Research Article Cyclic Contractions and Fixed Point...

10
Hindawi Publishing Corporation International Journal of Analysis Volume 2013, Article ID 726387, 9 pages http://dx.doi.org/10.1155/2013/726387 Research Article Cyclic Contractions and Fixed Point Results via Control Functions on Partial Metric Spaces Hemant Kumar Nashine 1 and Zoran Kadelburg 2 1 Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Mandir Hasaud, Raipur, Chhattisgarh 492101, India 2 Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Beograd, Serbia Correspondence should be addressed to Zoran Kadelburg; [email protected] Received 23 August 2012; Revised 31 October 2012; Accepted 14 November 2012 Academic Editor: Seenith Sivasundaram Copyright © 2013 H. K. Nashine and Z. Kadelburg. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cyclic weaker-type contraction conditions involving a generalized control function (with two variables) are used for mappings on 0-complete partial metric spaces to obtain fixed point results, thus generalizing several known results. Various examples are presented showing how the obtained theorems can be used and that they are proper extensions of the known ones. 1. Introduction e celebrated Banach contraction principle has been gener- alized in several directions and widely used to obtain various fixed point results, with applications in many branches of mathematics. Cyclic representations and cyclic contractions were intro- duced by Kirk et al. [1] and further used by several authors to obtain various fixed point results. See, for example, papers [29]. Note that while a classical contraction has to be continuous, cyclic contractions might not be. On the other hand, Matthews [10] introduced the notion of a partial metric space as a part of the study of denotational semantics of dataflow networks. In partial metric spaces, self- distance of an arbitrary point need not be equal to zero. Several authors obtained many useful fixed point results in these spaces—we just mention [1127]. Several results in ordered partial metric spaces have been obtained as well [2836]. Some results for cyclic contractions in partial metric spaces have been very recently obtained in [3741]. Khan et al. [42] addressed a new category of fixed point problems for a single self-map with the help of a control function which they called an altering distance function. is idea was further used in many papers, such as Choudhury [43] where generalized control functions were used. is approach has been very recently used in [44, 45] to obtain fixed point results in partial metric spaces. In this paper, we extend these results further, considering cyclic weaker-type contraction conditions involving a gen- eralized control function (with two variables) for mappings on 0-complete partial metric spaces (Romaguera [16]). We obtain fixed point theorems for such mappings, thus general- izing several known results. Various examples are presented showing how the obtained results can be used and that they are proper extensions of the known ones. 2. Preliminaries In 2003, Kirk et al. introduced the following notion of cyclic representation. Definition 1 (see [1]). Let be a nonempty set, N, and let :→ be a self-mapping. en =⋃ =1 is a cyclic representation of with respect to if (a) , =1,..., are nonempty subsets of ; (b) ( 1 ) 2 , ( 2 ) 3 , . . . , ( −1 ) , ( )⊂ 1 . ey proved the following fixed point result.

Transcript of Research Article Cyclic Contractions and Fixed Point...

Page 1: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

Hindawi Publishing CorporationInternational Journal of AnalysisVolume 2013 Article ID 726387 9 pageshttpdxdoiorg1011552013726387

Research ArticleCyclic Contractions and Fixed Point Results via ControlFunctions on Partial Metric Spaces

Hemant Kumar Nashine1and Zoran Kadelburg2

1 Department of Mathematics Disha Institute of Management and Technology Satya ViharVidhansabha-Chandrakhuri Marg Mandir Hasaud Raipur Chhattisgarh 492101 India

2 Faculty of Mathematics University of Belgrade Studentski trg 16 11000 Beograd Serbia

Correspondence should be addressed to Zoran Kadelburg kadelburmatfbgacrs

Received 23 August 2012 Revised 31 October 2012 Accepted 14 November 2012

Academic Editor Seenith Sivasundaram

Copyright copy 2013 H K Nashine and Z Kadelburg This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

Cyclic weaker-type contraction conditions involving a generalized control function (with two variables) are used for mappingson 0-complete partial metric spaces to obtain fixed point results thus generalizing several known results Various examples arepresented showing how the obtained theorems can be used and that they are proper extensions of the known ones

1 Introduction

The celebrated Banach contraction principle has been gener-alized in several directions and widely used to obtain variousfixed point results with applications in many branches ofmathematics

Cyclic representations and cyclic contractions were intro-duced by Kirk et al [1] and further used by several authorsto obtain various fixed point results See for example papers[2ndash9] Note that while a classical contraction has to becontinuous cyclic contractions might not be

On the other hand Matthews [10] introduced the notionof a partial metric space as a part of the study of denotationalsemantics of dataflow networks In partial metric spaces self-distance of an arbitrary point need not be equal to zeroSeveral authors obtained many useful fixed point results inthese spacesmdashwe just mention [11ndash27] Several results inordered partial metric spaces have been obtained as well [28ndash36] Some results for cyclic contractions in partial metricspaces have been very recently obtained in [37ndash41]

Khan et al [42] addressed a new category of fixed pointproblems for a single self-map with the help of a controlfunction which they called an altering distance functionThisidea was further used in many papers such as Choudhury[43] where generalized control functions were used This

approach has been very recently used in [44 45] to obtainfixed point results in partial metric spaces

In this paper we extend these results further consideringcyclic weaker-type contraction conditions involving a gen-eralized control function (with two variables) for mappingson 0-complete partial metric spaces (Romaguera [16]) Weobtain fixed point theorems for such mappings thus general-izing several known results Various examples are presentedshowing how the obtained results can be used and that theyare proper extensions of the known ones

2 Preliminaries

In 2003 Kirk et al introduced the following notion of cyclicrepresentation

Definition 1 (see [1]) Let119883 be a nonempty set119898 isin N and let119891 119883 rarr 119883 be a self-mapping Then 119883 = ⋃

119898

119894=1119860119894is a cyclic

representation of119883 with respect to 119891 if

(a) 119860119894 119894 = 1 119898 are nonempty subsets of119883

(b) 119891(1198601) sub 119860

2 119891(119860

2) sub 119860

3 119891(119860

119898minus1) sub 119860

119898

119891(119860119898) sub 119860

1

They proved the following fixed point result

2 International Journal of Analysis

Theorem 2 (see [1]) Let (119883 119889) be a complete metric space119891 119883 rarr 119883 and let 119883 = ⋃

119898

119894=1119860119894be a cyclic representation

of 119883 with respect to 119891 Suppose that 119891 satisfies the followingcondition

119889 (119891119909 119891119910) le 120595 (119889 (119909 119910))

forall119909 isin 119860119894 119910 isin 119860

119894+1 119894 isin 1 2 119898

(1)

where 119860119898+1

= 1198601and 120595 [0 1) rarr [0 1) is a function upper

semicontinuous from the right and 0 le 120595(119905) lt 119905 for 119905 gt 0Then 119891 has a fixed point 119911 isin ⋂119898

119894=1119860119894

In 2010 Pacurar and Rus introduced the following notionof cyclic weaker 120593-contraction

Definition 3 (see [2]) Let (119883 119889) be a metric space 119898 isin 119873and let 119860

1 1198602 119860

119898be closed nonempty subsets of119883 and

119883 = ⋃119898

119894=1119860119894 An operator 119891 119883 rarr 119883 is called a cyclic

weaker 120593-contraction if

(1) 119883 = ⋃119898

119894=1119860119894is a cyclic representation of 119883 with

respect to 119891(2) there exists a continuous nondecreasing function 120593

[0 1) rarr [0 1) with 120593(119905) gt 0 for 119905 isin (0 1) and 120593(0) =0 such that

119889 (119891119909 119891119910) le 119889 (119909 119910) minus 120593 (119889 (119909 119910)) (2)

for any 119909 isin 119860119894 119910 isin 119860

119894+1 119894 = 1 2 119898 where 119860

119898+1= 1198601

They proved the following result

Theorem 4 (see [2]) Suppose that 119891 is a cyclic weaker 120593-contraction on a complete metric space (119883 119889) Then 119891 has afixed point 119911 isin ⋂119898

119894=1119860119894

This was generalized by Karap120484nar in [3]Khan et al introduced the following notion

