Research Article Exact Analytical Solution for 3D Time ...three-dimensional transient heat...

9
Research Article Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method Nemat Dalir Department of Mechanical Engineering, Salmas Branch, Islamic Azad University, Salmas, Iran Correspondence should be addressed to Nemat Dalir; [email protected] Received 4 June 2014; Accepted 30 September 2014; Published 18 November 2014 Academic Editor: Jose C. Merchuk Copyright Β© 2014 Nemat Dalir. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. e sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed. 1. Introduction Multilayer materials are composite media composed of sev- eral layers. Because of the additional benefit of combining various mechanical, physical, and thermal properties of dif- ferent substances, a construction using multilayer elements is of interest. Multilayer materials are used in semicircular fiber insulated heaters, multilayer insulation materials, and nuclear fuel rods. Multilayer transient heat conduction finds applications in thermodynamics, fuel cells, and electrochem- ical reactors. e layered sphere is utilized to investigate the thermal properties of composite media by assuming embed- ded spherical particles in the composite matrix. For solving the problems of multilayer transient heat conduction, the same methods which are used in solving problems of single layer transient heat conduction are applied. ese methods can be classified into two groups: analytical methods and numerical methods. Analytical methods are advantageous over numerical methods in two ways: (1) analytical solutions can be used as benchmark to examine and actually confirm numerical algorithms; (2) compared to a discrete numerical solution, the mathematical form of an analytical solution can provide better insight. It should also be mentioned that the analytical methods applied to multilayer transient conduction are analogous to those used in the single-layer transient heat conduction. ese analytical methods include Green’s function method, the Laplace transform, separation of variables, and eigenfunction expansion method. Many researchers have solved the transient heat con- duction problem in a composite medium. For instance, Salt [1] solved the transient heat conduction problem in a two- dimensional composite slab using an orthogonal eigenfunc- tion expansion technique. Mikhailov and Β¨ Ozis ΒΈik [2], using the orthogonal expansion approach, solved the problem of transient three-dimensional heat conduction in a composite Cartesian medium. Haji-Sheikh and Beck [3] used Green’s function method to obtain temperature distribution in a three-dimensional two-layer orthotropic slab. de Monte [4, 5] applied the eigenfunction expansion method to obtain the transient temperature distribution for the heat conduction in a two-dimensional two-layer isotropic slab with homogenous boundary conditions. Lu et al. [6] and Lu and Viljanen [7] combined separation of variables and Laplace transforms to solve the transient conduction in the two-dimensional cylindrical and spherical media. Singh et al. [8, 9] and Jain et al. [10, 11] used the combination of separation of variables and eigenfunction expansion methods to solve the two-dimensional multilayer transient heat conduction in Hindawi Publishing Corporation International Scholarly Research Notices Volume 2014, Article ID 708723, 8 pages http://dx.doi.org/10.1155/2014/708723

Transcript of Research Article Exact Analytical Solution for 3D Time ...three-dimensional transient heat...

  • Research ArticleExact Analytical Solution for 3D Time-Dependent HeatConduction in a Multilayer Sphere with Heat Sources UsingEigenfunction Expansion Method

    Nemat Dalir

    Department of Mechanical Engineering, Salmas Branch, Islamic Azad University, Salmas, Iran

    Correspondence should be addressed to Nemat Dalir; [email protected]

    Received 4 June 2014; Accepted 30 September 2014; Published 18 November 2014

    Academic Editor: Jose C. Merchuk

    Copyright Β© 2014 Nemat Dalir. This is an open access article distributed under the Creative Commons Attribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere.The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetricinternal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. Anarbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthaldirections. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radialdirection. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.

    1. Introduction

    Multilayer materials are composite media composed of sev-eral layers. Because of the additional benefit of combiningvarious mechanical, physical, and thermal properties of dif-ferent substances, a construction using multilayer elementsis of interest. Multilayer materials are used in semicircularfiber insulated heaters, multilayer insulation materials, andnuclear fuel rods. Multilayer transient heat conduction findsapplications in thermodynamics, fuel cells, and electrochem-ical reactors. The layered sphere is utilized to investigate thethermal properties of composite media by assuming embed-ded spherical particles in the composite matrix. For solvingthe problems of multilayer transient heat conduction, thesame methods which are used in solving problems of singlelayer transient heat conduction are applied. These methodscan be classified into two groups: analytical methods andnumerical methods. Analytical methods are advantageousover numerical methods in two ways: (1) analytical solutionscan be used as benchmark to examine and actually confirmnumerical algorithms; (2) compared to a discrete numericalsolution, the mathematical form of an analytical solutioncan provide better insight. It should also be mentionedthat the analytical methods applied to multilayer transient

    conduction are analogous to those used in the single-layertransient heat conduction. These analytical methods includeGreen’s function method, the Laplace transform, separationof variables, and eigenfunction expansion method.

    Many researchers have solved the transient heat con-duction problem in a composite medium. For instance, Salt[1] solved the transient heat conduction problem in a two-dimensional composite slab using an orthogonal eigenfunc-tion expansion technique. Mikhailov and ÖzisΜ§ik [2], usingthe orthogonal expansion approach, solved the problem oftransient three-dimensional heat conduction in a compositeCartesian medium. Haji-Sheikh and Beck [3] used Green’sfunction method to obtain temperature distribution in athree-dimensional two-layer orthotropic slab. deMonte [4, 5]applied the eigenfunction expansion method to obtain thetransient temperature distribution for the heat conduction ina two-dimensional two-layer isotropic slab with homogenousboundary conditions. Lu et al. [6] and Lu and Viljanen [7]combined separation of variables and Laplace transformsto solve the transient conduction in the two-dimensionalcylindrical and spherical media. Singh et al. [8, 9] andJain et al. [10, 11] used the combination of separation ofvariables and eigenfunction expansion methods to solve thetwo-dimensional multilayer transient heat conduction in

    Hindawi Publishing CorporationInternational Scholarly Research NoticesVolume 2014, Article ID 708723, 8 pageshttp://dx.doi.org/10.1155/2014/708723

  • 2 International Scholarly Research Notices

    spherical coordinates. Recently, Dalir andNourazar [12] usedthe eigenfunction expansion method to solve the problem ofthree-dimensional transient heat conduction in a multilayercylinder.

    Singh et al. [8, 9] and Jain et al. [10, 11] have studied2D multilayer transient conduction problems in sphericaland cylindrical coordinates. They have obtained analyticalsolutions for 2D multilayer transient heat conduction inspherical coordinates, in polar coordinates with multiplelayers in the radial direction, and in a multilayer annulus.They have used the method of partial solutions to obtainthe temperature distributions. In the method of partialsolutions, the nonhomogeneous transient problem is splitinto two subproblems: a nonhomogeneous steady-state sub-problem and a homogeneous transient subproblem. Then,the eigenfunction expansion method is used to solve thenonhomogeneous steady-state subproblem and the methodof separation of variables is used to solve the homogeneoustransient subproblem.

