‹π‘‘)) are different. It is

    observed that the closer π‘Ž gets to 1, the sharper the graphof cos πœƒ

    π‘Ž(2πœ‹π‘‘) is. This means that the nontrivial Harmonic

    waves π‘’π‘–π‘šπœƒπ‘Ž(2πœ‹π‘‘) can represent a conformal rescaling of classicFourier atoms. Thus, the nontrivial Harmonic waves areexpected to be better suitable and adaptable, along withdifferent choices of π‘Ž, to capture nonstationary features ofband-limited signals. In fact, Ren et al. [7] obtained some newphenomena on the Shannon sampling theorem by dealingwith sampling points which are nonequally distributed.

    Motivated by these points, Fu et al. [8] considered a newlyGabor system {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(𝑑 βˆ’ 𝑛), π‘š, 𝑛 ∈ Z} generated by afunction𝑔, where πœƒ(𝑑) satisfies certain assumptions. Note thattheywere not restricted to the conformal phase functions πœƒ(𝑑)in their discussion. This freedom allows us to choose phasefunctions adequate to the necessary nonuniform samplingof the signal [7]. Using the Zak transform technique, theyestablished the Balian-Low theorem for this newly Gaborsystem.

    We point out that the Gabor system {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(𝑑 βˆ’ 𝑛),π‘š, 𝑛 ∈ Z} proposed by [8] can be related to already existing

    cases. A particular case of this kind of Gabor system is thenonlinear Fourier atoms π‘’π‘–π‘šπœƒπ‘Ž(2πœ‹π‘‘) which was discussed in [2–6]. Using the nonlinear Fourier atoms in [2–6], we have thatthe frequency modulation π‘’π‘–π‘šπœƒπ‘Ž(2πœ‹π‘‘) represents a conformaldilation of the classical modulation π‘’π‘–π‘š2πœ‹π‘‘ on the unit circle.Taking the proposedGabor systemswith different parametersπ‘Ž, we can obtain a dictionary of Gabor frames with differentdilation parameters in the modulation part. A simple changeof variables can establish a clear relation between this systemand the system generated by the affine Weyl-Heisenberggroup with dilation on the window function [9, 10].

    Basing on these points, we can say that establishingrelationships between frames for 𝐿2(R, π‘‘πœƒ) and 𝐿2(R) is aninteresting issue. In this paper, our main purpose is to givea different proof for the Balian-Low theorem proposed in[8]. For this purpose, we firstly establish the relationshipsbetween spaces 𝐿2(R, π‘‘πœƒ) and 𝐿2(R). Basing on this relation-ship, we obtain many properties for general frame system{π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)

    𝑔𝑛(𝑑), π‘š, 𝑛 ∈ Z} and its special case {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(𝑑 βˆ’

    𝑛), π‘š, 𝑛 ∈ Z}, where πœƒ is a nonlinear function. With theseresults for general Gabor system {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(π‘‘βˆ’π‘›), π‘š, 𝑛 ∈ Z},we give a new and simple proof for the Balian-Low theoremproposed in [8].

    The rest of the paper is organized as follows. Section 2 isdevoted to giving some notations and lemmas. In Section 3,we establish the relationship between spaces 𝐿2(R, π‘‘πœƒ) and𝐿2(R); we also depict some properties of general frame

  • 2 Journal of Function Spaces and Applications

    {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)

    𝑔𝑛(𝑑), π‘š, 𝑛 ∈ Z} for 𝐿2(R, π‘‘πœƒ). In Section 4, we

    establish the relationship betweenGabor frame {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(π‘‘βˆ’π‘›), π‘š, 𝑛 ∈ Z} for 𝐿2(R, π‘‘πœƒ) and classical one {𝑒𝑖2π‘šπœ‹π‘‘π‘”πœƒ(𝑑 βˆ’π‘›), π‘š, 𝑛 ∈ Z} for 𝐿2(R) under some assumptions on πœƒ; fur-ther, a new and simple proof is presented for the Balian-Lowtheorem which was proposed by Fu et al. [8].

    2. Notations

    In this section, we present some notations and lemmas, whichwill be needed in the rest of the paper.

    For an arbitrary measure πœƒ in R, consider the space𝐿2(R, π‘‘πœƒ) of square integrable functions in R with respect to

    πœƒ and the finite norm:

    π‘“πœƒ = (

    1

    πœƒ (2πœ‹) βˆ’ πœƒ (0)∫∞

    βˆ’βˆž

    𝑓 (π‘₯)2π‘‘πœƒ (2πœ‹π‘₯))

    1/2

    (1)

    induced by the inner product

    βŸ¨π‘“, π‘”βŸ©πœƒ:=

    1

    πœƒ (2πœ‹) βˆ’ πœƒ (0)∫∞

    βˆ’βˆž

    𝑓 (π‘₯) 𝑔 (π‘₯)π‘‘πœƒ (2πœ‹π‘₯) . (2)

    To obtain the Balian-Low theorem for Gabor system{π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)

    𝑔(𝑑 βˆ’ 𝑛), π‘š, 𝑛 ∈ Z}, Fu et al. introduced someassumptions including the Assumptions 2.1 and 2.2 in [8]for a nonlinear phase function πœƒ. Combining these twoassumptions together, we obtain the following Assumption 1.

    Assumption 1. Let function πœƒ : R β†’ R be a measure on Rand satisfy

    πœƒ (π‘₯ + 2π‘˜πœ‹) = πœƒ (π‘₯) + 2π‘˜πœ‹, (3)

    for any π‘₯ ∈ R and π‘˜ ∈ Z. Further, πœƒ(π‘₯) > 0 for all π‘₯ ∈ R.

    Note that πœƒ(π‘₯) > 0 for all π‘₯ ∈ R; one obtains that theinverse of πœƒ (denote by πœƒβˆ’1) exists. Moreover, it is obvious tocheck that πœƒ satisfies

    πœƒβˆ’1(π‘₯ + 2π‘˜πœ‹π›Ύ) = πœƒ

    βˆ’1(π‘₯) + 2π‘˜πœ‹, (4)

    for any π‘₯ ∈ R and π‘˜ ∈ Z. In fact, we obtain from (3) that

    πœƒβˆ’1(πœƒ (π‘₯ + 2π‘˜πœ‹)) = πœƒ

    βˆ’1(πœƒ (π‘₯) + 2π‘˜πœ‹) , (5)

    or

    π‘₯ + 2π‘˜πœ‹ = πœƒβˆ’1(πœƒ (π‘₯) + 2π‘˜πœ‹) . (6)

    Replacing πœƒ(π‘₯) and π‘₯ by 𝑑 and πœƒβˆ’1(𝑑) in (6), respectively, weobtain (4).