Definition 5 (see [42]) A function 120593 [0 +infin) rarr [0 +infin) iscalled an altering distance function if the following propertiesare satisfied

(a) 120593 is continuous and nondecreasing(b) 120593(119905) = 0 hArr 119905 = 0

Choudhury introduced a generalization of Chatterjeatype contraction as follows

Definition 6 (see [43]) A self-mapping 119879 119883 rarr 119883 on ametric space (119883 119889) is said to be a weakly 119862-contractive (or aweak Chatterjea type contraction) if for all 119909 119910 isin 119883

119889 (119879119909 119879119910) le1

2[119889 (119909 119879119910) + 119889 (119910 119879119909)]

minus 120595 (119889 (119909 119879119910) 119889 (119910 119879119909))

(3)

where 120595 [0 +infin)2

rarr [0 +infin) is a continuous functionsuch that

120595 (119909 119910) = 0 iff 119909 = 119910 = 0 (4)

In [43] the author proved that every weakChatterjea typecontraction on a complete metric space has a unique fixedpoint

The following definitions and details can be seen forexample in [10 12 13 15 16]

Definition 7 A partial metric on a nonempty set 119883 is afunction 119901 119883 times 119883 rarr R+ such that for all 119909 119910 119911 isin 119883

(p1) 119909 = 119910 hArr 119901(119909 119909) = 119901(119909 119910) = 119901(119910 119910)

(p2) 119901(119909 119909) le 119901(119909 119910)

(p3) 119901(119909 119910) = 119901(119910 119909)

(p4) 119901(119909 119910) le 119901(119909 119911) + 119901(119911 119910) minus 119901(119911 119911)

The pair (119883 119901) is called a partial metric space

It is clear that if 119901(119909 119910) = 0 then from (1199011) and (119901

2) 119909 =

119910 But if 119909 = 119910 119901(119909 119910)may not be 0Each partial metric 119901 on119883 generates a 119879

0topology 120591

119901on

119883 which has as a base the family of open 119901-balls 119861119901(119909 120576)

119909 isin 119883 120576 gt 0 where119861119901(119909 120576) = 119910 isin 119883 119901(119909 119910) lt 119901(119909 119909)+120576

for all 119909 isin 119883 and 120576 gt 0A sequence 119909

119899 in (119883 119901) converges to a point 119909 isin 119883 (in

the sense of 120591119901) if lim

119899rarrinfin119901(119909 119909

119899) = 119901(119909 119909) This will be

denoted as 119909119899rarr 119909 (119899 rarr infin) or lim

119899rarrinfin119909119899= 119909 Clearly

a limit of a sequence in a partial metric space need not beuniqueMoreover the function 119901(sdot sdot) need not be continuousin the sense that 119909

119899rarr 119909 and 119910

119899rarr 119910 imply 119901(119909

119899 119910119899) rarr

119901(119909 119910)

Example 8 (see [10]) (1) A paradigmatic example of a partialmetric space is the pair (R+ 119901) where 119901(119909 119910) = max119909 119910for all 119909 119910 isin R+

(2) Let 119883 = [119886 119887] 119886 119887 isin R 119886 le 119887 and let119901([119886 119887] [119888 119889]) = max119887 119889 minus min119886 119888 Then (119883 119901) is apartial metric space

Definition 9 Let (119883 119901) be a partial metric space Thenconsider the following

(1) A sequence 119909119899 in (119883 119901) is called a Cauchy sequence

if lim119899119898rarrinfin

119901(119909119899 119909119898) exists (and is finite) The space

(119883 119901) is said to be complete if every Cauchy sequence119909119899 in119883 converges with respect to 120591

119901 to a point 119909 isin

119883 such that 119901(119909 119909) = lim119899119898rarrinfin

119901(119909119899 119909119898)

(2) (see [16]) A sequence 119909119899 in (119883 119901) is called 0-Cauchy

if lim119899119898rarrinfin

119901(119909119899 119909119898) = 0 The space (119883 119901) is said

to be 0-complete if every 0-Cauchy sequence in 119883

converges (in 120591119901) to a point 119909 isin 119883 such that 119901(119909 119909) =

0

Lemma 10 Let (119883 119901) be a partial metric space

(a) (see [46 47]) If 119901(119909119899 119911) rarr 119901(119911 119911) = 0 as 119899 rarr infin

then 119901(119909119899 119910) rarr 119901(119911 119910) as 119899 rarr infin for each 119910 isin 119883

(b) (see [16]) If (119883 119901) is complete then it is 0-complete

The converse assertion of (b) does not hold as thefollowing easy example shows

International Journal of Analysis 3

Example 11 (see [16]) The space 119883 = [0 +infin) cap Q with thepartial metric 119901(119909 119910) = max119909 119910 is 0-complete but is notcomplete Moreover the sequence 119909

119899 with 119909

119899= 1 for each

119899 isin N is a Cauchy sequence in (119883 119901) but it is not a 0-Cauchysequence

It is easy to see that every closed subset of a 0-completepartial metric space is 0-complete

3 Main Results

In this section we will prove some fixed point theoremsfor self-mappings defined on a 0-complete partial metricspace and satisfying certain cyclic weak contractive conditioninvolving a generalized control function To achieve our goalwe introduce the new notion of a cyclic contraction

Definition 12 Let (119883 119901) be a partial metric space 119902 isin N andlet1198601 1198602 119860

119902benonempty subsets of119883 and119884 = ⋃

119902

119894=1119860119894

An operator 119879 119884 rarr 119884 is called a cyclic contraction underweak contractive condition if

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with

respect to 119879(NZ2) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) (5)

where

119872(119909 119910) =max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(6)

and 120595 [0infin)2

rarr [0infin) is a lower semicontinuousmapping such that 120595(119904 119905) = 0 if and only if 119904 = 119905 = 0

Our main result is the following

Theorem 13 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of

(119883 119901) and let119884 = ⋃119902

119894=1119860119894 Suppose that119879 119884 rarr 119884 is a cyclic

contraction as defined in Definition 12 Then 119879 has a uniquefixed point 119911 isin 119884 such that 119901(119911 119911) = 0 Moreover 119911 isin ⋂119902

119894=1119860119894

Each Picard sequence 119909119899= 119879119899

1199090 1199090isin 119884 converges to 119911 in

topology 120591119901

Proof Let 1199090be an arbitrary point of 119884 Then there exists

some 1198940such that 119909

0isin 1198601198940 Now 119909

1= 119879119909

0isin 1198601198940+1

andsimilarly 119909

119899= 119879119909

119899minus1= 119879119899

1199090isin 1198601198940+119899

for 119899 isin N where119860119902+119896

= 119860119896 In the case 119901(119909

1198990 1199091198990+1

) = 0 for some 1198990isin N0 it

is clear that 1199091198990is a fixed point of 119879

Without loss of the generality we may assume that

119901 (119909119899 119909119899+1) gt 0 forall119899 isin N (7)

From the condition (NZ1) we observe that for all 119899 thereexists 119894 = 119894(119899) isin 1 2 119902 such that (119909

119899 119909119899+1) isin 119860119894times 119860119894+1

Putting 119909 = 119909119899and 119910 = 119909

119899+1in (NZ2) condition we have

119901 (119909119899+1 119909119899+2) =119901 (119879119909

119899 119879119909119899+1)

le119872(119909119899 119909119899+1) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119879119909119899))

=max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

1

2[119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1)]

minus 120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

(8)

By (1199014) we have

119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1) le 119901 (119909

119899 119909119899+1) + 119901 (119909

119899+1 119909119899+2)

(9)

Therefore

max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

1

2[119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1)]

le max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

(10)

By (8) and (10) we have

119901 (119909119899+1 119909119899+2) lemax 119901 (119909

119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

minus 120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

(11)

If max119901(119909119899 119909119899+1) 119901(119909119899+1 119909119899+2) = 119901(119909

119899+1 119909119899+2) then from

(11) we have

119901 (119909119899+1 119909119899+2)

le 119901 (119909119899+1 119909119899+2) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119909119899+1))

lt 119901 (119909119899+1 119909119899+2)

(12)

which is a contradiction (it was used that 120595(119901(119909119899 119909119899+1)