    The literature survey for the exact analytical solution for3D transient heat conduction in multilayered sphere demon-strates that such a solution has not, so far, been developed.Thus, in the present paper, using the eigenfunction expansionmethod, an analytical triple-series solution for transientheat conduction in the 3D spherical coordinates for radialmultilayer domain with spatially nonuniform and time-dependent internal heat sources is obtained. Homogenousboundary conditions of the first or second kind can be appliedon surfaces of πœƒ = constant and πœ™ = constant. However,nonhomogeneous boundary conditions of the third kind(convection) [11] are used in the π‘Ÿ-direction.

    Some assumptions are made for the 3D multilayer spher-ical transient conduction problem. First, the problem is aboundary-value problem of conduction in spherical (π‘Ÿ-πœƒ-πœ™coordinates) or part-sphericalmultilayer geometries. Second,volumetric internal heat sources of nonuniform and time-dependent (π‘Ÿ, πœƒ, πœ™ and 𝑑-dependent) types are present. Third,on the inner and outer radial boundaries, nonhomogeneousboundary conditions of any kind can be used but, on theboundary surfaces in the πœƒ and πœ™-directions, only the firstor second kind of homogeneous boundary condition can beapplied.

    2. Mathematical Formulation

    A 𝑛-layer composite spherical slab (π‘Ÿ0≀ π‘Ÿ ≀ π‘Ÿ

    𝑛, 0 ≀ πœƒ ≀

    πœ“, and 0 ≀ πœ™ ≀ πœ”) is considered. All the layers have perfectthermal contact and are presumed to be isotropic in thermalproperties. 𝛼

    𝑖and π‘˜

    𝑖are the temperature independent ther-

    mal diffusivity and thermal conductivity of the 𝑖th layer. At𝑑 = 0, the 𝑖th layer is at a specified temperature 𝑓

    𝑖(π‘Ÿ, πœƒ, πœ™)

    and time dependent heat sources 𝑔𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑) are switched

    on in each radial layer. For 𝑑 > 0, homogenous boundaryconditions of first or second kind are applied to the angularsurfaces of πœƒ = 0 and πœƒ = πœ“ and azimuthal surfaces of πœ™ = 0and πœ™ = πœ”. For the inner (𝑖 = 1, π‘Ÿ = π‘Ÿ

    0) and the outer

    (𝑖 = 𝑛, π‘Ÿ = π‘Ÿπ‘›) radial surfaces, all three kinds of boundary

    conditions are applicable.

    The governing differential equation of the 3D transientconduction in a multilayered sphere with heat sources is asfollows:

    πœ•2𝑇𝑖

    πœ•π‘Ÿ2+2

    π‘Ÿ

    πœ•π‘‡π‘–

    πœ•π‘Ÿ+1

    π‘Ÿ2πœ•2𝑇𝑖

    πœ•πœƒ2+cot πœƒπ‘Ÿ2

    πœ•π‘‡π‘–

    πœ•πœƒ+

    1

    π‘Ÿ2sin2πœƒπœ•2𝑇𝑖

    πœ•πœ™2

    +𝑔𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑)

    π‘˜π‘–

    =1

    𝛼𝑖

    πœ•π‘‡π‘–

    πœ•π‘‘,

    𝑇𝑖= 𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑) , π‘Ÿ

    0≀ π‘Ÿ ≀ π‘Ÿ

    𝑛,

    π‘Ÿπ‘–βˆ’1≀ π‘Ÿ ≀ π‘Ÿ

    𝑖, 1 ≀ 𝑖 ≀ 𝑛,

    0 ≀ πœƒ ≀ πœ“, πœ“ < πœ‹,

    0 ≀ πœ™ ≀ πœ”, πœ” < 2πœ‹,

    𝑑 β‰₯ 0.

    (1)

    The boundary conditions are as follows.

    (i) Inner surface of 1st layer (𝑖 = 1):

    𝐴 inπœ•π‘‡1

    πœ•π‘Ÿ(π‘Ÿ0, πœƒ, πœ™, 𝑑) + 𝐡in𝑇1 (π‘Ÿ0, πœƒ, πœ™, 𝑑) = 𝐢in. (2)

    (ii) Outer surface of 𝑛th layer (𝑖 = 𝑛):

    𝐴outπœ•π‘‡π‘›

    πœ•π‘Ÿ(π‘Ÿπ‘›, πœƒ, πœ™, 𝑑) + 𝐡out𝑇𝑛 (π‘Ÿπ‘›, πœƒ, πœ™, 𝑑) = 𝐢out. (3)

    (iii) πœƒ = πœ“ surface (𝑖 = 1, 2, . . . , 𝑛):

    𝑇𝑖(π‘Ÿ, πœƒ = πœ“, πœ™, 𝑑) = 0 or

    πœ•π‘‡π‘–

    πœ•πœƒ(π‘Ÿ, πœƒ = πœ“, πœ™, 𝑑) = 0,

    𝑖 = 1, . . . , 𝑛.

    (4)

    (iv) πœ™ = 0 surface (𝑖 = 1, 2, . . . , 𝑛):

    𝑇𝑖(π‘Ÿ, πœƒ, πœ™ = 0, 𝑑) = 0 or

    πœ•π‘‡π‘–

    πœ•πœƒ(π‘Ÿ, πœƒ, πœ™ = 0, 𝑑) = 0,

    𝑖 = 1, . . . , 𝑛.

    (5)

    (v) πœ™ = πœ” surface (𝑖 = 1, 2, . . . , 𝑛):

    𝑇𝑖(π‘Ÿ, πœƒ, πœ™ = πœ”, 𝑑) = 0 or

    πœ•π‘‡π‘–

    πœ•πœƒ(π‘Ÿ, πœƒ, πœ™ = πœ”, 𝑑) = 0,

    𝑖 = 1, . . . , 𝑛.

    (6)

    (vi) Inner interface of the 𝑖th layer (𝑖 = 2, . . . , 𝑛):

    𝑇𝑖(π‘Ÿπ‘–βˆ’1, πœƒ, πœ™, 𝑑) = 𝑇

    π‘–βˆ’1(π‘Ÿπ‘–βˆ’1, πœƒ, πœ™, 𝑑) 𝑖 = 2, . . . , 𝑛,

    π‘˜π‘–

    πœ•π‘‡π‘–

    πœ•π‘Ÿ(π‘Ÿπ‘–βˆ’1, πœƒ, πœ™, 𝑑) = π‘˜

    π‘–βˆ’1

    πœ•π‘‡π‘–βˆ’1

    πœ•π‘Ÿ(π‘Ÿπ‘–βˆ’1, πœƒ, πœ™, 𝑑) 𝑖 = 2, . . . , 𝑛.

    (7)

  • International Scholarly Research Notices 3

    (vii) Outer interface of the 𝑖th layer (𝑖 = 1, . . . , 𝑛 βˆ’ 1):

    𝑇𝑖(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) = 𝑇

    𝑖+1(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) 𝑖 = 1, . . . , 𝑛 βˆ’ 1, (8)

    π‘˜π‘–

    πœ•π‘‡π‘–

    πœ•π‘Ÿ(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) = π‘˜

    𝑖+1

    πœ•π‘‡π‘–+1

    πœ•π‘Ÿ(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) 𝑖 = 1, . . . , 𝑛 βˆ’ 1.