    For a function 𝑓 defined in R, denote by

    π‘“πœƒ(𝑑) := 𝑓 (

    1

    2πœ‹πœƒβˆ’1(2πœ‹π‘‘)) (7)

    through the rest of paper.

    For π‘Ž, 𝑏 ∈ R, consider the translation operator (π‘‡π‘Žπ‘”)(π‘₯) =

    𝑔(π‘₯ βˆ’ π‘Ž) and the modulation operator (πΈπœƒπ‘π‘”)(π‘₯) = 𝑒

    π‘–π‘πœƒ(2πœ‹π‘₯)

    𝑔(π‘₯), both acting on 𝐿2(R, π‘‘πœƒ). In [8], Fu et al. proposed ageneral Gabor frame for 𝐿2(R, π‘‘πœƒ). We say that the system{πΈπœƒ

    π‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} is a general Gabor frame for 𝐿2(R, π‘‘πœƒ) if

    there exist two constants 𝐴, 𝐡 > 0 such that

    𝐴𝑓2

    πœƒβ©½ βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘π‘‡π‘›π‘Žπ‘”βŸ©πœƒ

    2

    β©½ 𝐡𝑓2

    πœƒ (8)

    holds for all 𝑓 ∈ 𝐿2(R, π‘‘πœƒ). To further study the generalGabor frame as defined in [8], we introduce a general frameconcept as follows.

    Definition 2. Let π‘”π‘›βˆˆ 𝐿2(R, π‘‘πœƒ), 𝑛 ∈ Z. One says that the

    system {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} is a general frame for 𝐿2(R, π‘‘πœƒ) if

    there exist two constants 𝐴, 𝐡 > 0 such that

    𝐴𝑓2

    πœƒβ©½ βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘”π‘›βŸ©πœƒ

    2

    β©½ 𝐡𝑓2

    πœƒ (9)

    holds for all 𝑓 ∈ 𝐿2(R, π‘‘πœƒ); moreover, one says that the frame{πΈπœƒ

    π‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} is tight if 𝐴 = 𝐡; in particular, the frame

    {πΈπœƒ

    π‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} is Parseval if 𝐴 = 𝐡 = 1.

    Given a frame {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} for 𝐿2(R, π‘‘πœƒ), a dual

    frame is a frame {πΈπœƒπ‘šβ„Žπ‘›, π‘š, 𝑛 ∈ Z} of 𝐿2(R, π‘‘πœƒ) which

    satisfies the reconstruction property

    𝑓 = βˆ‘π‘›,π‘šβˆˆZ

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘”π‘›βŸ©πœƒπΈπœƒ

    π‘šβ„Žπ‘›, βˆ€π‘“ ∈ 𝐿

    2(R, π‘‘πœƒ) , (10)

    and we say that the systems {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šβ„Žπ‘›, π‘š,

    𝑛 ∈ Z} constitute a pair of dual frames for 𝐿2(R, π‘‘πœƒ), wherethe convergence is in the 𝐿2 sense. Note that if πœƒ(2πœ‹π‘₯) = 2πœ‹π‘₯for all π‘₯ ∈ R, then the frame {πΈπœƒ

    π‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} for 𝐿2(R, π‘‘πœƒ)

    constitutes a frame for 𝐿2(R).For fixed 𝑓, 𝑔 ∈ 𝐿2(R, π‘‘πœƒ) and 𝑏 > 0, we introduce the

    πœƒ-bracket product as follows:

    [𝑓, 𝑔]πœƒ

    𝑏(π‘₯) := βˆ‘

    π‘˜βˆˆZ

    π‘“πœƒ(π‘₯ +

    π‘˜

    𝑏)π‘”πœƒ (π‘₯ +

    π‘˜

    𝑏), a.e. π‘₯ ∈ R.

    (11)

    If πœƒ(2πœ‹π‘₯) = 2πœ‹π‘₯ for π‘₯ ∈ R, then [𝑓, 𝑔]πœƒπ‘is bracket product

    (denote by [𝑓, 𝑔]𝑏) introduced by Ron and Shen in [11]. Thus,

    [𝑓, 𝑔]πœƒ

    𝑏= [π‘“πœƒ, π‘”πœƒ]𝑏. (12)

    Note that [𝑓, 𝑔]πœƒπ‘is a 1-periodic function.

    With the classical bracket product, Christensen and Sun[12] proved the following Lemma 3, which is [13, Lemma 2.3].

    Lemma 3. Let 𝑔𝑛, β„Žπ‘›βˆˆ 𝐿2(R), 𝑛 ∈ Z, and 𝑏 > 0. Let the

    systems {πΈπ‘šπ‘π‘”π‘›, π‘š, 𝑛 ∈ Z} and {𝐸

    π‘šπ‘β„Žπ‘›, π‘š, 𝑛 ∈ Z} be Bessel

    sequences in 𝐿2(R). Define

    𝑆𝑓 = βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“, πΈπ‘šπ‘π‘”π‘›βŸ© πΈπ‘šπ‘β„Žπ‘›, βˆ€π‘“ ∈ 𝐿

    2(R) . (13)

  • Journal of Function Spaces and Applications 3

    Then, the following holds:

    (𝑆𝑓) (π‘₯) =1

    π‘βˆ‘π‘›βˆˆZ

    [𝑓, 𝑔𝑛]𝑏(π‘₯) β„Žπ‘› (π‘₯)

    =1

    π‘βˆ‘π‘›βˆˆZ

    βˆ‘π‘˜βˆˆZ

    𝑓(π‘₯ +π‘˜

    𝑏)𝑔𝑛(π‘₯ +

    π‘˜

    𝑏)β„Žπ‘› (π‘₯) ,

    βˆ€π‘“ ∈ 𝐿2(R) ,

    (14)

    where the convergence is in the 𝐿2 sense. Moreover, {πΈπ‘šπ‘π‘”π‘›, π‘š,

    𝑛 ∈ Z} and {πΈπ‘šπ‘β„Žπ‘›, π‘š, 𝑛 ∈ Z} are a pair of dual frames for

    𝐿2(R) if and only if

    βˆ‘π‘˜βˆˆZ

    𝑔𝑛(π‘₯ +

    π‘˜

    𝑏) β„Žn (π‘₯ +

    π‘˜

    𝑏) = 𝑏𝛿

    𝑛,0, a.e. π‘₯ ∈ R. (15)

    The following lemma follows from general properties ofshift-invariant frames; see [11, Corollary 1.6.2]. Alternatively,it can be proved similarly to [14, Theorem 8.4.4].