119901(119909119899 119909119899+1)) gt 0 since 119901(119909

119899 119909119899+1) gt 0) Hence 119901(119909

119899 119909119899+1) =

0 and 119909119899= 119909119899+1

which is excluded Therefore we havemax119901(119909

119899 119909119899+1) 119901(119909119899+1 119909119899+2) = 119901(119909

119899 119909119899+1) and hence

119901 (119909119899+1 119909119899+2)

le 119901 (119909119899 119909119899+1) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119909119899+1))

le 119901 (119909119899 119909119899+1)

(13)

By (13) we have that 119901(119909119899 119909119899+1) is a nonincreasing

sequence of positive real numbers Thus there exists 119903 ge 0

such that

lim119899rarrinfin

119901 (119909119899 119909119899+1) = 119903 (14)

4 International Journal of Analysis

Passing to the limit as 119899 rarr infin in (13) and using (14) andlower semicontinuity of 120595 we have

119903 le 119903 minus lim inf119899rarrinfin

120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

le 119903 minus 120595 (119903 119903)

(15)

thus 120595(119903 119903) = 0 and hence 119903 = 0 Therefore

lim119899rarrinfin

119901 (119909119899 119909119899+1) = 0 (16)

Next we claim that 119909119899 is a 0-Cauchy sequence in the

space (119883 119901) Suppose that this is not the case Then thereexists 120576 gt 0 for which we can find two sequences of positiveintegers 119898(119896) and 119899(119896) such that for all positive integers 119896

119899 (119896) gt 119898 (119896) gt 119896

119901 (119909119898(119896)

119909119899(119896)

) ge 120576

119901 (119909119898(119896)

119909119899(119896)minus1

) lt 120576

(17)

Using (17) and (1199014) we get

120576 le119901 (119909119899(119896)

119909119898(119896)

)

le119901 (119909119898(119896)

119909119899(119896)minus1

)

+ 119901 (119909119899(119896)minus1

119909119899(119896)

) minus 119901 (119909119899(119896)minus1

119909119899(119896)minus1

)

lt120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

)

(18)

Thus we have

120576 le 119901 (119909119899(119896)

119909119898(119896)

) lt 120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

) (19)

Passing to the limit as 119896 rarr infin in the above inequality andusing (16) we obtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)

) = 120576 (20)

On the other hand for all 119896 there exists 119895(119896) isin 1 119902

such that 119899(119896) minus 119898(119896) + 119895(119896) equiv 1[119902] Then 119909119898(119896)minus119895(119896)

(for 119896large enough119898(119896) gt 119895(119896)) and119909

119899(119896)lie in different adjacently

labelled sets 119860119894and 119860

119894+1for certain 119894 isin 1 119902

Using (1199014) and (20) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)

)

+ 119901 (119909119899(119896)

119909119898(119896)

) minus 119901 (119909119899(119896)

119909119899(119896)

)

le

119895(119896)minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

) + 119901 (119909119899(119896)

119909119898(119896)

)

le

119902minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

)

+ 119901 (119909119899(119896)

119909119898(119896)

) 997888rarr 120576 as 119896 997888rarr infin (from (16))

(21)

that is

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) = 120576 (22)

Using (16) we have

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

) = 0 (23)

lim119896rarrinfin

119901 (119909119899(119896)+1

119909119899(119896)

) = 0 (24)

Again using (1199014) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) le 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

+ 119901 (119909119899(119896)

119909119899(119896)+1

) minus 119901 (119909119899(119896)

119909119899(119896)

)

(25)

Passing to the limit as 119896 rarr infin in the pervious inequality andusing (24) and (22) we get

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) = 120576 (26)

Similarly we have by (1199014)

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)+1

)

+ 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) minus 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)

)

(27)

Passing to the limit as 119896 rarr infin and using (16) and (22) weobtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

) = 120576 (28)

Similarly we have by (1199014)

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

) = 120576 (29)

Using (NZ2) we obtain

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

)

le max 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

)

119901 (119909119899(119896)+1

119909119899(119896)

) 1

2119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

)

+119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

minus 120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

(30)

for all 119896 Passing to the limit as 119896 rarr infin in the last inequality(and using the lower semicontinuity of the function 120595) weobtain

120576 le 120576 minus lim inf119899rarrinfin

120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

le 120576 minus 120595 (120576 0)

(31)

International Journal of Analysis 5

which implies that 120595(120576 0) = 0 that is a contradiction since120576 gt 0 We deduce that 119909

119899 is a 0-Cauchy sequence

Since (119883 119901) is 0-complete and 119884 is closed it follows thatthe sequence 119909

119899 converges to some 119906 isin 119884 that is

lim119899rarrinfin

119909119899= 119906 (32)

We shall prove that

119906 isin

119902

119894=1

119860119894 (33)

From condition (NZ1) and since 1199090isin 1198601 we have 119909

119899119902119899ge0

sube

1198601 Since 119860

1is closed from (32) we get that 119906 isin 119860

1 Again

from the condition (NZ1) we have 119909119899119902+1

119899ge0

sube 1198602 Since

1198602is closed from (32) we get that 119906 isin 119860

2 Continuing this

process we obtain (33) and 119901(119906 119906) = 0Now we shall prove that 119906 is a fixed point of 119879 Indeed

from (33) since for all 119899 there exists 119894(119899) isin 1 2 119902 suchthat 119909

119899isin 119860119894(119899)

applying (NZ2) with 119909 = 119906 and 119910 = 119909119899 we

obtain

119901 (119879119906 119909119899+1) = 119901 (119879119906 119879119909

119899)

lemax 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus 120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

(34)

for all 119899 Passing to the limit as 119899 rarr infin in (34) and using(32) we get

119901 (119906 119879119906) le lim119899rarrinfin

max 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus lim inf119899rarrinfin

120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

lemax 0 119901 (119906 119879119906) 0 12119901 (119906 119879119906)

minus 120595 (0 119901 (119906 119879119906)) = 119901 (119906 119879119906) minus 120595 (0 119901 (119906 119879119906))

(35)

which is impossible unless 120595(0 119901(119906 119879119906)) = 0 so

119906 = 119879119906 (36)

that is 119906 is a fixed point of 119879We claim that there is a unique fixed point of 119879 Assume

on the contrary that 119879119906 = 119906 and 119879119907 = 119907 with 119901(119906 119907) gt 0

By supposition we can replace 119909 by 119906 and 119910 by 119907 in (NZ2) toobtain

119901 (119906 119907) =119901 (119879119906 119879119907)

lemax 119901 (119906 119907) 119901 (119906 119879119906) 119901 (119907 119879119907)

1

2[119901 (119906 119879119907) + 119901 (119879119906 119907)]

minus 120595 (119901 (119906 119907) 119901 (119906 119879119906))

=119901 (119906 119907) minus 120595 (119901 (119906 119907) 0) lt 119901 (119906 119907)

(37)

a contradiction Hence 119901(119906 119907) = 0 that is 119906 = 119907 Weconclude that 119879 has only one fixed point in 119883 The proof iscomplete

If we take 119902 = 1 and 1198601= 119883 in Theorem 13 then we get

the following fixed point theorem

Corollary 14 Let (119883 119901) be a 0-complete partial metric spaceand let 119879 119883 rarr 119883 satisfy the following condition there existsa lower semicontinuous mapping 120595 [0infin)

2

rarr [0infin) suchthat 120595(119905 119904) = 0 if and only if 119905 = 119904 = 0 and that

119901 (119879119909 119879119910) lemax 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119910 119879119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(38)

for all 119909 119910 isin 119883 Then 119879 has a unique fixed point 119911 isin 119883Moreover 119901(119911 119911) = 0

Corollary 14 extends and generalizes many existing fixedpoint theorems in the literature

By taking 120595(119904 119905) = (1 minus 119903)max119904 119905 where 119903 isin [0 1) inTheorem 13 we have the following result

Corollary 15 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with respect

to 119879(NZ3) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119903max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(39)

where 119903 isin [0 1) Then 119879 has a unique fixed point 119911 belongingto⋂119902119894=1119860119894 moreover 119901(119911 119911) = 0