    (9)

    The initial condition is as follows:

    𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑 = 0) = 𝑓

    𝑖(π‘Ÿ, πœƒ, πœ™) , 1 ≀ 𝑖 ≀ 𝑛. (10)

    It is worth mentioning that, at π‘Ÿ = π‘Ÿ0and π‘Ÿ = π‘Ÿ

    𝑛, boundary

    conditions of first, second, or third kind are applied byappropriate selection of the coefficients in (2) and (3). Itshould also be mentioned that zero inner radius (π‘Ÿ

    0= 0) for

    multilayered sphere ismodeled by assigning zero values to𝐡inand 𝐢in in (2) [8].

    3. Solution Methodology

    The eigenfunction expansion method is used to solve theproblem. In the eigenfunction expansion method, first, byusing the associated eigenvalue problem (βˆ‡2πœ‘ = βˆ’πœ†2πœ‘),the eigenfunctions are attained at every spatial direction ofthe problem. The associated eigenvalue problem is solved bythe use of separation of variables. Afterward, the dependentvariable and the available nonhomogeneity in the governingdifferential equation of the problem are separately written asseries expansions of the eigenfunctions. In heat conductionproblems, the dependent variable is temperature and theavailable nonhomogeneity is the volumetric heat source. Theseries expansions are then substituted into the differentialequation. By performing some mathematical manipulations,an ordinary differential equation (ODE) is finally obtainedfor the independent variable. The solution of the problem iscompleted by solving this ODE, which is a first order ODE inthe case of heat conduction problems.

    As stated before, the method of partial solutions wasused by Jain and Singh [11] for solving 2D transient heatconduction problems, the reason being that the heat sourceis independent of time. However, the method of partialsolutions cannot be used for solving the present 3D transientheat conduction problem because the heat source dependson time. Thus, due to time dependence of the heat source,the partial solution of the steady-state subproblem cannotinclude the heat source term and the partial solutionsmethodcannot be used. Therefore, to the best knowledge of theauthors, the most efficient tool for solving the 3D heatconduction problem of the present paper is the eigenfunctionexpansion method.

    For the transient problem of present paper, the associatedeigenvalue problem is written as follows:

    βˆ‡2πœ‘π‘–= βˆ’πœ†2πœ‘π‘–β‡’

    πœ•2πœ‘π‘–

    πœ•π‘Ÿ2+2

    π‘Ÿ

    πœ•πœ‘π‘–

    πœ•π‘Ÿ+1

    π‘Ÿ2πœ•2πœ‘π‘–

    πœ•πœƒ2

    +cot πœƒπ‘Ÿ2

    πœ•πœ‘π‘–

    πœ•πœƒ+

    1

    π‘Ÿ2sin2πœƒπœ•2πœ‘π‘–

    πœ•πœ™2

    = βˆ’πœ†2πœ‘π‘–.

    (11)

    Using the method of separation of variables, (11) is solved asfollows:

    πœ‘π‘–(π‘Ÿ, πœƒ, πœ™) = 𝑅

    𝑖(π‘Ÿ) Ξ˜π‘–(πœƒ)Φ𝑖(πœ™) , (12)

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    +2

    π‘Ÿ

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    +1

    π‘Ÿ2

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    +cot πœƒπ‘Ÿ2

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    +1

    π‘Ÿ2sin2πœƒπ‘…π‘–Ξ˜π‘–Ξ¦π‘–

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    = βˆ’πœ†2π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    π‘…π‘–Ξ˜π‘–Ξ¦π‘–

    ,

    (13)

    𝑅𝑖

    𝑅𝑖

    +2

    π‘Ÿ

    𝑅𝑖

    𝑅𝑖

    +1

    π‘Ÿ2

    Ξ˜π‘–

    Ξ˜π‘–

    +cot πœƒπ‘Ÿ2

    Ξ˜π‘–

    Ξ˜π‘–

    +1

    π‘Ÿ2sin2πœƒΞ¦π‘–

    Φ𝑖

    = βˆ’πœ†2, (14)

    𝑅𝑖

    𝑅𝑖

    +2

    π‘Ÿ

    𝑅𝑖

    𝑅𝑖

    +1

    π‘Ÿ2

    Ξ˜π‘–

    Ξ˜π‘–

    +cot πœƒπ‘Ÿ2

    Ξ˜π‘–

    Ξ˜π‘–

    = βˆ’1

    π‘Ÿ2sin2πœƒΞ¦π‘–

    Φ𝑖

    βˆ’ πœ†2, (15)

    sin2πœƒ(π‘Ÿ2𝑅𝑖

    𝑅𝑖

    + 2π‘Ÿπ‘…π‘–

    𝑅𝑖

    +Ξ˜π‘–

    Ξ˜π‘–

    + cot πœƒΞ˜π‘–

    Ξ˜π‘–

    + πœ†2π‘Ÿ2)

    = βˆ’Ξ¦π‘–

    Φ𝑖

    βˆ’ = +]2,

    (16)

    Ξ¦

    𝑖+ ]2π‘–π‘šΞ¦π‘–= 0 β†’ Ξ¦

    π‘–π‘š(πœ™) = 𝑐

    1sin ]π‘–π‘šπœ™ + 𝑐2cos ]π‘–π‘šπœ™,

    π‘Ÿ2𝑅𝑖

    𝑅𝑖

    + 2π‘Ÿπ‘…π‘–

    𝑅𝑖

    +Ξ˜π‘–

    Ξ˜π‘–

    + cot πœƒΞ˜π‘–

    Ξ˜π‘–

    + πœ†2π‘Ÿ2=

    ]2

    sin2πœƒ,

    (17)

    β†’ π‘Ÿ2𝑅𝑖

    𝑅𝑖

    + 2π‘Ÿπ‘…π‘–

    𝑅𝑖

    + πœ†2π‘Ÿ2= βˆ’

    Ξ˜π‘–

    Ξ˜π‘–

    βˆ’ cot πœƒΞ˜π‘–

    Ξ˜π‘–

    +]2

    sin2πœƒ

    = +𝛽2,

    (18)

    π‘Ÿ2𝑅

    𝑖+ 2π‘Ÿπ‘…

    𝑖+ (πœ†2

    π‘–π‘π‘›π‘Ÿ2βˆ’ 𝛽2

    𝑛) 𝑅𝑖= 0

    β†’ 𝑅𝑖𝑝𝑛(π‘Ÿ) =

    1

    βˆšπ‘Ÿ[𝑐3𝐽𝛽𝑛+0.5

    (πœ†π‘–π‘π‘›π‘Ÿ)

    + 𝑐4π‘Œπ›½π‘›+0.5

    (πœ†π‘–π‘π‘›π‘Ÿ)] ,

    Θ

    𝑖+ (cot πœƒ)Θ

    𝑖+ (𝛽2βˆ’

    ]2

    sin2πœƒ)Ξ˜π‘–= 0.