    Lemma 4. Let π‘”π‘›βˆˆ 𝐿2(R), 𝑛 ∈ Z, 𝑏 > 0, and

    𝐡 :=1

    𝑏supπ‘₯∈R

    βˆ‘π‘˜βˆˆZ

    βˆ‘π‘›βˆˆZ

    𝑔𝑛 (π‘₯) 𝑔𝑛 (π‘₯ βˆ’

    π‘˜

    𝑏)

    < ∞. (16)

    Then, {πΈπ‘šπ‘π‘”π‘›, π‘š, 𝑛 ∈ Z} is a Bessel sequence with upper frame

    bound 𝐡. If also

    𝐴 :=1

    𝑏infπ‘₯∈R

    (βˆ‘π‘›βˆˆZ

    𝑔𝑛 (π‘₯)2βˆ’ βˆ‘π‘˜ ΜΈ= 0

    βˆ‘π‘›βˆˆZ

    𝑔𝑛 (π‘₯) 𝑔𝑛 (π‘₯ βˆ’

    π‘˜

    𝑏)

    ) > 0,

    (17)

    then {πΈπ‘šπ‘π‘”π‘›, π‘š, 𝑛 ∈ Z} constitutes a frame𝐿2(R)with bounds

    𝐴 and 𝐡.

    3. Frame for 𝐿2(R, π‘‘πœƒ)

    In this section, we discuss frames for 𝐿2(R, π‘‘πœƒ). Here, we willestablish the relationship between frames for 𝐿2(R, π‘‘πœƒ) and𝐿2(R). We will also give necessary conditions for frames and

    characterize a pair of dual frames in 𝐿2(R, π‘‘πœƒ). Above all,we establish the relationship between 𝐿2(R, π‘‘πœƒ) and 𝐿2(R) asfollows.

    Theorem 5. Let 𝑓, 𝑔 be functions defined on R. Then,βŸ¨π‘“, π‘”βŸ©

    πœƒ= βŸ¨π‘“πœƒ, π‘”πœƒβŸ©; in particular, ‖𝑓‖

    πœƒ= ‖𝑓

    πœƒβ€–, which means

    that 𝑓 ∈ 𝐿2(R, π‘‘πœƒ) if and only if π‘“πœƒ ∈ 𝐿2(R).

    Proof. Denote 𝑑 := (1/2πœ‹)πœƒ(2πœ‹π‘₯). Then,

    ∫∞

    βˆ’βˆž

    𝑓 (π‘₯) 𝑔 (π‘₯)π‘‘πœƒ (2πœ‹π‘₯) = ∫∞

    βˆ’βˆž

    𝑓(1

    2πœ‹πœƒβˆ’1(2πœ‹π‘‘))

    Γ— 𝑔 (1

    2πœ‹πœƒβˆ’1(2πœ‹π‘‘))𝑑 (2πœ‹π‘‘)

    = 2πœ‹βˆ«βˆž

    βˆ’βˆž

    π‘“πœƒ(𝑑) π‘”πœƒ(𝑑)𝑑𝑑.

    (18)

    This means that

    βŸ¨π‘“, π‘”βŸ©πœƒ= βŸ¨π‘“πœƒ, π‘”πœƒβŸ© . (19)

    Thus, we can obtain the desired result.

    Theorem 6. Let 𝑔𝑛, 𝑛 ∈ Z be functions defined on R. Then,

    the system {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} constitutes a frame for 𝐿2(R, π‘‘πœƒ)

    if and only if the system {πΈπ‘šπ‘”πœƒ

    𝑛, π‘š, 𝑛 ∈ Z} constitutes a frame

    for 𝐿2(R) and these two systems have the same bounds.

    Proof. From Theorem 5, one obtains that π‘”π‘›βˆˆ 𝐿2(R, π‘‘πœƒ) if

    and only if π‘”πœƒπ‘›βˆˆ 𝐿2(R) for 𝑛 ∈ Z. Note that

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘”π‘›βŸ©πœƒ=1

    2πœ‹βˆ«βˆž

    βˆ’βˆž

    𝑓 (π‘₯) π‘’π‘–π‘šπœƒ(2πœ‹π‘₯)𝑔𝑛(π‘₯)π‘‘πœƒ (2πœ‹π‘₯)

    =1

    2πœ‹βˆ«βˆž

    βˆ’βˆž

    𝑓(1

    2πœ‹πœƒβˆ’1(2πœ‹π‘₯))

    Γ— 𝑒𝑖2πœ‹π‘šπ‘₯𝑔𝑛(1

    2πœ‹πœƒβˆ’1 (2πœ‹π‘₯))𝑑 (2πœ‹π‘₯)

    = ∫∞

    βˆ’βˆž

    π‘“πœƒ(π‘₯) 𝑒𝑖2πœ‹π‘šπ‘₯π‘”πœƒ

    𝑛(π‘₯)𝑑π‘₯ = βŸ¨π‘“

    πœƒ, πΈπ‘šπ‘”πœƒ

    π‘›βŸ© .

    (20)

    Then,

    𝐴𝑓2

    πœƒβ©½ βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘”π‘›βŸ©πœƒ

    2

    β©½ 𝐡𝑓2

    πœƒ, βˆ€π‘“ ∈ 𝐿

    2(R, π‘‘πœƒ)

    (21)

    is equivalent to

    π΄π‘“πœƒ

    2

    β©½ βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“πœƒ, πΈπ‘šπ‘”πœƒ

    π‘›βŸ©

    2

    β©½ π΅π‘“πœƒ

    2

    , βˆ€π‘“πœƒβˆˆ 𝐿2(R) .

    (22)

    Now, we can obtain the desired results.