As a special case of Corollary 15 we obtain Matthewsrsquosversion of Banach contraction principle [10]

6 International Journal of Analysis

Corollary 16 Let (119883 119901) be a 0-complete partial metric spacelet 119901 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119883 = ⋃119902

119894=1119860119894is a cyclic representation of119883with respect

to 119879(NZ4) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119899

119909 119879119899

119910) lemax 119901 (119909 119910) 119901 (119909 119879119899119909) 119901 (119910 119879119899119910)

1

2[119901 (119909 119879

119899

119910) + 119901 (119910 119879119899

119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119899

119909))

(40)

where 119899 is a positive integer and 120595 [0infin)2

rarr [0infin) is alower semi-continuous mapping such that 120595(119905 119904) = 0 if andonly if 119905 = 119904 = 0 Then 119879 has a unique fixed point belonging to⋂119902

119894=1119860119894

4 Examples

The following example shows howTheorem 13 can be used Itis adapted from [38 Example 29]

Example 17 Consider the partial metric space (119883 119889) ofExample 8 (2) It is easy to see that it is 0-complete Considerthe following closed subsets of119883

1198601= [1 minus 2

minus119899

1] 119899 isin N cup 1

1198602= [1 1 + 2

minus119899

] 119899 isin N cup 1 (41)

119884 = 1198601cup 1198602 and define a mapping 119879 119884 rarr 119884 by

119879119909 =

[1 1 + 2minus(119899+1)

] if 119909 = [1 minus 2minus119899 1]

[1 minus 2minus(119899+1)

1] if 119909 = [1 1 + 2minus119899]

1 if 119909 = 1

(42)

Obviously 119884 = 1198601cup 1198602is a cyclic representation of 119884 with

respect to 119879 We will show that 119879 satisfies the contractivecondition (NZ2) of Definition 12 with the control function120595 [0 +infin)

2

rarr [0 +infin) given by 120595(119904 119905) = (12)max119904 119905Let (119909 119910) isin 119860

1times 1198602(the other possibility is treated

similarly) and consider the following cases

(1) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 lt 119896 that is119899 + 1 le 119896 Then 119901(119879119909 119879119910) = 119901([1 1 + 2

minus(119899+1)

] [1 minus

2minus(119896+1)

1]) = (12)(2minus119899

+ 2minus119896

) le (34) sdot 2minus119899

119872(119909 119910) =max 2minus119899 + 2minus119896 32sdot 2minus119899

3

2sdot 2minus119896

1

2(100381610038161003816100381610038162minus119899

minus 2minus(119896+1)

10038161003816100381610038161003816+100381610038161003816100381610038162minus119896

minus 2minus(119899+1)

10038161003816100381610038161003816)

=3

2sdot 2minus119899

(43)

and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot 2minus119899 = (34)sdot2minus119899 Hence the condition (NZ2) reduces to (34) sdot

2minus119899

le (32) sdot 2minus119899

minus (34) sdot 2minus119899 and holds true

(2) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 = 119896Then 119901(119879119909 119879119910) = 2

minus119899 119872(119909 119910) = 2 sdot 2minus119899 and

120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot 2 sdot 2minus119899

= 2minus119899 hence

(NZ2) reduces to 2minus119899 le 2 sdot 2minus119899 minus 2minus119899(3) 119909 = [1 minus 2

minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 gt 119896 that is119899 ge 119896 + 1 Then 119901(119879119909 119879119910) le (34) sdot 2

minus119896 119872(119909 119910) =

(32) sdot 2minus119896 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119896

= (34)sdot2minus119896 Hence (NZ2) reduces to (34)sdot2minus119896 le

(32) sdot 2minus119896

minus (34) sdot 2minus119896 and holds true

(4) 119909 = [1 minus 2minus119899

1] 119910 = 1 Then 119901(119879119909 119879119910) = 119901([1 1 +

2minus(119899+1)

] 1) = (12) sdot 2minus119899 119872(119909 119910) = 119901(119909 119879119909) =

(32) sdot 2minus119899 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119899

= (34) sdot 2minus119899 (NZ2) reduces to (12) sdot 2

minus119899

le

(32) sdot 2minus119899

minus (34) sdot 2minus119899

(5) The case 119909 = 1 119910 = [1 1 + 2minus119896

] is treated symmet-rically

(6) The case 119909 = 119910 = 1 is trivial

We conclude that all conditions of Theorem 13 aresatisfied The mapping 119879 has a unique fixed point 1 isin 119860

1cap

1198602

Here is another example showing the use of Theorem 13

Example 18 Let 119883 = [0 1] be equipped with the partialmetric given as

119901 (119909 119910) =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 if 119909 119910 isin [0 1)

1 if 119909 = 1 or 119910 = 1(44)

Then (119883 119901) is a 0-complete partial metric space Let 1198601=

[0 12] 1198602= [12 1] and 119879 119883 rarr 119883 be given as

119879119909 =

1

2 if 119909 isin [0 1)

1

6 if 119909 = 1

(45)

Obviously 119883 = 1198601cup 1198602is a cyclic representation of 119883 with

respect to 119879 We will check the contractive condition (NZ2)of Definition 12 with the control function 120595 [0 +infin)

2

rarr

[0 +infin) given by120595(119904 119905) = (119904+119905)(2+119904+119905) Let (119909 119910) isin 1198601times1198602

(the other possibility is treated symmetrically) Consider thefollowing possible cases

(1) 119909 isin [0 12] 119910 isin [12 1) Then 119901(119879119909 119879119910) =

119901(12 12) = 0 119872(119909 119910) = max119910 minus 119909 12 minus

119909 119910 minus 12 (12)(12 minus 119909 + 119910 minus 12) = 119910 minus 119909120595(119901(119909 119910) 119901(119909 119879119909)) = (119910 + 12 minus 2119909)(52 + 119910 minus 2119909)It is easy to check that

119901 (119879119909 119879119910) = 0 le 119910 minus 119909 minus119910 + 12 minus 2119909

52 + 119910 minus 2119909

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(46)

holds for the given values of 119909 and 119910

International Journal of Analysis 7

(2) 119909 isin [0 12] 119910 = 1 Then 119901(119879119909 119879119910) = 119901(12 16) =

13 119872(119909 119910) = 1 and 120595(119901(119909 119910) 119901(119909 119879119909)) =

120595(1 12 minus 119909) = (32 minus 119909)(72 minus 119909) The condition(NZ2) reduces to

1

3le 1 minus

3 minus 2119909

7 minus 2119909(47)

and can be checked directlyThus all the conditions of Theorem 13 are fulfilled and

we conclude that 119879 has a unique fixed point 12 isin 1198601cap 1198602

We state amore involved example that is inspiredwith theone from [48]

Example 19 Let119883 sub ℓ1119883 ni 119909 = (119909

119899)infin

119899=1if and only if 119909

119899ge 0

for each 119899 isin N Define a partial metric 119901 on119883 by

119901 ((119909119899) (119910119899)) =

infin

sum

119899=1

max 119909119899 119910119899 (48)

(it is easy to check that axioms (1199011)ndash(1199014) hold true) Let 120572 isin

(0 1) be fixed denote 0 = (0)infin119899=1

and consider the subsets1198601

and1198602of119883 defined by119860

1= 1198601015840

cup 0 1198602= 11986010158401015840

cup 0 where

1198601015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 or 119899 = 2119896 minus 1 119896 isin N

120572119899

119899 = 2119896 ge 2119897119897 = 1 2

11986010158401015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 minus 1 or 119899 = 2119896 119896 isin N

120572119899

119899 = 2119896 minus 1 ge 2119897 minus 1119897 = 1 2

(49)

Denote 119884 = 1198601cup 1198602(obviously 119860

1cap 1198602= 0)

Consider the mapping 119879 119884 rarr 119884 given by

119879 (0) = 0

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 )

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897+1

1205722119897+2

0 1205722119897+4

0 )

(50)

Obviously 119879(1198601) sub 119860

2and 119879(119860

2) sub 119860

1 hence 119884 = 119860

1cup

1198602is a cyclic representation of 119884 with respect to 119879 Take 120595

[0 +infin)2

rarr [0 +infin) defined by 120595(119904 119905) = (1 minus 120572)max119904 119905Let us check the contractive condition (NZ2) of Theo-

rem 13 Take 119909 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ) isin 1198601and