    (19)

    By using the following change of variable:

    πœ‡ = cos πœƒ β†’ 1 βˆ’ πœ‡2 = sin2πœƒ (20)the first and second derivatives of Θ with respect to πœƒ areobtained as follows:

    Θ=π‘‘Ξ˜π‘–

    π‘‘πœƒ=π‘‘Ξ˜π‘–

    π‘‘πœ‡

    π‘‘πœ‡

    π‘‘πœƒ= βˆ’ sin πœƒ

    π‘‘Ξ˜π‘–

    π‘‘πœ‡,

    Θ

    𝑖=𝑑2Ξ˜π‘–

    π‘‘πœƒ2=𝑑

    π‘‘πœƒ(π‘‘Ξ˜π‘–

    π‘‘πœƒ) =

    𝑑

    π‘‘πœƒ(βˆ’ sin πœƒ

    π‘‘Ξ˜π‘–

    π‘‘πœ‡)

    = βˆ’ cos πœƒπ‘‘Ξ˜π‘–

    π‘‘πœ‡βˆ’ sin πœƒ 𝑑

    π‘‘πœƒ(π‘‘Ξ˜π‘–

    π‘‘πœ‡)

    = sin2πœƒπ‘‘2Ξ˜π‘–

    π‘‘πœ‡2βˆ’ cos πœƒ

    π‘‘Ξ˜π‘–

    π‘‘πœ‡.

    (21)

  • 4 International Scholarly Research Notices

    Substituting (21) in (19) results in the following:

    Θ

    𝑖+ (cot πœƒ)Θ

    𝑖+ (𝛽2βˆ’

    ]2

    sin2πœƒ)Ξ˜π‘–= 0

    β†’ sin2πœƒπ‘‘2Ξ˜π‘–

    π‘‘πœ‡2βˆ’ cos πœƒ

    π‘‘Ξ˜π‘–

    π‘‘πœ‡

    + (cos πœƒsin πœƒ

    )(βˆ’ sin πœƒπ‘‘Ξ˜π‘–

    π‘‘πœ‡) + (𝛽

    2βˆ’

    ]2

    sin2πœƒ)Ξ˜π‘–= 0

    β†’ (1 βˆ’ πœ‡2)𝑑2Ξ˜π‘–

    π‘‘πœ‡2βˆ’ 2πœ‡

    π‘‘Ξ˜π‘–

    π‘‘πœ‡+ (𝛽2

    π‘›βˆ’

    ]2π‘–π‘š

    1 βˆ’ πœ‡2)Ξ˜π‘–= 0.

    (22)

    If 𝛽2𝑛= 𝑛(𝑛 + 1), (22) is the associated Legendre equation. Its

    solution is written as follows:

    Ξ˜π‘–π‘›(πœ‡) = 𝑐

    5𝑃]π‘–π‘š

    𝑖𝑛(πœ‡) + 𝑐

    6𝑄

    ]π‘–π‘š

    𝑖𝑛(πœ‡)

    β†’ Ξ˜π‘–π‘› (πœƒ) = 𝑐5𝑃

    ]π‘–π‘š

    𝑖𝑛(cos πœƒ) + 𝑐6𝑄

    ]π‘–π‘š

    𝑖𝑛(cos πœƒ)

    𝑄]π‘–π‘š

    𝑖𝑛(cos 0) =𝑄]π‘–π‘š

    𝑖𝑛(1) =βˆžβ†’π‘

    6= 0

    β†’ Ξ˜π‘–π‘›(πœƒ) = 𝑃

    ]π‘–π‘š

    𝑖𝑛(cos πœƒ) .

    (23)

    The problem eigenvalues are 𝜁2π‘–π‘šπ‘›π‘

    = πœ†2𝑖𝑝𝑛+ ]2π‘–π‘š. It should be

    stated that the heat fluxes continuity at the interfaces of theradial layers gives the following:

    Ξ¦π‘–π‘š= Ξ¦π‘š, ]

    π‘–π‘š= ]π‘š,

    πœ†π‘–π‘π‘›= πœ†1π‘π‘›βˆš

    𝛼1

    𝛼𝑖

    .

    (24)

    The eigenfunctions 𝑅𝑖𝑝𝑛(π‘Ÿ), Θ

    𝑖𝑛(πœƒ), and Ξ¦

    π‘–π‘š(πœ™) in π‘Ÿ-, πœƒ-, and

    πœ™-directions are derived by applying the boundary conditionsin each direction in the following equation:

    𝑅𝑖𝑝𝑛(π‘Ÿ) =

    1

    βˆšπ‘Ÿ[𝑐3𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) + 𝑐4π‘Œπ‘›(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ)] ,

    Ξ˜π‘–π‘›(πœƒ) = 𝑃

    ]π‘š

    𝑖𝑛(cos πœƒ) ,

    Ξ¦π‘š(πœ™) = 𝑐

    1sin ]π‘šπœ™ + 𝑐2cos ]π‘šπœ™.

    (25)

    It is assumed that the solution of the problem is in the formof a triple-series expansion of the derived eigenfunctions asfollows:

    𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑) =

    ∞

    βˆ‘π‘š=1

    ∞

    βˆ‘π‘› = 1

    ∞

    βˆ‘π‘= 1

    π‘‡π‘–π‘šπ‘›π‘ (𝑑) 𝑅𝑖𝑝𝑛 (π‘Ÿ) Ξ˜π‘–π‘› (πœƒ)Ξ¦π‘š (πœ™) .

    (26)The heat source term is also written as a triple-series expan-sion of the eigenfunctions such that

    𝑔𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑) =

    ∞

    βˆ‘π‘š=1

    ∞

    βˆ‘π‘› = 1

    ∞

    βˆ‘π‘= 1

    π‘”π‘–π‘šπ‘›π‘

    (𝑑) 𝑅𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦π‘š(πœ™) ,

    (27)

    where the coefficient π‘”π‘–π‘šπ‘›π‘

    (𝑑) is obtained by the use of theorthogonality property as follows:

    π‘”π‘–π‘šπ‘›π‘

    (𝑑) = (βˆ«πœ”

    0

    βˆ«πœ“

    0

    βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘– βˆ’ 1

    𝑔𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑) π‘Ÿ

    2

    Γ— 𝑅𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦π‘š(πœ™) π‘‘π‘Ÿ π‘‘πœƒ π‘‘πœ™)

    Γ— (βˆ«πœ”

    0

    βˆ«πœ“

    0

    βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘– βˆ’ 1

    π‘Ÿ2𝑅2

    𝑖𝑝𝑛(π‘Ÿ) Θ2

    𝑖𝑛(πœƒ)

    Γ— Ξ¦2

    π‘š(πœ™) π‘‘π‘Ÿ π‘‘πœƒ π‘‘πœ™)

    βˆ’1

    .