    Theorem7. Let 𝑔𝑛, 𝑛 ∈ Z be functions defined onR.Then, the

    systems {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šβ„Žπ‘›, π‘š, 𝑛 ∈ Z} constitute

    a pair of dual frames for 𝐿2(R, π‘‘πœƒ) if and only if the systems{πΈπ‘šπ‘”πœƒ

    𝑛, π‘š, 𝑛 ∈ Z} and {𝐸

    π‘šβ„Žπœƒ

    𝑛, π‘š, 𝑛 ∈ Z} constitute a pair of

    dual frames for 𝐿2(R).

    Proof. β€œif ” part. If the systems {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šβ„Žπ‘›,

    π‘š, 𝑛 ∈ Z} constitute a pair of dual frames for 𝐿2(R, π‘‘πœƒ).Then, by Theorem 6, these two systems {πΈπœƒ

    π‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z}

    and {πΈπœƒπ‘šβ„Žπ‘›, π‘š, 𝑛 ∈ Z} are frames for 𝐿2(R, π‘‘πœƒ). Moreover,

    we obtain from (20) that

    𝑓 (π‘₯) = βˆ‘π‘›,π‘šβˆˆZ

    βŸ¨π‘“πœƒ, πΈπ‘šπ‘”πœƒ

    π‘›βŸ©πΈπœƒ

    π‘šβ„Žπ‘› (π‘₯) , π‘₯ ∈ R, (23)

    for any 𝑓 ∈ 𝐿2(R, π‘‘πœƒ), where the convergence is in the 𝐿2sense. Replacing π‘₯ by (1/2πœ‹)πœƒβˆ’1(2πœ‹π‘₯) in the above equation,we obtain

    π‘“πœƒ(π‘₯) = βˆ‘

    𝑛,π‘šβˆˆZ

    βŸ¨π‘“πœƒ, πΈπ‘šπ‘”πœƒ

    π‘›βŸ©πΈπ‘šβ„Žπœƒ

    𝑛(π‘₯) , π‘₯ ∈ R, (24)

  • 4 Journal of Function Spaces and Applications

    for any π‘“πœƒ ∈ 𝐿2(R), where the convergence is in the 𝐿2 sense.Therefore, the systems {𝐸

    π‘šπ‘”πœƒ

    𝑛, π‘š, 𝑛 ∈ Z} and {𝐸

    π‘šβ„Žπœƒ

    𝑛, π‘š, 𝑛 ∈

    Z} constitute a pair of dual frames for 𝐿2(R).The proof of β€œonly if ” part is similar to the β€œif ” part, and

    we omit it.

    With the πœƒ-bracket product proposed in the above sec-tion, we can prove the following theorem.

    Theorem 8. Let 𝑔𝑛, β„Žπ‘›βˆˆ 𝐿2(R, π‘‘πœƒ) for 𝑛 ∈ Z. Let {πΈπœƒ

    π‘šπ‘”π‘›, π‘š,

    𝑛 ∈ Z} and {πΈπœƒπ‘šβ„Žπ‘›, π‘š, 𝑛 ∈ Z} be Bessel sequences in𝐿2(R, π‘‘πœƒ).

    Define

    𝑆𝑓 = βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘”π‘›βŸ©πœƒπΈπœƒ

    π‘šβ„Žπ‘›, (25)

    for 𝑓 ∈ 𝐿2(R, π‘‘πœƒ). Then,

    (π‘†π‘“πœƒ) (π‘₯) = βˆ‘

    π‘›βˆˆZ

    [𝑓, 𝑔𝑛]πœƒ(π‘₯) β„Žπœƒ

    𝑛(π‘₯)

    Γ— βˆ‘π‘›βˆˆZ

    βˆ‘π‘˜βˆˆZ

    π‘“πœƒ(π‘₯ + π‘˜) π‘”πœƒ

    𝑛(π‘₯ + π‘˜)β„Ž

    πœƒ

    𝑛(π‘₯)

    (26)

    holds for 𝑓 ∈ 𝐿2(R, π‘‘πœƒ), where the convergence is in the 𝐿2

    sense. Moreover, the systems {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šβ„Žπ‘›, π‘š,

    𝑛 ∈ Z} constitute a pair of dual frames for 𝐿2(R, π‘‘πœƒ) if and onlyif

    βˆ‘π‘˜βˆˆZ

    π‘”πœƒ

    𝑛(π‘₯ + π‘˜) β„Žπœƒ

    𝑛(π‘₯ + π‘˜) = 𝛿𝑛,0, a.e. π‘₯ ∈ R. (27)

    Proof. For fixed 𝑓 ∈ 𝐿2(R, π‘‘πœƒ), one obtains from (20) that

    𝑆𝑓 (π‘₯) = βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘”π‘›βŸ©πœƒπΈπœƒ

    π‘šβ„Žπ‘› (π‘₯)

    = βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“πœƒ, πΈπ‘šπ‘”πœƒ

    π‘›βŸ©πΈπœƒ

    π‘šβ„Žπ‘› (π‘₯) ,

    (28)

    where the convergence is in the 𝐿2 sense. Replacing π‘₯ by(1/2πœ‹)πœƒ

    βˆ’1(2πœ‹π‘₯) in the above equation, we obtain

    π‘†π‘“πœƒ(π‘₯) = βˆ‘

    π‘š, π‘›βˆˆZ

    βŸ¨π‘“πœƒ, πΈπ‘šπ‘”πœƒ

    π‘›βŸ©πΈπ‘šβ„Žπœƒ

    𝑛(π‘₯) , βˆ€π‘“

    πœƒβˆˆ 𝐿2(R) .

    (29)

    Note that the systems {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šβ„Žπ‘›, π‘š, 𝑛 ∈

    Z} are Bessel sequences in 𝐿2(R, π‘‘πœƒ). We can deduce that thesystems {𝐸

    π‘šπ‘”πœƒ

    𝑛, π‘š, 𝑛 ∈ Z} and {𝐸

    π‘šβ„Žπœƒ

    𝑛, π‘š, 𝑛 ∈ Z} are Bessel

    sequences in 𝐿2(R). Therefore, one obtains (26) from (14).From Theorem 7, we know that the systems

    {πΈπœƒ

    π‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šβ„Žπ‘›, π‘š, 𝑛 ∈ Z} constitute a

    pair of dual frames for 𝐿2(R, π‘‘πœƒ) if and only if the systems{πΈπ‘šπ‘”πœƒ

    𝑛, π‘š, 𝑛 ∈ Z} and {𝐸

    π‘šβ„Žπœƒ

    𝑛, π‘š, 𝑛 ∈ Z} constitute a pair of

    dual frames for 𝐿2(R). Thus, by (15) in Lemma 3, one obtainsthe desired result.