119910 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119898

1205722119898+1

0 1205722119898+3

0 ) isin 1198602and assume for

example that 119897 le 119898 (the case 119897 gt 119898 is treated similarly aswell as the case when 119909 or 119910 is equal to 0) Then

119901 (119909 119910) = 1205722119897

+ sdot sdot sdot + 1205722119898minus2

+1205722119898

1 minus 120572

119901 (119879119909 119879119910) = 1205722119897+1

+ sdot sdot sdot + 1205722119898minus1

+1205722119898+1

1 minus 120572

119901 (119909 119879119909) =1205722119897

1 minus 120572 119901 (119910 119879119910) =

1205722119898+1

1 minus 120572

(51)

Hence

119901 (119879119909 119879119910) = 120572119901 (119909 119910) le 120572 sdot1205722119897

1 minus 120572

=1205722119897

1 minus 120572minus (1 minus 120572)

1205722119897

1 minus 120572

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(52)

Obviously 119879 has a unique fixed point 0 isin 1198601cap 1198602

Finally we present an example showing that in certainsituations the existence of a fixed point can be concludedunder partial metric conditions while the same cannot beobtained using the standard metric

Example 20 Let 119883 = R+ be equipped with the usual partialmetric 119901(119909 119910) = max119909 119910 Suppose 119860

1= [0 1] 119860

2=

[0 12] 1198603= [0 16] 119860

4= [0 142] and 119884 = ⋃

4

119894=1119860119894

Consider the mapping 119879 119884 rarr 119884 defined by

119879119909 =1199092

1 + 119909 (53)

It is clear that ⋃4119894=1119860119894is a cyclic representation of 119884 with

respect to 119879 Further consider the function 120595 [0 +infin)2

rarr

[0 +infin) given by

120595 (119904 119905) =119904 + 119905

2 + 119904 + 119905 (54)

Take an arbitrary pair (119909 119910) isin 119860119894times119860119894+1

with say 119910 le 119909 (theother possibility can be treated in a similar way) Then

119901 (119879119909 119879119910) = max 1199092

1 + 1199091199102

1 + 119910 =

1199092

1 + 119909 (55)

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

2 International Journal of Analysis

Theorem 2 (see [1]) Let (119883 119889) be a complete metric space119891 119883 rarr 119883 and let 119883 = ⋃

119898

119894=1119860119894be a cyclic representation

of 119883 with respect to 119891 Suppose that 119891 satisfies the followingcondition

119889 (119891119909 119891119910) le 120595 (119889 (119909 119910))

forall119909 isin 119860119894 119910 isin 119860

119894+1 119894 isin 1 2 119898

(1)

where 119860119898+1

= 1198601and 120595 [0 1) rarr [0 1) is a function upper

semicontinuous from the right and 0 le 120595(119905) lt 119905 for 119905 gt 0Then 119891 has a fixed point 119911 isin ⋂119898

119894=1119860119894

In 2010 Pacurar and Rus introduced the following notionof cyclic weaker 120593-contraction

Definition 3 (see [2]) Let (119883 119889) be a metric space 119898 isin 119873and let 119860

1 1198602 119860

119898be closed nonempty subsets of119883 and

119883 = ⋃119898

119894=1119860119894 An operator 119891 119883 rarr 119883 is called a cyclic

weaker 120593-contraction if

(1) 119883 = ⋃119898

119894=1119860119894is a cyclic representation of 119883 with

respect to 119891(2) there exists a continuous nondecreasing function 120593

[0 1) rarr [0 1) with 120593(119905) gt 0 for 119905 isin (0 1) and 120593(0) =0 such that

119889 (119891119909 119891119910) le 119889 (119909 119910) minus 120593 (119889 (119909 119910)) (2)

for any 119909 isin 119860119894 119910 isin 119860

119894+1 119894 = 1 2 119898 where 119860

119898+1= 1198601

They proved the following result

Theorem 4 (see [2]) Suppose that 119891 is a cyclic weaker 120593-contraction on a complete metric space (119883 119889) Then 119891 has afixed point 119911 isin ⋂119898

119894=1119860119894

This was generalized by Karap120484nar in [3]Khan et al introduced the following notion

Definition 5 (see [42]) A function 120593 [0 +infin) rarr [0 +infin) iscalled an altering distance function if the following propertiesare satisfied

(a) 120593 is continuous and nondecreasing(b) 120593(119905) = 0 hArr 119905 = 0

Choudhury introduced a generalization of Chatterjeatype contraction as follows

Definition 6 (see [43]) A self-mapping 119879 119883 rarr 119883 on ametric space (119883 119889) is said to be a weakly 119862-contractive (or aweak Chatterjea type contraction) if for all 119909 119910 isin 119883

119889 (119879119909 119879119910) le1

2[119889 (119909 119879119910) + 119889 (119910 119879119909)]

minus 120595 (119889 (119909 119879119910) 119889 (119910 119879119909))

(3)

where 120595 [0 +infin)2

rarr [0 +infin) is a continuous functionsuch that

120595 (119909 119910) = 0 iff 119909 = 119910 = 0 (4)

In [43] the author proved that every weakChatterjea typecontraction on a complete metric space has a unique fixedpoint

The following definitions and details can be seen forexample in [10 12 13 15 16]

Definition 7 A partial metric on a nonempty set 119883 is afunction 119901 119883 times 119883 rarr R+ such that for all 119909 119910 119911 isin 119883

(p1) 119909 = 119910 hArr 119901(119909 119909) = 119901(119909 119910) = 119901(119910 119910)

(p2) 119901(119909 119909) le 119901(119909 119910)

(p3) 119901(119909 119910) = 119901(119910 119909)

(p4) 119901(119909 119910) le 119901(119909 119911) + 119901(119911 119910) minus 119901(119911 119911)

The pair (119883 119901) is called a partial metric space

It is clear that if 119901(119909 119910) = 0 then from (1199011) and (119901

2) 119909 =

119910 But if 119909 = 119910 119901(119909 119910)may not be 0Each partial metric 119901 on119883 generates a 119879

0topology 120591

119901on

119883 which has as a base the family of open 119901-balls 119861119901(119909 120576)

119909 isin 119883 120576 gt 0 where119861119901(119909 120576) = 119910 isin 119883 119901(119909 119910) lt 119901(119909 119909)+120576

for all 119909 isin 119883 and 120576 gt 0A sequence 119909

119899 in (119883 119901) converges to a point 119909 isin 119883 (in

the sense of 120591119901) if lim

119899rarrinfin119901(119909 119909

119899) = 119901(119909 119909) This will be

denoted as 119909119899rarr 119909 (119899 rarr infin) or lim

119899rarrinfin119909119899= 119909 Clearly

a limit of a sequence in a partial metric space need not beuniqueMoreover the function 119901(sdot sdot) need not be continuousin the sense that 119909

119899rarr 119909 and 119910

119899rarr 119910 imply 119901(119909

119899 119910119899) rarr

119901(119909 119910)

Example 8 (see [10]) (1) A paradigmatic example of a partialmetric space is the pair (R+ 119901) where 119901(119909 119910) = max119909 119910for all 119909 119910 isin R+

(2) Let 119883 = [119886 119887] 119886 119887 isin R 119886 le 119887 and let119901([119886 119887] [119888 119889]) = max119887 119889 minus min119886 119888 Then (119883 119901) is apartial metric space

Definition 9 Let (119883 119901) be a partial metric space Thenconsider the following

(1) A sequence 119909119899 in (119883 119901) is called a Cauchy sequence

if lim119899119898rarrinfin

119901(119909119899 119909119898) exists (and is finite) The space

(119883 119901) is said to be complete if every Cauchy sequence119909119899 in119883 converges with respect to 120591

119901 to a point 119909 isin

119883 such that 119901(119909 119909) = lim119899119898rarrinfin

119901(119909119899 119909119898)