    (28)

    Substitution of (26) and (27) in (1) results in the following:

    π‘‡π‘–π‘šπ‘›π‘

    (𝑑) 𝑅

    𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦π‘–π‘š(πœ™) +

    2

    π‘Ÿπ‘‡π‘–π‘šπ‘›π‘

    (𝑑) 𝑅

    𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦π‘–π‘š(πœ™) +

    1

    π‘Ÿ2π‘‡π‘–π‘šπ‘›π‘

    (𝑑) 𝑅𝑖𝑝𝑛(π‘Ÿ) Θ

    𝑖𝑛(πœƒ)Ξ¦π‘–π‘š(πœ™)

    +cot πœƒπ‘Ÿ2

    π‘‡π‘–π‘šπ‘›π‘

    (𝑑) 𝑅𝑖𝑝𝑛(π‘Ÿ) Θ

    𝑖𝑛(πœƒ)Ξ¦π‘–π‘š(πœ™) +

    1

    π‘Ÿ2sin2πœƒπ‘‡π‘–π‘šπ‘›π‘

    (𝑑) 𝑅𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦

    π‘–π‘š(πœ™)

    +1

    π‘˜π‘–

    π‘”π‘–π‘šπ‘›π‘

    (𝑑) 𝑅𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦π‘–π‘š(πœ™) =

    1

    𝛼𝑖

    𝑇

    π‘–π‘šπ‘›π‘(𝑑) 𝑅𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦π‘–π‘š(πœ™) ,

    (29)

    β†’π‘‘π‘‡π‘–π‘šπ‘›π‘ (𝑑)

    𝑑𝑑+ (βˆ’π›Ό

    𝑖)(

    𝑅𝑖𝑝𝑛(π‘Ÿ)

    𝑅𝑖𝑝𝑛 (π‘Ÿ)

    +2

    π‘Ÿ

    𝑅𝑖𝑝𝑛(π‘Ÿ)

    𝑅𝑖𝑝𝑛 (π‘Ÿ)

    +1

    π‘Ÿ2

    Ξ˜π‘–π‘›(πœƒ)

    Ξ˜π‘–π‘› (πœƒ)

    +cot πœƒπ‘Ÿ2

    Ξ˜π‘–π‘›(πœƒ)

    Ξ˜π‘–π‘› (πœƒ)

    +1

    π‘Ÿ2sin2πœƒΞ¦π‘–π‘š(πœ™)

    Ξ¦π‘–π‘š(πœ™)

    )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

    = Ξ“π‘–π‘šπ‘›π‘

    π‘‡π‘–π‘šπ‘›π‘

    (𝑑) =𝛼𝑖

    π‘˜π‘–

    π‘”π‘–π‘šπ‘›π‘

    (𝑑) . (30)

  • International Scholarly Research Notices 5

    Equation (30) is a first-order nonhomogeneous ODE and hasthe following solution:

    π‘‡π‘–π‘šπ‘›π‘

    (𝑑) =𝛼𝑖

    π‘˜π‘–

    π‘’βˆ’Ξ“π‘–π‘šπ‘›π‘π‘‘βˆ«πœ = 𝑑

    𝜏 = 0

    π‘”π‘–π‘šπ‘›π‘

    (𝜏) π‘’Ξ“π‘–π‘šπ‘›π‘πœπ‘‘πœ + π‘Ž

    𝑖1π‘’βˆ’Ξ“π‘–π‘šπ‘›π‘π‘‘.

    (31)

    Application of the initial condition (10) on (26) gives thefollowing:

    𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑 = 0)

    = 𝑓𝑖(π‘Ÿ, πœƒ, πœ™)

    =

    ∞

    βˆ‘π‘š=1

    ∞

    βˆ‘π‘› = 1

    ∞

    βˆ‘π‘= 1

    π‘‡π‘–π‘šπ‘›π‘ (0) 𝑅𝑖𝑝𝑛 (π‘Ÿ) Ξ˜π‘–π‘› (πœƒ)Ξ¦π‘–π‘š (πœ™) .

    (32)

    The coefficient π‘Žπ‘–1of (31) is found by the use of the orthogo-

    nality property for obtained eigenfunctions as follows:

    π‘Žπ‘–1

    = π‘‡π‘–π‘šπ‘›π‘ (0)

    =βˆ«πœ”

    0βˆ«πœ“

    0βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘–βˆ’1

    𝑓𝑖(π‘Ÿ, πœƒ, πœ™) π‘Ÿ2𝑅

    𝑖𝑝𝑛(π‘Ÿ) Ξ˜π‘–π‘›(πœƒ)Ξ¦π‘–π‘š(πœ™) π‘‘π‘Ÿ π‘‘πœƒ π‘‘πœ™

    βˆ«πœ”

    0βˆ«πœ“

    0βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘– βˆ’ 1

    π‘Ÿ2𝑅2𝑖𝑝𝑛(π‘Ÿ) Θ2𝑖𝑛(πœƒ)Ξ¦2π‘–π‘š(πœ™) π‘‘π‘Ÿ π‘‘πœƒ π‘‘πœ™

    .

    (33)

    The solution of differential equation (1) having (2) to (9) asboundary conditions and (10) as initial condition is (26) with(31) as the coefficients.

    4. Case Study Problem

    We consider a three-layer quarter-sphere (0 ≀ π‘Ÿ ≀ π‘Ÿ3, 0 ≀

    πœƒ ≀ πœ‹/2, and 0 ≀ πœ™ ≀ πœ‹) which is initially (𝑑 = 0) at uniformunit temperature. For time 𝑑 > 0, thermal convection occurs,from the outer radial surface at π‘Ÿ = π‘Ÿ

    3at (zero) ambient

    temperature. However, the πœƒ = 0, πœƒ = πœ‹/2, πœ™ = 0, and πœ™ = πœ‹surfaces are at uniformand constant zero temperatures.Theseboundary conditions lead to the following: 𝐴 in = 1, 𝐴out =π‘˜3, 𝐡in = 0, 𝐡out = β„Ž, 𝐢in = 0, and 𝐢out = 0. Additionally, the

    uniformly distributed heat source 𝑔𝑖, 𝑖 = 1, . . . , 3, is turned

    on in each layer at 𝑑 = 0. The governing differential equationfor the 3D transient heat conduction with heat sources in thisthree-layer quarter-spherical region is as follows:

    πœ•2𝑇𝑖

    πœ•π‘Ÿ2+2

    π‘Ÿ

    πœ•π‘‡π‘–

    πœ•π‘Ÿ+1

    π‘Ÿ2πœ•2𝑇𝑖

    πœ•πœƒ2+cot πœƒπ‘Ÿ2

    πœ•π‘‡π‘–

    πœ•πœƒ+

    1

    π‘Ÿ2sin2πœƒπœ•2𝑇𝑖

    πœ•πœ™2+𝑔𝑖

    π‘˜π‘–

    =1

    𝛼𝑖

    πœ•π‘‡π‘–

    πœ•π‘‘,

    𝑇𝑖= 𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑) , 0 ≀ π‘Ÿ ≀ π‘Ÿ

    3,

    π‘Ÿπ‘–βˆ’1≀ π‘Ÿ ≀ π‘Ÿ

    𝑖, 1 ≀ 𝑖 ≀ 3,

    0 ≀ πœƒ β‰€πœ‹

    2,

    0 ≀ πœ™ ≀ πœ‹,

    𝑑 β‰₯ 0.