    Theorem 9. Let π‘”π‘›βˆˆ 𝐿2(R, π‘‘πœƒ), 𝑛 ∈ Z, and suppose that

    𝐡 := supπ‘₯∈R

    βˆ‘π‘˜βˆˆZ

    βˆ‘π‘›βˆˆZ

    π‘”πœƒ

    𝑛(π‘₯) π‘”πœƒπ‘›(π‘₯ + π‘˜)

    < ∞. (30)

    Then, the system {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} is a Bessel sequence with

    upper frame bound 𝐡 for 𝐿2(R, π‘‘πœƒ). If also

    𝐴 := infπ‘₯∈R

    (βˆ‘π‘›βˆˆZ

    π‘”πœƒ

    𝑛(π‘₯)

    2

    βˆ’ βˆ‘π‘˜ ΜΈ= 0

    βˆ‘π‘›βˆˆZ

    π‘”πœƒ

    𝑛(π‘₯) π‘”πœƒπ‘›(π‘₯ + π‘˜)

    ) > 0,

    (31)

    then the system {πΈπœƒπ‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} constitutes a frame for𝐿2(R,

    π‘‘πœƒ) with bounds 𝐴 and 𝐡.

    Proof. Since π‘”π‘›βˆˆ 𝐿2(R, π‘‘πœƒ), 𝑛 ∈ Z, then π‘”πœƒ

    π‘›βˆˆ 𝐿2(R), 𝑛 ∈

    Z. If 0 < 𝐴, 𝐡 < ∞, then by Lemma 4, the system {πΈπ‘šπ‘”πœƒ

    𝑛,

    π‘š, 𝑛 ∈ Z} constitutes a frame for 𝐿2(R)with frame bounds𝐴and 𝐡. Therefore, by Theorem 6, one obtains that the system{πΈπœƒ

    π‘šπ‘”π‘›, π‘š, 𝑛 ∈ Z} constitutes a frame for 𝐿2(R, π‘‘πœƒ) with the

    same frame bounds 𝐴 and 𝐡.

    4. Gabor Frame for 𝐿2(R, π‘‘πœƒ)

    In this section, Gabor frames for 𝐿2(R, π‘‘πœƒ) are discussed.We establish the relationship between the generalized Gaborframe {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(𝑑 βˆ’ 𝑛), π‘š, 𝑛 ∈ Z} for 𝐿2(R, π‘‘πœƒ) and theclassical one {𝑒𝑖2π‘šπœ‹π‘‘π‘”πœƒ(𝑑 βˆ’ 𝑛), π‘š, 𝑛 ∈ Z} for 𝐿2(R); further,we prove the Balian-Low theorem for Gabor system {π‘’π‘–π‘šπœƒ(2πœ‹π‘‘)𝑔(π‘‘βˆ’π‘›), π‘š, 𝑛 ∈ Z} proposed by Fu et al. in [8] from a differentviewpoint.

    Theorem 10. Let 𝑔 ∈ 𝐿2(R, π‘‘πœƒ). Then,

    (𝑇𝑛𝑔)πœƒ(π‘₯) = 𝑇𝑛𝑔

    πœƒ(π‘₯) . (32)

    Proof. Since

    πœƒβˆ’1(π‘₯ + 2π‘˜πœ‹) = πœƒ

    βˆ’1(π‘₯) + 2π‘˜πœ‹, βˆ€π‘₯ ∈ R, π‘˜ ∈ Z, (33)

    then

    πœƒβˆ’1(2πœ‹ (π‘₯ + π‘˜)) = πœƒ

    βˆ’1(2πœ‹π‘₯ + 2π‘˜πœ‹)

    = πœƒβˆ’1(2πœ‹π‘₯) + 2π‘˜πœ‹, βˆ€π‘₯ ∈ R, π‘˜ ∈ Z.

    (34)

    Hence,

    (𝑇𝑛𝑔)πœƒ(π‘₯) = 𝑔 (

    1

    2πœ‹πœƒβˆ’1(2πœ‹π‘₯) βˆ’ 𝑛)

    = 𝑔(1

    2πœ‹πœƒβˆ’1(2πœ‹ (π‘₯ βˆ’ 𝑛))) = 𝑇𝑛𝑔

    πœƒ(π‘₯) .

    (35)

    We complete the proof.

    Theorem 11. Let 𝑔 be a function defined on R. Then, thegeneral Gabor system {πΈπœƒ

    π‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} constitutes a frame

    for 𝐿2(R, π‘‘πœƒ) if and only if the classical Gabor system{πΈπ‘šπ‘‡π‘›π‘”πœƒ, π‘š, 𝑛 ∈ Z} constitutes a frame for 𝐿2(R) with the

    same bounds.

  • Journal of Function Spaces and Applications 5

    Proof. Define 𝑔𝑛(π‘₯) := 𝑇

    𝑛𝑔(π‘₯), 𝑛 ∈ Z. FromTheorem 6, one

    obtains that the general Gabor system {πΈπœƒπ‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z}

    constitutes a frame for 𝐿2(R, π‘‘πœƒ) if and only if the system{πΈπ‘š(𝑇𝑛𝑔)πœƒ, π‘š, 𝑛 ∈ Z} constitutes a frame for 𝐿2(R) with

    the same bounds. So, one obtains the desired result fromTheorem 10.

    Combining Theorems 8 and 10 together, we obtain thefollowingTheorem 12.