(2) (see [16]) A sequence 119909119899 in (119883 119901) is called 0-Cauchy

if lim119899119898rarrinfin

119901(119909119899 119909119898) = 0 The space (119883 119901) is said

to be 0-complete if every 0-Cauchy sequence in 119883

converges (in 120591119901) to a point 119909 isin 119883 such that 119901(119909 119909) =

0

Lemma 10 Let (119883 119901) be a partial metric space

(a) (see [46 47]) If 119901(119909119899 119911) rarr 119901(119911 119911) = 0 as 119899 rarr infin

then 119901(119909119899 119910) rarr 119901(119911 119910) as 119899 rarr infin for each 119910 isin 119883

(b) (see [16]) If (119883 119901) is complete then it is 0-complete

The converse assertion of (b) does not hold as thefollowing easy example shows

International Journal of Analysis 3

Example 11 (see [16]) The space 119883 = [0 +infin) cap Q with thepartial metric 119901(119909 119910) = max119909 119910 is 0-complete but is notcomplete Moreover the sequence 119909

119899 with 119909

119899= 1 for each

119899 isin N is a Cauchy sequence in (119883 119901) but it is not a 0-Cauchysequence

It is easy to see that every closed subset of a 0-completepartial metric space is 0-complete

3 Main Results

In this section we will prove some fixed point theoremsfor self-mappings defined on a 0-complete partial metricspace and satisfying certain cyclic weak contractive conditioninvolving a generalized control function To achieve our goalwe introduce the new notion of a cyclic contraction

Definition 12 Let (119883 119901) be a partial metric space 119902 isin N andlet1198601 1198602 119860

119902benonempty subsets of119883 and119884 = ⋃

119902

119894=1119860119894

An operator 119879 119884 rarr 119884 is called a cyclic contraction underweak contractive condition if

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with

respect to 119879(NZ2) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) (5)

where

119872(119909 119910) =max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(6)

and 120595 [0infin)2

rarr [0infin) is a lower semicontinuousmapping such that 120595(119904 119905) = 0 if and only if 119904 = 119905 = 0

Our main result is the following

Theorem 13 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of

(119883 119901) and let119884 = ⋃119902

119894=1119860119894 Suppose that119879 119884 rarr 119884 is a cyclic

contraction as defined in Definition 12 Then 119879 has a uniquefixed point 119911 isin 119884 such that 119901(119911 119911) = 0 Moreover 119911 isin ⋂119902

119894=1119860119894

Each Picard sequence 119909119899= 119879119899

1199090 1199090isin 119884 converges to 119911 in

topology 120591119901

Proof Let 1199090be an arbitrary point of 119884 Then there exists

some 1198940such that 119909

0isin 1198601198940 Now 119909

1= 119879119909

0isin 1198601198940+1

andsimilarly 119909

119899= 119879119909

119899minus1= 119879119899

1199090isin 1198601198940+119899

for 119899 isin N where119860119902+119896

= 119860119896 In the case 119901(119909

1198990 1199091198990+1

) = 0 for some 1198990isin N0 it

is clear that 1199091198990is a fixed point of 119879

Without loss of the generality we may assume that

119901 (119909119899 119909119899+1) gt 0 forall119899 isin N (7)

From the condition (NZ1) we observe that for all 119899 thereexists 119894 = 119894(119899) isin 1 2 119902 such that (119909

119899 119909119899+1) isin 119860119894times 119860119894+1

Putting 119909 = 119909119899and 119910 = 119909

119899+1in (NZ2) condition we have

119901 (119909119899+1 119909119899+2) =119901 (119879119909

119899 119879119909119899+1)

le119872(119909119899 119909119899+1) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119879119909119899))

=max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

1

2[119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1)]

minus 120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

(8)

By (1199014) we have

119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1) le 119901 (119909

119899 119909119899+1) + 119901 (119909

119899+1 119909119899+2)

(9)

Therefore

max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

1

2[119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1)]

le max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

(10)

By (8) and (10) we have

119901 (119909119899+1 119909119899+2) lemax 119901 (119909

119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

minus 120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

(11)

If max119901(119909119899 119909119899+1) 119901(119909119899+1 119909119899+2) = 119901(119909

119899+1 119909119899+2) then from

(11) we have

119901 (119909119899+1 119909119899+2)

le 119901 (119909119899+1 119909119899+2) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119909119899+1))

lt 119901 (119909119899+1 119909119899+2)

(12)

which is a contradiction (it was used that 120595(119901(119909119899 119909119899+1)

119901(119909119899 119909119899+1)) gt 0 since 119901(119909

119899 119909119899+1) gt 0) Hence 119901(119909

119899 119909119899+1) =

0 and 119909119899= 119909119899+1

which is excluded Therefore we havemax119901(119909

119899 119909119899+1) 119901(119909119899+1 119909119899+2) = 119901(119909

119899 119909119899+1) and hence

119901 (119909119899+1 119909119899+2)

le 119901 (119909119899 119909119899+1) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119909119899+1))

le 119901 (119909119899 119909119899+1)

(13)

By (13) we have that 119901(119909119899 119909119899+1) is a nonincreasing

sequence of positive real numbers Thus there exists 119903 ge 0

such that

lim119899rarrinfin

119901 (119909119899 119909119899+1) = 119903 (14)

4 International Journal of Analysis

Passing to the limit as 119899 rarr infin in (13) and using (14) andlower semicontinuity of 120595 we have

119903 le 119903 minus lim inf119899rarrinfin

120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

le 119903 minus 120595 (119903 119903)

(15)

thus 120595(119903 119903) = 0 and hence 119903 = 0 Therefore

lim119899rarrinfin

119901 (119909119899 119909119899+1) = 0 (16)

Next we claim that 119909119899 is a 0-Cauchy sequence in the

space (119883 119901) Suppose that this is not the case Then thereexists 120576 gt 0 for which we can find two sequences of positiveintegers 119898(119896) and 119899(119896) such that for all positive integers 119896

119899 (119896) gt 119898 (119896) gt 119896

119901 (119909119898(119896)

119909119899(119896)

) ge 120576

119901 (119909119898(119896)

119909119899(119896)minus1

) lt 120576

(17)

Using (17) and (1199014) we get

120576 le119901 (119909119899(119896)

119909119898(119896)

)

le119901 (119909119898(119896)

119909119899(119896)minus1

)

+ 119901 (119909119899(119896)minus1

119909119899(119896)

) minus 119901 (119909119899(119896)minus1

119909119899(119896)minus1

)

lt120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

)

(18)

Thus we have

120576 le 119901 (119909119899(119896)

119909119898(119896)

) lt 120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

) (19)

Passing to the limit as 119896 rarr infin in the above inequality andusing (16) we obtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)

) = 120576 (20)

On the other hand for all 119896 there exists 119895(119896) isin 1 119902

such that 119899(119896) minus 119898(119896) + 119895(119896) equiv 1[119902] Then 119909119898(119896)minus119895(119896)

(for 119896large enough119898(119896) gt 119895(119896)) and119909

119899(119896)lie in different adjacently

labelled sets 119860119894and 119860

119894+1for certain 119894 isin 1 119902

Using (1199014) and (20) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)

)

+ 119901 (119909119899(119896)

119909119898(119896)

) minus 119901 (119909119899(119896)

119909119899(119896)

)

le

119895(119896)minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

) + 119901 (119909119899(119896)

119909119898(119896)

)

le

119902minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

)

+ 119901 (119909119899(119896)

119909119898(119896)

) 997888rarr 120576 as 119896 997888rarr infin (from (16))

(21)

that is

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) = 120576 (22)

Using (16) we have

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

) = 0 (23)

lim119896rarrinfin

119901 (119909119899(119896)+1

119909119899(119896)

) = 0 (24)

Again using (1199014) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) le 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

+ 119901 (119909119899(119896)

119909119899(119896)+1

) minus 119901 (119909119899(119896)

119909119899(119896)

)

(25)

Passing to the limit as 119896 rarr infin in the pervious inequality andusing (24) and (22) we get

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) = 120576 (26)

Similarly we have by (1199014)

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)+1

)

+ 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) minus 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)

)

(27)

Passing to the limit as 119896 rarr infin and using (16) and (22) weobtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

) = 120576 (28)

Similarly we have by (1199014)