    (34)

    The boundary conditions have the following forms:

    πœ•π‘‡1

    πœ•π‘Ÿ(0, πœƒ, πœ™, 𝑑) = 0, (35)

    π‘˜3

    πœ•π‘‡3

    πœ•π‘Ÿ(π‘Ÿ3, πœƒ, πœ™, 𝑑) + β„Žπ‘‡

    3(π‘Ÿ3, πœƒ, πœ™, 𝑑) = 0, (36)

    𝑇𝑖(π‘Ÿ,

    πœ‹

    2, πœ™, 𝑑) = 0, (37)

    𝑇𝑖(π‘Ÿ, πœƒ, 0, 𝑑) = 0, (38)

    𝑇𝑖(π‘Ÿ, πœƒ, πœ‹, 𝑑) = 0. (39)

    (i) Inner interface of the 𝑖th layer (𝑖 = 2, 3):

    𝑇𝑖(π‘Ÿπ‘– βˆ’ 1, πœƒ, πœ™, 𝑑) = 𝑇

    𝑖 βˆ’ 1(π‘Ÿπ‘– βˆ’ 1, πœƒ, πœ™, 𝑑) ,

    π‘˜π‘–

    πœ•π‘‡π‘–

    πœ•π‘Ÿ(π‘Ÿπ‘– βˆ’ 1, πœƒ, πœ™, 𝑑) = π‘˜

    π‘–βˆ’1

    πœ•π‘‡π‘– βˆ’ 1

    πœ•π‘Ÿ(π‘Ÿπ‘– βˆ’ 1, πœƒ, πœ™, 𝑑) .

    (40)

    (ii) Outer interface of the 𝑖th layer (𝑖 = 1, 2):

    𝑇𝑖(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) = 𝑇

    𝑖 + 1(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) , (41)

    π‘˜π‘–

    πœ•π‘‡π‘–

    πœ•π‘Ÿ(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) = π‘˜

    𝑖 + 1

    πœ•π‘‡π‘– + 1

    πœ•π‘Ÿ(π‘Ÿπ‘–, πœƒ, πœ™, 𝑑) . (42)

    The initial condition is as follows:

    𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 0) = 1, 1 ≀ 𝑖 ≀ 3. (43)

    According to (25), by the use of the eigenfunction expansionmethod, the following solutions in 𝑧-, π‘Ÿ-, and πœƒ-directions areobtained from the associated eigenvalue problem:

    Ξ¦π‘š(πœ™) = 𝑐

    1sin ]π‘šπœ™ + 𝑐2cos ]π‘šπœ™,

    Ξ˜π‘–π‘›(πœƒ) = 𝑃

    ]π‘š

    𝑖𝑛(cos πœƒ) ,

    𝑅𝑖𝑝𝑛 (π‘Ÿ) =

    1

    βˆšπ‘Ÿ[𝑐3𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) + 𝑐4π‘Œπ‘›(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ)] .

    (44)

  • 6 International Scholarly Research Notices

    The eigenvalues are 𝜁2π‘–π‘šπ‘›π‘

    = πœ†2𝑖𝑝𝑛+]2π‘–π‘š.The heat flux continuity

    conditions at the interfaces imply the following:

    πœ†π‘–π‘π‘›= πœ†1π‘π‘›βˆš

    𝛼1

    𝛼𝑖

    . (45)

    The eigenfunctions𝑅𝑖𝑝𝑛(π‘Ÿ),Θ

    𝑖𝑛(πœƒ), andΞ¦

    π‘š(πœ™) in the π‘Ÿ, πœƒ- and

    πœ™-directions are obtained by applying the relevant boundaryconditions in each direction. Application of the boundaryconditions in the πœ™-direction due to (44) gives the following:

    Ξ¦π‘š(πœ™) = 𝑐

    1sin ]π‘šπœ™ + 𝑐2cos ]π‘šπœ™

    β†’

    {{{{{{{

    {{{{{{{

    {

    Ξ¦π‘š (0) = 0 β†’ 𝑐2 = 0

    β†’ Ξ¦π‘š (πœƒ) = 𝑐1 sin ]π‘šπœ™

    Ξ¦π‘š(πœ‹) = 0 β†’ 𝑐

    1sin ]π‘šπœ‹ = 0

    𝑐1ΜΈ= 0

    β†’ sin ]π‘šπœ‹ = 0 = sin (π‘šπœ‹) .

    (46)

    Then the πœ™-direction eigenvalues and eigenfunction areobtained as follows:

    ]π‘š= π‘š, π‘š = 1, 2, . . .

    Ξ¦π‘š(πœ™) = sin (π‘šπœ™) .

    (47)

    Using the πœƒ-direction boundary condition, (37), onΘ in (44)results in the following relation:

    Ξ˜π‘–π‘›(πœƒ) = 𝑃

    π‘š

    𝑖𝑛(cos πœƒ)

    Ξ˜π‘–π‘›(πœ‹/2) = 0

    β†’ π‘ƒπ‘š

    𝑖𝑛(cos(πœ‹

    2)) = 0

    β†’ π‘ƒπ‘š

    𝑖𝑛(0) = 0,

    (48)

    where π‘ƒπ‘šπ‘–π‘›(0) = 0 is only satisfied when 𝑛 are odd integers;

    that is, 𝑛 = 1, 3, 5, . . .. Thus the πœƒ-direction eigenvalues andthe eigenfunction are as follows:

    𝑛 = 1, 3, 5, . . .

    Ξ˜π‘–π‘›(πœƒ) = 𝑃

    π‘š

    𝑖𝑛(cos πœƒ) .

    (49)

    Applying the π‘Ÿ-direction boundary conditions, that is, (35)and (36), gives the following:

    𝑅𝑖𝑝𝑛 (π‘Ÿ)

    =1

    βˆšπ‘Ÿ[𝑐3𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) + 𝑐4π‘Œπ‘›(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ)] ,

    𝑖 = 1, 2, 3

    β†’

    {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

    {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

    {

    𝑅(0) = 0 β†’ 𝑅 (0) = finite

    π‘Œπ‘›(𝑛 + 1) + 0.5

    (0) =∞

    β†’ 𝑐4= 0

    β†’ 𝑅𝑖𝑝𝑛 (π‘Ÿ) = 𝑐3

    1

    βˆšπ‘Ÿπ½π‘›(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ)

    π‘˜π‘… (π‘Ÿ3) + β„Žπ‘… (π‘Ÿ

    3) = 0

    β†’ π‘˜π‘3

    1

    βˆšπ‘Ÿ3𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3)

    βˆ’ π‘˜π‘3

    1

    2π‘Ÿ3βˆšπ‘Ÿ3

    𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3)

    + β„Žπ‘3

    1

    βˆšπ‘Ÿ3𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3) = 0

    𝑐3ΜΈ= 0

    β†’1

    βˆšπ‘Ÿ3[π‘˜π½π‘›(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3)

    + (β„Ž βˆ’π‘˜

    2π‘Ÿ3

    ) 𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3)] = 0

    β†’ π‘˜π½π‘›(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3)

    +(β„Ž βˆ’π‘˜

    2π‘Ÿ3

    ) 𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3) = 0.