    Theorem 12. Consider 𝑔, β„Ž ∈ 𝐿2(R, π‘‘πœƒ). Let the systems{πΈπœƒ

    π‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šπ‘‡π‘›β„Ž, π‘š, 𝑛 ∈ Z} be Bessel

    sequences in 𝐿2(R, π‘‘πœƒ). Define

    𝑆𝑓 = βˆ‘π‘š, π‘›βˆˆZ

    βŸ¨π‘“, πΈπœƒ

    π‘šπ‘‡π‘›π‘”βŸ©πΈπœƒ

    π‘šπ‘‡π‘›β„Ž, βˆ€π‘“ ∈ 𝐿

    2(R, π‘‘πœƒ) . (36)

    Then, for any 𝑓 ∈ 𝐿2(R, π‘‘πœƒ),

    (π‘†π‘“πœƒ) (π‘₯) = βˆ‘

    π‘›βˆˆZ

    [π‘“πœƒ, π‘‡π‘›π‘”πœƒ] (π‘₯) π‘‡π‘›β„Ž

    πœƒ(π‘₯)

    = βˆ‘π‘›βˆˆZ

    βˆ‘π‘˜βˆˆZ

    π‘“πœƒ(π‘₯ + π‘˜) 𝑇𝑛𝑔

    πœƒ (π‘₯ + π‘˜) π‘‡π‘›β„Žπœƒ(π‘₯) ,

    (37)

    where the convergence is in the 𝐿2 sense. Moreover, the systems{πΈπœƒ

    π‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} and {πΈπœƒ

    π‘šπ‘‡π‘›β„Ž, π‘š, 𝑛 ∈ Z} constitute a pair

    of dual frames for 𝐿2(R, π‘‘πœƒ) if and only if

    βˆ‘π‘˜βˆˆZ

    π‘‡π‘›π‘”πœƒ(π‘₯ + π‘˜) π‘‡π‘›β„Ž

    πœƒ (π‘₯ + π‘˜) = 𝛿𝑛,0, a.e. π‘₯ ∈ R. (38)

    Proof. Replacing 𝑔𝑛and β„Ž

    𝑛by 𝑇𝑛𝑔 and 𝑇

    π‘›β„Ž in (26) and (27),

    respectively, we have

    (π‘†π‘“πœƒ) (π‘₯) = βˆ‘

    π‘›βˆˆZ

    [𝑓, 𝑇𝑛𝑔]πœƒ(π‘₯) (π‘‡π‘›β„Ž)

    πœƒ(π‘₯)

    = βˆ‘π‘›βˆˆZ

    βˆ‘π‘˜βˆˆZ

    π‘“πœƒ(π‘₯ + π‘˜) (𝑇𝑛𝑔)

    πœƒ(π‘₯ + π‘˜)(π‘‡π‘›β„Ž)

    πœƒ(π‘₯) ,

    (39)

    βˆ‘π‘˜βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯ + π‘˜) (π‘‡π‘›β„Ž)

    πœƒ(π‘₯ + π‘˜) = 𝛿𝑛, 0, a.e. π‘₯ ∈ R.

    (40)

    Equations (37) and (38) follow from (39) and (40), respec-tively. Here, we used the facts that (𝑇

    𝑛𝑔)πœƒ(π‘₯) = 𝑇

    π‘›π‘”πœƒ(π‘₯) and

    (π‘‡π‘›β„Ž)πœƒ(π‘₯) = 𝑇

    π‘›β„Žπœƒ(π‘₯).

    By Theorems 9 and 10, we obtainTheorem 13.

    Theorem 13. Consider 𝑔 ∈ 𝐿2(R, π‘‘πœƒ), 𝑛 ∈ Z, and supposethat

    𝐡 := supπ‘₯∈[0,1]

    βˆ‘π‘˜βˆˆZ

    βˆ‘π‘›βˆˆZ

    π‘‡π‘›π‘”πœƒ(π‘₯) 𝑇𝑛𝑔

    πœƒ (π‘₯ + π‘˜)

    < ∞. (41)

    Then, the system {πΈπœƒπ‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} is a Bessel sequence for

    𝐿2(R, π‘‘πœƒ) with upper frame bound 𝐡. If also

    𝐴 := infπ‘₯∈[0,1]

    (βˆ‘π‘›βˆˆZ

    π‘‡π‘›π‘”πœƒ(π‘₯)

    2

    βˆ’ βˆ‘π‘˜ ΜΈ= 0

    βˆ‘π‘›βˆˆZ

    π‘‡π‘›π‘”πœƒ(π‘₯) 𝑇𝑛𝑔

    πœƒ (π‘₯ + π‘˜)

    ) > 0,

    (42)

    then the system {πΈπœƒπ‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} constitutes a frame for

    𝐿2(R, π‘‘πœƒ) with bounds 𝐴 and 𝐡.

    Proof. Since π‘‡π‘›π‘”πœƒ(π‘₯) = (𝑇

    𝑛𝑔)πœƒ(π‘₯) and 𝑇

    π‘›β„Žπœƒ(π‘₯) = (𝑇

    π‘›β„Ž)πœƒ(π‘₯),

    then

    𝐡 = supπ‘₯∈[0,1]

    βˆ‘π‘˜βˆˆZ

    βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯) (𝑇𝑛𝑔)

    πœƒ(π‘₯ + π‘˜)

    ,

    𝐴 = infπ‘₯∈[0,1]

    (βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯)

    2

    βˆ’βˆ‘π‘˜ ΜΈ= 0

    βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯) (𝑇𝑛𝑔)

    πœƒ(π‘₯ + π‘˜)

    ) .

    (43)

    Define

    𝐻1 (π‘₯) := βˆ‘

    π‘˜βˆˆZ

    βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯) (𝑇𝑛𝑔)

    πœƒ(π‘₯ + π‘˜)

    ,

    𝐻2 (π‘₯) := βˆ‘

    π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯)

    2

    βˆ’ βˆ‘π‘˜ ΜΈ= 0

    βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯) (𝑇𝑛𝑔)

    πœƒ(π‘₯ + π‘˜)

    ,

    (44)

    then𝐻1and𝐻

    2are 1-periodic functions. Thus,

    𝐡 = supπ‘₯∈R

    βˆ‘π‘˜βˆˆZ

    βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯) (𝑇𝑛𝑔)

    πœƒ(π‘₯ + π‘˜)

    ,

    𝐴 = infπ‘₯∈R

    (βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯)

    2

    βˆ’ βˆ‘π‘˜ ΜΈ= 0

    βˆ‘π‘›βˆˆZ

    (𝑇𝑛𝑔)πœƒ(π‘₯) (𝑇𝑛𝑔)

    πœƒ(π‘₯ + π‘˜)

    ) .