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

) = 120576 (29)

Using (NZ2) we obtain

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

)

le max 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

)

119901 (119909119899(119896)+1

119909119899(119896)

) 1

2119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

)

+119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

minus 120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

(30)

for all 119896 Passing to the limit as 119896 rarr infin in the last inequality(and using the lower semicontinuity of the function 120595) weobtain

120576 le 120576 minus lim inf119899rarrinfin

120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

le 120576 minus 120595 (120576 0)

(31)

International Journal of Analysis 5

which implies that 120595(120576 0) = 0 that is a contradiction since120576 gt 0 We deduce that 119909

119899 is a 0-Cauchy sequence

Since (119883 119901) is 0-complete and 119884 is closed it follows thatthe sequence 119909

119899 converges to some 119906 isin 119884 that is

lim119899rarrinfin

119909119899= 119906 (32)

We shall prove that

119906 isin

119902

119894=1

119860119894 (33)

From condition (NZ1) and since 1199090isin 1198601 we have 119909

119899119902119899ge0

sube

1198601 Since 119860

1is closed from (32) we get that 119906 isin 119860

1 Again

from the condition (NZ1) we have 119909119899119902+1

119899ge0

sube 1198602 Since

1198602is closed from (32) we get that 119906 isin 119860

2 Continuing this

process we obtain (33) and 119901(119906 119906) = 0Now we shall prove that 119906 is a fixed point of 119879 Indeed

from (33) since for all 119899 there exists 119894(119899) isin 1 2 119902 suchthat 119909

119899isin 119860119894(119899)

applying (NZ2) with 119909 = 119906 and 119910 = 119909119899 we

obtain

119901 (119879119906 119909119899+1) = 119901 (119879119906 119879119909

119899)

lemax 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus 120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

(34)

for all 119899 Passing to the limit as 119899 rarr infin in (34) and using(32) we get

119901 (119906 119879119906) le lim119899rarrinfin

max 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus lim inf119899rarrinfin

120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

lemax 0 119901 (119906 119879119906) 0 12119901 (119906 119879119906)

minus 120595 (0 119901 (119906 119879119906)) = 119901 (119906 119879119906) minus 120595 (0 119901 (119906 119879119906))

(35)

which is impossible unless 120595(0 119901(119906 119879119906)) = 0 so

119906 = 119879119906 (36)

that is 119906 is a fixed point of 119879We claim that there is a unique fixed point of 119879 Assume

on the contrary that 119879119906 = 119906 and 119879119907 = 119907 with 119901(119906 119907) gt 0

By supposition we can replace 119909 by 119906 and 119910 by 119907 in (NZ2) toobtain

119901 (119906 119907) =119901 (119879119906 119879119907)

lemax 119901 (119906 119907) 119901 (119906 119879119906) 119901 (119907 119879119907)

1

2[119901 (119906 119879119907) + 119901 (119879119906 119907)]

minus 120595 (119901 (119906 119907) 119901 (119906 119879119906))

=119901 (119906 119907) minus 120595 (119901 (119906 119907) 0) lt 119901 (119906 119907)

(37)

a contradiction Hence 119901(119906 119907) = 0 that is 119906 = 119907 Weconclude that 119879 has only one fixed point in 119883 The proof iscomplete

If we take 119902 = 1 and 1198601= 119883 in Theorem 13 then we get

the following fixed point theorem

Corollary 14 Let (119883 119901) be a 0-complete partial metric spaceand let 119879 119883 rarr 119883 satisfy the following condition there existsa lower semicontinuous mapping 120595 [0infin)

2

rarr [0infin) suchthat 120595(119905 119904) = 0 if and only if 119905 = 119904 = 0 and that

119901 (119879119909 119879119910) lemax 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119910 119879119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(38)

for all 119909 119910 isin 119883 Then 119879 has a unique fixed point 119911 isin 119883Moreover 119901(119911 119911) = 0

Corollary 14 extends and generalizes many existing fixedpoint theorems in the literature

By taking 120595(119904 119905) = (1 minus 119903)max119904 119905 where 119903 isin [0 1) inTheorem 13 we have the following result

Corollary 15 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with respect

to 119879(NZ3) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119903max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(39)

where 119903 isin [0 1) Then 119879 has a unique fixed point 119911 belongingto⋂119902119894=1119860119894 moreover 119901(119911 119911) = 0

As a special case of Corollary 15 we obtain Matthewsrsquosversion of Banach contraction principle [10]

6 International Journal of Analysis

Corollary 16 Let (119883 119901) be a 0-complete partial metric spacelet 119901 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119883 = ⋃119902

119894=1119860119894is a cyclic representation of119883with respect

to 119879(NZ4) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119899

119909 119879119899

119910) lemax 119901 (119909 119910) 119901 (119909 119879119899119909) 119901 (119910 119879119899119910)

1

2[119901 (119909 119879

119899

119910) + 119901 (119910 119879119899

119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119899

119909))

(40)

where 119899 is a positive integer and 120595 [0infin)2

rarr [0infin) is alower semi-continuous mapping such that 120595(119905 119904) = 0 if andonly if 119905 = 119904 = 0 Then 119879 has a unique fixed point belonging to⋂119902

119894=1119860119894

4 Examples

The following example shows howTheorem 13 can be used Itis adapted from [38 Example 29]

Example 17 Consider the partial metric space (119883 119889) ofExample 8 (2) It is easy to see that it is 0-complete Considerthe following closed subsets of119883

1198601= [1 minus 2

minus119899

1] 119899 isin N cup 1

1198602= [1 1 + 2

minus119899

] 119899 isin N cup 1 (41)

119884 = 1198601cup 1198602 and define a mapping 119879 119884 rarr 119884 by

119879119909 =

[1 1 + 2minus(119899+1)

] if 119909 = [1 minus 2minus119899 1]

[1 minus 2minus(119899+1)

1] if 119909 = [1 1 + 2minus119899]

1 if 119909 = 1

(42)

Obviously 119884 = 1198601cup 1198602is a cyclic representation of 119884 with

respect to 119879 We will show that 119879 satisfies the contractivecondition (NZ2) of Definition 12 with the control function120595 [0 +infin)

2

rarr [0 +infin) given by 120595(119904 119905) = (12)max119904 119905Let (119909 119910) isin 119860

1times 1198602(the other possibility is treated

similarly) and consider the following cases

(1) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 lt 119896 that is119899 + 1 le 119896 Then 119901(119879119909 119879119910) = 119901([1 1 + 2

minus(119899+1)

] [1 minus

2minus(119896+1)

1]) = (12)(2minus119899

+ 2minus119896

) le (34) sdot 2minus119899

119872(119909 119910) =max 2minus119899 + 2minus119896 32sdot 2minus119899

3

2sdot 2minus119896

1

2(100381610038161003816100381610038162minus119899

minus 2minus(119896+1)

10038161003816100381610038161003816+100381610038161003816100381610038162minus119896

minus 2minus(119899+1)

10038161003816100381610038161003816)

=3

2sdot 2minus119899

(43)

and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot 2minus119899 = (34)sdot2minus119899 Hence the condition (NZ2) reduces to (34) sdot

2minus119899

le (32) sdot 2minus119899

minus (34) sdot 2minus119899 and holds true

(2) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 = 119896Then 119901(119879119909 119879119910) = 2

minus119899 119872(119909 119910) = 2 sdot 2minus119899 and

120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot 2 sdot 2minus119899

= 2minus119899 hence

(NZ2) reduces to 2minus119899 le 2 sdot 2minus119899 minus 2minus119899(3) 119909 = [1 minus 2

minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 gt 119896 that is119899 ge 119896 + 1 Then 119901(119879119909 119879119910) le (34) sdot 2

minus119896 119872(119909 119910) =

(32) sdot 2minus119896 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119896

= (34)sdot2minus119896 Hence (NZ2) reduces to (34)sdot2minus119896 le

(32) sdot 2minus119896

minus (34) sdot 2minus119896 and holds true

(4) 119909 = [1 minus 2minus119899

1] 119910 = 1 Then 119901(119879119909 119879119910) = 119901([1 1 +

2minus(119899+1)