    (50)

    Thus the π‘Ÿ-direction eigencondition and eigenfunction arederived as (]

    π‘š= π‘š):

    π‘˜π½

    𝑛(𝑛 + 1) + 0.5(πœ†π‘–π‘π‘›π‘Ÿ3) + (β„Ž βˆ’

    π‘˜

    2π‘Ÿ3

    ) 𝐽𝑛(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ3) = 0,

    𝑅𝑖𝑝𝑛 (π‘Ÿ) =

    1

    βˆšπ‘Ÿπ½π‘›(𝑛 + 1) + 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) .

    (51)

    According to (28) to (33), the coefficients π‘”π‘–π‘šπ‘›π‘

    (𝑑), π‘Žπ‘–1, and

    Ξ“π‘–π‘šπ‘›π‘

    are obtained as follows:

    π‘”π‘–π‘šπ‘›π‘ (𝑑) = (∫

    πœ‹

    0

    βˆ«πœ‹

    0

    βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘– βˆ’ 1

    π‘”π‘–π‘Ÿ2 1

    βˆšπ‘Ÿπ½π›½π‘›+ 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) π‘ƒπ‘š

    𝑖𝑛(πœƒ)

    Γ— sin (π‘šπœ™) π‘‘π‘Ÿ π‘‘πœƒ π‘‘πœ™)

    Γ— (βˆ«πœ‹

    0

    βˆ«πœ‹

    0

    βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘–βˆ’1

    π‘Ÿπ½2

    𝛽𝑛+ 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) (π‘ƒπ‘š

    𝑖𝑛(πœƒ))2

    Γ— sin2 (π‘šπœ™) π‘‘π‘Ÿ π‘‘πœƒ π‘‘πœ™)βˆ’1

  • International Scholarly Research Notices 7

    = (𝑔𝑖(βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘–βˆ’1

    π‘Ÿ3/2𝐽𝛽𝑛+ 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) π‘‘π‘Ÿ)(∫

    πœ‹

    0

    π‘ƒπ‘š

    𝑖𝑛(πœƒ) π‘‘πœƒ)

    Γ—(βˆ«πœ‹

    0

    sin (π‘šπœ™) π‘‘πœ™))

    Γ— ((βˆ«π‘Ÿπ‘–

    π‘Ÿπ‘–βˆ’1

    π‘Ÿπ½2

    𝛽𝑛+ 0.5

    (πœ†π‘–π‘π‘›π‘Ÿ) π‘‘π‘Ÿ) (∫

    πœ‹

    0

    (π‘ƒπ‘š

    𝑖𝑛(πœƒ))2π‘‘πœƒ)

    Γ— (βˆ«πœ‹

    0

    sin2 (π‘šπœ™) π‘‘πœ™))βˆ’1

    = (𝑔𝑖[(πœ‡π‘–π‘›π‘šπ‘Ÿ) π½π‘š+1

    (πœ‡π‘–π‘›π‘šπ‘Ÿ)]π‘Ÿ = π‘Ÿπ‘–

    π‘Ÿ = π‘Ÿπ‘– βˆ’ 1

    Γ— (βˆ’1

    π‘šcos (π‘šπœƒ))

    πœƒ =πœ‹

    πœƒ= 0

    (βˆ’1

    π‘šcos (π‘šπœ™))

    πœ™=πœ‹

    πœ™= 0

    )

    Γ— ([(πœ‡π‘–π‘›π‘šπ‘Ÿ)2

    2(𝐽2

    π‘š(πœ‡π‘–π‘›π‘šπ‘Ÿ) + 𝐽

    2

    π‘š+1(πœ‡π‘–π‘›π‘šπ‘Ÿ))]

    π‘Ÿ = π‘Ÿπ‘–

    π‘Ÿ = π‘Ÿπ‘– βˆ’ 1

    Γ—πœ‹

    2×𝐿

    2)

    βˆ’1

    = (𝑔𝑖[(πœ‡π‘–π‘›π‘šπ‘Ÿ) π½π‘š+1

    (πœ‡π‘–π‘›π‘šπ‘Ÿ)]π‘Ÿ = π‘Ÿπ‘–

    π‘Ÿ = π‘Ÿπ‘– βˆ’ 1

    Γ—1

    π‘š(1 βˆ’ (βˆ’1)

    π‘š)

    ×𝐿

    π‘™πœ‹(1 βˆ’ (βˆ’1)

    𝑙))

    Γ— ([(πœ‡π‘–π‘›π‘šπ‘Ÿ)2

    2(𝐽2

    π‘š(πœ‡π‘–π‘›π‘šπ‘Ÿ) + 𝐽

    2

    π‘š+1(πœ‡π‘–π‘›π‘šπ‘Ÿ))]

    π‘Ÿ = π‘Ÿπ‘–

    π‘Ÿ = π‘Ÿπ‘– βˆ’ 1

    Γ—πœ‹πΏ

    4)

    βˆ’1

    β†’ π‘”π‘–π‘šπ‘›π‘

    (𝑑) = π‘”π‘–π‘šπ‘›π‘

    = π‘Žπ‘–1𝑔𝑖,

    Ξ“π‘–π‘šπ‘›π‘

    = (βˆ’π›Όπ‘–)

    Γ— (𝑅𝑖𝑝𝑛(π‘Ÿ)

    𝑅𝑖𝑝𝑛(π‘Ÿ)

    +1

    π‘Ÿ

    𝑅𝑖𝑝𝑛(π‘Ÿ)

    𝑅𝑖𝑝𝑛(π‘Ÿ)

    +1

    π‘Ÿ2

    Ξ˜π‘–π‘›(πœƒ)

    Ξ˜π‘–π‘›(πœƒ)

    +Ξ¦π‘–π‘š(πœ™)

    Ξ¦π‘–π‘š(πœ™))

    = βˆ’π›Όπ‘–(π½π‘š(πœ†π‘–π‘π‘›π‘Ÿ)

    π½π‘š(πœ†π‘–π‘π‘›π‘Ÿ)+1

    π‘Ÿ

    π½π‘š(πœ†π‘–π‘π‘›π‘Ÿ)

    π½π‘š(πœ†π‘–π‘π‘›π‘Ÿ)βˆ’π‘š2

    π‘Ÿ2βˆ’ π‘š2) .