    (45)

    ByTheorem 9, one obtains the results.

    Theorem 14. Let 𝑔 ∈ 𝐿2(R, π‘‘πœƒ). Assume that the system{πΈπœƒ

    π‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} constitutes a generalized Gabor frame for

    𝐿2(R, π‘‘πœƒ) with bounds 𝐴 and 𝐡. Then,

    𝐴 β©½ βˆ‘π‘›βˆˆZ

    π‘”πœƒ(π‘₯ βˆ’ 𝑛)

    2

    β©½ 𝐡, a.e. π‘₯ ∈ R. (46)

  • 6 Journal of Function Spaces and Applications

    Proof. If the system {πΈπœƒπ‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} constitutes a

    generalized Gabor frame for 𝐿2(R, π‘‘πœƒ) with bounds 𝐴 and𝐡. Then, by Theorem 7, {𝐸

    π‘š(𝑇𝑛𝑔)πœƒ, π‘š, 𝑛 ∈ Z} constitutes a

    frame for 𝐿2(R) with the same bounds 𝐴 and 𝐡. Note that(𝑇𝑛𝑔)πœƒ= π‘‡π‘›π‘”πœƒ. We can say that the system {𝐸

    π‘šπ‘‡π‘›π‘”πœƒ, π‘š, 𝑛 ∈

    Z} constitutes a Gabor frame for 𝐿2(R)with the same bounds𝐴 and 𝐡. Thus, one obtains from [14, Proposition 8.3.2] thedesired result.

    Theorem 15. Let 𝑔 ∈ 𝐿2(R, π‘‘πœƒ). Suppose that the system{πΈπœƒ

    π‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} constitutes a general Gabor frame for 𝐿2

    (R, π‘‘πœƒ). If the derivative πœƒ of function πœƒ is continuous on R,then either

    ∫∞

    βˆ’βˆž

    π‘₯2𝑔 (π‘₯)

    2π‘‘πœƒ (2πœ‹π‘₯) = ∞ (47)

    or

    ∫∞

    βˆ’βˆž

    πœ‰2𝑔 (πœ‰)

    2π‘‘πœƒ (2πœ‹πœ‰) = ∞. (48)

    Proof. Since {πΈπœƒπ‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} constitutes a general

    Gabor frame for 𝐿2(R, π‘‘πœƒ), then, by Theorem 11, the system{πΈπ‘šπ‘‡π‘›π‘”πœƒ, π‘š, 𝑛 ∈ Z} constitutes a classical Gabor frame for

    𝐿2(R). Therefore, by the classical Balian-Low theorem, we

    have either

    ∫∞

    βˆ’βˆž

    π‘₯2π‘”πœƒ(π‘₯)

    2

    𝑑π‘₯ = ∞ (49)

    or

    ∫∞

    βˆ’βˆž

    πœ‰2π‘”πœƒ (πœ‰)

    2

    π‘‘πœ‰ = ∞. (50)

    That is either

    ∫∞

    βˆ’βˆž

    πœƒ2(2πœ‹π‘₯)

    𝑔 (π‘₯)2π‘‘πœƒ (2πœ‹π‘₯) = ∞ (51)

    or

    ∫∞

    βˆ’βˆž

    πœƒ2(2πœ‹πœ‰)

    𝑔 (πœ‰)2π‘‘πœƒ (2πœ‹πœ‰) = ∞. (52)

    We need to prove that (51) implies (47) or (52) implies(48). Next, we only prove that (51) implies (47) (the case(52) implies (48) can be obtained similarly). Without loss ofgenerality, let

    ∫∞

    0

    πœƒ2(2πœ‹π‘₯)

    𝑔 (π‘₯)2π‘‘πœƒ (2πœ‹π‘₯) = ∞. (53)

    Since the derivative πœƒ of function πœƒ is continuous on R andπœƒ satisfies Assumption 1, then

    0 < minπ‘₯∈[0,2πœ‹]

    πœƒ(π‘₯) ≀ πœƒ

    (𝑑) ≀ maxπ‘₯∈[0,2πœ‹]

    πœƒ(π‘₯) , 𝑑 ∈ R. (54)

    By the Lagrange mean-valued theorem, there exists 𝜁 ∈ [0, π‘₯]such that

    πœƒ (π‘₯) = πœƒ (0) + πœƒ(𝜁) π‘₯. (55)

    Therefore, for any fixed π‘₯0> 0, there exists a constant 𝐢 > 0

    such that

    |πœƒ (π‘₯)| ≀ 𝐢π‘₯, βˆ€π‘₯ β‰₯ π‘₯0. (56)

    Note that

    ∫π‘₯0

    0

    πœƒ2(2πœ‹π‘₯)

    𝑔 (π‘₯)2π‘‘πœƒ (2πœ‹π‘₯) < ∞. (57)

    Therefore,

    ∫∞

    π‘₯0

    𝐢2π‘₯2𝑔 (π‘₯)

    2π‘‘πœƒ (2πœ‹π‘₯)

    β‰₯ ∫∞

    π‘₯0

    πœƒ2(2πœ‹π‘₯)

    𝑔 (π‘₯)2π‘‘πœƒ (2πœ‹π‘₯) = ∞.

    (58)

    That is,

    ∫∞

    π‘₯0

    π‘₯2𝑔 (π‘₯)

    2π‘‘πœƒ (2πœ‹π‘₯) = ∞, (59)

    or

    ∫∞

    βˆ’βˆž

    π‘₯2𝑔 (π‘₯)

    2π‘‘πœƒ (2πœ‹π‘₯) = ∞. (60)

    In the proof of Theorem 15, the main technique is theinequality

    |πœƒ (π‘₯)| ≀ 𝐢π‘₯, βˆ€π‘₯ β‰₯ π‘₯0, (61)

    for some positive constant 𝐢. Note that

    πœƒ (π‘₯ + 2π‘˜πœ‹) = πœƒ (π‘₯) + 2π‘˜πœ‹ (62)

    is equivalent to

    πœƒ (π‘₯) = π‘₯ + 𝛽 (π‘₯) , (63)

    where 𝛽 is a 2πœ‹-periodic function. We obtain the followingBalian-Low theorem which weakens the conditions imposedon πœƒ in Theorem 15.

    Theorem 16. Let 𝑔 ∈ 𝐿2(R, π‘‘πœƒ). Suppose that the system{πΈπœƒ

    π‘šπ‘‡π‘›π‘”, π‘š, 𝑛 ∈ Z} constitutes a general Gabor frame for

    𝐿2(R, π‘‘πœƒ). Let 𝛽 be a 2πœ‹-periodic function such that

    πœƒ (π‘₯) = π‘₯ + 𝛽 (π‘₯) , βˆ€π‘₯ ∈ R,

    𝛽 (π‘₯) ≀ 𝐢π‘₯, βˆ€π‘₯ β‰₯ π‘₯0,

    (64)

    where 𝐢 is a positive constant. Then, one and only one of theinequalities (47) and (48) holds.

    In applications of frames, it is inconvenient that the framedecomposition, as stated in [15, Theorem 5.1.7], requires theinverse of a frame operator. As we have seen in the discussionof general frame theory, one way of avoiding the problem isto consider tight frames. Hence, we give characterization fortight Gabor frames in 𝐿2(R, π‘‘πœƒ).

  • Journal of Function Spaces and Applications 7

    Theorem 17. Let 𝑔 ∈ 𝐿2(R, π‘‘πœƒ). Then, the system {πΈπœƒπ‘šπ‘‡π‘›π‘”,

    π‘š, 𝑛 ∈ Z} constitutes a tight frame for 𝐿2(R, π‘‘πœƒ) with 𝐴 = 1 ifand only if

    βˆ‘π‘›βˆˆZ

    π‘”πœƒ(π‘₯ βˆ’ 𝑛)

    2

    = 1,

    βˆ‘π‘›βˆˆZ

    π‘”πœƒ(π‘₯ βˆ’ 𝑛) π‘”πœƒ (π‘₯ βˆ’ 𝑛 βˆ’ π‘˜) = 0, for π‘˜ ΜΈ= 0

    (65)

    holds a.e. in R.

    Proof. By Theorem 11, one obtains that the system {πΈπœƒπ‘šπ‘‡π‘›π‘”,

    π‘š, 𝑛 ∈ Z} constitutes a tight frame for 𝐿2(R, π‘‘πœƒ) with 𝐴 = 1if and only if {𝐸

    π‘šπ‘‡π‘›π‘”πœƒ, π‘š, 𝑛 ∈ Z} constitutes a tight frame

    for 𝐿2(R) with 𝐴 = 1. From [14, Theorem 9.5.2], one obtainsthe desired result.

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    Acknowledgments

    The authors are grateful to the referees for their valuablesuggestions that helped to improve the paper in its presentform. This research is supported by the National NaturalScience Foundation of China (Grant no. 11071152), the Nat-ural Science Foundation of Guangdong Province (Grant nos.S2013010013101 and S2011010004511), and the Foundation ofHanshan Normal University (Grant nos. QD20131101 andLQ200905) This work was also partially supported by theOpening Project of Guangdong Province Key Laboratory ofComputational Science at the Sun Yat-sen University (Grantno. 201206012).

    References

    [1] B. Picinbono, β€œOn instantaneous amplitude and phase of sig-nals,” IEEE Transactions on Signal Processing, vol. 45, no. 3, pp.552–560, 1997.

    [2] Q.Chen, L. Li, andT.Qian, β€œTwo families of unit analytic signalswith nonlinear phase,” Physica D, vol. 221, no. 1, pp. 1–12, 2006.

    [3] Q. Chen, L. Li, and T. Qian, β€œStability of frames generatedby nonlinear Fourier atoms,” International Journal of Wavelets,Multiresolution and Information Processing, vol. 3, no. 4, pp.465–476, 2005.

    [4] Y. Fu and L. Li, β€œNontrivial harmonic waves with positiveinstantaneous frequency,” Nonlinear Analysis: Theory, Methodsand Applications, vol. 68, no. 8, pp. 2431–2444, 2008.

    [5] T. Qian, Q. Chen, and L. Li, β€œAnalytic unit quadrature signalswith nonlinear phase,” Physica D, vol. 203, no. 1-2, pp. 80–87,2005.

    [6] T. Qian, β€œCharacterization of boundary values of functions inHardy spaces with applications in signal analysis,” Journal ofIntegral Equations and Applications, vol. 17, no. 2, pp. 159–198,2005.

    [7] G. Ren,Q.Chen, P. Cerejeiras, andU.Kaehle, β€œChirp transformsand chirp series,” Journal of Mathematical Analysis and Applica-tions, vol. 373, no. 2, pp. 356–369, 2011.

    [8] Y. Fu, U. Kaehler, and P. Cerejeiras, β€œThe Balian-Low theoremfor a new kind of Gabor system,”Applicable Analysis, vol. 92, no.4, pp. 799–813, 2013.

    [9] S. Dahlke, M. Fornasier, H. Rauhut, G. Steidl, and G. Teschke,β€œGeneralized coorbit theory, Banach frames, and the relation to𝛼-modulation spaces,” Proceedings of the London MathematicalSociety III, vol. 96, no. 2, pp. 464–506, 2008.

    [10] G. Teschke, S. Dahlke, and K. Stingl, β€œCoorbit theory, multi-𝛼-modulation frames, and the concept of joint sparsity formedicalmultichannel data analysis,” Eurasip Journal on Advances inSignal Processing, vol. 2008, Article ID 471601, 19 pages, 2008.

    [11] A. Ron and Z. Shen, β€œFrames and stable bases for shift-invariantsubspaces of 𝐿2(R𝑑),” Canadian Journal of Mathematics, vol. 47,no. 5, pp. 1051–1094, 1995.

    [12] O. Christensen and W. Sun, β€œExplicitly given pairs of dualframes with compactly supported generators and applicationsto irregular B-splines,” Journal of ApproximationTheory, vol. 151,no. 2, pp. 155–163, 2008.

    [13] O. Christensen, β€œPairs of dual Gabor frame generators withcompact support and desired frequency localization,” Appliedand Computational Harmonic Analysis, vol. 20, no. 3, pp. 403–410, 2006.

    [14] O. Christensen, An Introduction to Frames and Riesz Bases,Applied and Numerical Harmonic Analysis, Birkhäuser,Boston, Mass, USA, 2003.

    [15] O. Christensen, Frames and Bases an Introductory Course,Birkhäuser, Boston, Mass, USA, 2008.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of