    (52)

    Using the form of a triple-series expansion of the obtainedeigenfunctions, that is, (26), the solution is as follows:

    𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑) =

    ∞

    βˆ‘π‘š=1

    ∞

    βˆ‘π‘› = 1

    ∞

    βˆ‘π‘= 1

    π‘‡π‘–π‘šπ‘›π‘ (𝑑)

    1

    βˆšπ‘Ÿπ½π›½π‘›+ 0.5

    Γ— (πœ†π‘–π‘π‘›π‘Ÿ) π‘ƒπ‘š

    𝑖𝑛(πœƒ) sin (π‘šπœ™) ,

    (53)

    where the coefficient π‘‡π‘–π‘šπ‘›π‘

    (𝑑) is attained as follows:

    π‘‡π‘–π‘šπ‘›π‘ (𝑑) =

    𝛼𝑖

    π‘˜π‘–

    π‘’βˆ’Ξ“π‘–π‘šπ‘›π‘π‘‘π‘”π‘–π‘šπ‘›π‘

    1

    Ξ“π‘–π‘šπ‘›π‘

    (π‘’Ξ“π‘–π‘šπ‘›π‘π‘‘βˆ’ 1) + π‘Ž

    𝑖1π‘’βˆ’Ξ“π‘–π‘šπ‘›π‘π‘‘

    =π›Όπ‘–π‘”π‘–π‘šπ‘›π‘

    π‘˜π‘–Ξ“π‘–π‘šπ‘›π‘

    + (1

    𝑔𝑖

    βˆ’π›Όπ‘–

    π‘˜π‘–Ξ“π‘–π‘šπ‘›π‘

    )π‘”π‘–π‘šπ‘›π‘

    π‘’βˆ’Ξ“π‘–π‘šπ‘›π‘π‘‘.

    (54)

    Therefore, the solution of (34) having (35) to (42) as boundaryconditions and (43) as initial condition is (53) with (54) as thecoefficients.

    5. Conclusions

    The exact analytical solution, that is, transient temperaturedistribution, is derived for the 3D transient heat conductionproblem in amultilayered sphere using eigenfunction expan-sion method. Time-dependent and nonuniform volumetricheat generation is considered in each radial layer. Third kindnonhomogeneous boundary conditions are applied in theradial direction but the first or second kind homogenousboundary conditions are used in the angular and azimuthaldirections. The heat conduction in a three-layer quarter-sphere is solved as a case study problem and the temperaturedistribution is found.

    Nomenclature

    𝐴 in, 𝐡in, 𝐢in: Coefficients in (2)𝐴out, 𝐡out, 𝐢out: Coefficients in (3)𝑓𝑖(π‘Ÿ, πœƒ, πœ™): Initial temperature distribution in the

    𝑖th layer at 𝑑 = 0𝑔𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑): Volumetric heat source distribution in

    the 𝑖th layerπ‘”π‘–π‘šπ‘›π‘

    : Coefficient in series expansion for heatsource (Equation (27))

    β„Ž: Outer surface heat transfer coefficient𝐽]π‘š: Bessel function of the first kind of order

    ]π‘š

    π‘˜π‘–: Thermal conductivity of the 𝑖th layer

    π‘Ÿ: Radial coordinateπ‘Ÿπ‘–: Outer radius for the 𝑖th layer𝑅𝑖𝑝𝑛(π‘Ÿ): Radial eigenfunctions for the 𝑖th layer

    𝑑: Time𝑇𝑖(π‘Ÿ, πœƒ, πœ™, 𝑑): Temperature distribution for the 𝑖th

    layerπ‘‡π‘–π‘šπ‘›π‘

    : Coefficient in general solution(Equation (26)) dependent on initialcondition

    π‘Œ]π‘š: Bessel function of the second kind oforder ]

    π‘š.

    Greek Symbols

    𝛼𝑖: Thermal diffusivity of the 𝑖th layer

    πœƒ: Azimuthal coordinateΞ¦π‘–π‘š(πœ™): Eigenfunctions in the πœ™-direction

  • 8 International Scholarly Research Notices

    Ξ˜π‘–π‘›(πœƒ): Eigenfunctions in the angular direction

    πœ†π‘–π‘π‘›: Radial eigenvalues

    ]π‘š: Eigenvalues in the πœ™-direction

    πœ”: Angle subtended by the multilayers inthe πœ™-direction

    πœ“: Angle subtended by the multilayers inthe πœƒ-direction

    Ξ“π‘–π‘šπ‘›π‘

    : Coefficient in (30).

    Subscripts and Superscripts

    𝑖: Layer or interface number: Differentiation.

    Conflict of Interests

    The author of the paper declares that there is no conflict ofinterests regarding the publication of this paper.

    References

    [1] H. Salt, β€œTransient heat conduction in a two-dimensional com-posite slab. I.Theoretical development of temperatures modes,”International Journal of Heat and Mass Transfer, vol. 26, no. 11,pp. 1611–1616, 1983.

    [2] M. D. Mikhailov and M. N. ÖzisΜ§ik, β€œTransient conduction ina three-dimensional composite slab,” International Journal ofHeat and Mass Transfer, vol. 29, no. 2, pp. 340–342, 1986.

    [3] A. Haji-Sheikh and J. V. Beck, β€œTemperature solution in multi-dimensional multi-layer bodies,” International Journal of Heatand Mass Transfer, vol. 45, no. 9, pp. 1865–1877, 2002.

    [4] F. de Monte, β€œTransverse eigenproblem of steady-state heatconduction for multi- dimensional two-layered slabs withautomatic computation of eigenvalues,” International Journal ofHeat and Mass Transfer, vol. 47, no. 2, pp. 191–201, 2004.

    [5] F. de Monte, β€œMulti-layer transient heat conduction using tran-sition time scales,” International Journal ofThermal Sciences, vol.45, no. 9, pp. 882–892, 2006.

    [6] X. Lu, P. Tervola, andM.Viljanen, β€œTransient analytical solutionto heat conduction in composite circular cylinder,” InternationalJournal of Heat and Mass Transfer, vol. 49, no. 1-2, pp. 341–348,2006.

    [7] X. Lu and M. Viljanen, β€œAn analytical method to solve heatconduction in layered spheres with time-dependent boundaryconditions,” Physics Letters Section A: General, Atomic and SolidState Physics, vol. 351, no. 4-5, pp. 274–282, 2006.

    [8] S. Singh, P. K. Jain, and Rizwan-uddin, β€œAnalytical solution totransient heat conduction in polar coordinates with multiplelayers in radial direction,” International Journal of ThermalSciences, vol. 47, no. 3, pp. 261–273, 2008.

    [9] S. Singh and P. K. Jain, β€œFinite integral transform method tosolve asymmetric heat conduction in a multilayer annulus withtime-dependent boundary conditions,” Nuclear Engineeringand Design, vol. 241, no. 1, pp. 144–154, 2011.

    [10] P. K. Jain, S. Singh, and Rizwan-uddin, β€œAnalytical solution totransient asymmetric heat conduction in a multilayer annulus,”Journal of Heat Transfer, vol. 131, no. 1, pp. 1–7, 2009.

    [11] P. K. Jain and S. Singh, β€œAn exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical

    coordinates,” International Journal of Heat and Mass Transfer,vol. 53, no. 9-10, pp. 2133–2142, 2010.

    [12] N. Dalir and S. S. Nourazar, β€œAnalytical solution of theproblem on the three-dimensional transient heat conductionin a multilayer cylinder,” Journal of Engineering Physics andThermophysics, vol. 87, no. 1, pp. 89–97, 2014.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of