] 1) = (12) sdot 2minus119899 119872(119909 119910) = 119901(119909 119879119909) =

(32) sdot 2minus119899 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119899

= (34) sdot 2minus119899 (NZ2) reduces to (12) sdot 2

minus119899

le

(32) sdot 2minus119899

minus (34) sdot 2minus119899

(5) The case 119909 = 1 119910 = [1 1 + 2minus119896

] is treated symmet-rically

(6) The case 119909 = 119910 = 1 is trivial

We conclude that all conditions of Theorem 13 aresatisfied The mapping 119879 has a unique fixed point 1 isin 119860

1cap

1198602

Here is another example showing the use of Theorem 13

Example 18 Let 119883 = [0 1] be equipped with the partialmetric given as

119901 (119909 119910) =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 if 119909 119910 isin [0 1)

1 if 119909 = 1 or 119910 = 1(44)

Then (119883 119901) is a 0-complete partial metric space Let 1198601=

[0 12] 1198602= [12 1] and 119879 119883 rarr 119883 be given as

119879119909 =

1

2 if 119909 isin [0 1)

1

6 if 119909 = 1

(45)

Obviously 119883 = 1198601cup 1198602is a cyclic representation of 119883 with

respect to 119879 We will check the contractive condition (NZ2)of Definition 12 with the control function 120595 [0 +infin)

2

rarr

[0 +infin) given by120595(119904 119905) = (119904+119905)(2+119904+119905) Let (119909 119910) isin 1198601times1198602

(the other possibility is treated symmetrically) Consider thefollowing possible cases

(1) 119909 isin [0 12] 119910 isin [12 1) Then 119901(119879119909 119879119910) =

119901(12 12) = 0 119872(119909 119910) = max119910 minus 119909 12 minus

119909 119910 minus 12 (12)(12 minus 119909 + 119910 minus 12) = 119910 minus 119909120595(119901(119909 119910) 119901(119909 119879119909)) = (119910 + 12 minus 2119909)(52 + 119910 minus 2119909)It is easy to check that

119901 (119879119909 119879119910) = 0 le 119910 minus 119909 minus119910 + 12 minus 2119909

52 + 119910 minus 2119909

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(46)

holds for the given values of 119909 and 119910

International Journal of Analysis 7

(2) 119909 isin [0 12] 119910 = 1 Then 119901(119879119909 119879119910) = 119901(12 16) =

13 119872(119909 119910) = 1 and 120595(119901(119909 119910) 119901(119909 119879119909)) =

120595(1 12 minus 119909) = (32 minus 119909)(72 minus 119909) The condition(NZ2) reduces to

1

3le 1 minus

3 minus 2119909

7 minus 2119909(47)

and can be checked directlyThus all the conditions of Theorem 13 are fulfilled and

we conclude that 119879 has a unique fixed point 12 isin 1198601cap 1198602

We state amore involved example that is inspiredwith theone from [48]

Example 19 Let119883 sub ℓ1119883 ni 119909 = (119909

119899)infin

119899=1if and only if 119909

119899ge 0

for each 119899 isin N Define a partial metric 119901 on119883 by

119901 ((119909119899) (119910119899)) =

infin

sum

119899=1

max 119909119899 119910119899 (48)

(it is easy to check that axioms (1199011)ndash(1199014) hold true) Let 120572 isin

(0 1) be fixed denote 0 = (0)infin119899=1

and consider the subsets1198601

and1198602of119883 defined by119860

1= 1198601015840

cup 0 1198602= 11986010158401015840

cup 0 where

1198601015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 or 119899 = 2119896 minus 1 119896 isin N

120572119899

119899 = 2119896 ge 2119897119897 = 1 2

11986010158401015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 minus 1 or 119899 = 2119896 119896 isin N

120572119899

119899 = 2119896 minus 1 ge 2119897 minus 1119897 = 1 2

(49)

Denote 119884 = 1198601cup 1198602(obviously 119860

1cap 1198602= 0)

Consider the mapping 119879 119884 rarr 119884 given by

119879 (0) = 0

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 )

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897+1

1205722119897+2

0 1205722119897+4

0 )

(50)

Obviously 119879(1198601) sub 119860

2and 119879(119860

2) sub 119860

1 hence 119884 = 119860

1cup

1198602is a cyclic representation of 119884 with respect to 119879 Take 120595

[0 +infin)2

rarr [0 +infin) defined by 120595(119904 119905) = (1 minus 120572)max119904 119905Let us check the contractive condition (NZ2) of Theo-

rem 13 Take 119909 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ) isin 1198601and

119910 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119898

1205722119898+1

0 1205722119898+3

0 ) isin 1198602and assume for

example that 119897 le 119898 (the case 119897 gt 119898 is treated similarly aswell as the case when 119909 or 119910 is equal to 0) Then

119901 (119909 119910) = 1205722119897

+ sdot sdot sdot + 1205722119898minus2

+1205722119898

1 minus 120572

119901 (119879119909 119879119910) = 1205722119897+1

+ sdot sdot sdot + 1205722119898minus1

+1205722119898+1

1 minus 120572

119901 (119909 119879119909) =1205722119897

1 minus 120572 119901 (119910 119879119910) =

1205722119898+1

1 minus 120572

(51)

Hence

119901 (119879119909 119879119910) = 120572119901 (119909 119910) le 120572 sdot1205722119897

1 minus 120572

=1205722119897

1 minus 120572minus (1 minus 120572)

1205722119897

1 minus 120572

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(52)

Obviously 119879 has a unique fixed point 0 isin 1198601cap 1198602

Finally we present an example showing that in certainsituations the existence of a fixed point can be concludedunder partial metric conditions while the same cannot beobtained using the standard metric

Example 20 Let 119883 = R+ be equipped with the usual partialmetric 119901(119909 119910) = max119909 119910 Suppose 119860

1= [0 1] 119860

2=

[0 12] 1198603= [0 16] 119860

4= [0 142] and 119884 = ⋃

4

119894=1119860119894

Consider the mapping 119879 119884 rarr 119884 defined by

119879119909 =1199092

1 + 119909 (53)

It is clear that ⋃4119894=1119860119894is a cyclic representation of 119884 with

respect to 119879 Further consider the function 120595 [0 +infin)2

rarr

[0 +infin) given by

120595 (119904 119905) =119904 + 119905

2 + 119904 + 119905 (54)

Take an arbitrary pair (119909 119910) isin 119860119894times119860119894+1

with say 119910 le 119909 (theother possibility can be treated in a similar way) Then

119901 (119879119909 119879119910) = max 1199092

1 + 1199091199102

1 + 119910 =

1199092

1 + 119909 (55)

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

International Journal of Analysis 3

Example 11 (see [16]) The space 119883 = [0 +infin) cap Q with thepartial metric 119901(119909 119910) = max119909 119910 is 0-complete but is notcomplete Moreover the sequence 119909

119899 with 119909

119899= 1 for each

119899 isin N is a Cauchy sequence in (119883 119901) but it is not a 0-Cauchysequence

It is easy to see that every closed subset of a 0-completepartial metric space is 0-complete

3 Main Results

In this section we will prove some fixed point theoremsfor self-mappings defined on a 0-complete partial metricspace and satisfying certain cyclic weak contractive conditioninvolving a generalized control function To achieve our goalwe introduce the new notion of a cyclic contraction

Definition 12 Let (119883 119901) be a partial metric space 119902 isin N andlet1198601 1198602 119860

119902benonempty subsets of119883 and119884 = ⋃

119902

119894=1119860119894

An operator 119879 119884 rarr 119884 is called a cyclic contraction underweak contractive condition if

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with

respect to 119879(NZ2) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) (5)

where

119872(119909 119910) =max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(6)

and 120595 [0infin)2

rarr [0infin) is a lower semicontinuousmapping such that 120595(119904 119905) = 0 if and only if 119904 = 119905 = 0

Our main result is the following

Theorem 13 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of

(119883 119901) and let119884 = ⋃119902

119894=1119860119894 Suppose that119879 119884 rarr 119884 is a cyclic

contraction as defined in Definition 12 Then 119879 has a uniquefixed point 119911 isin 119884 such that 119901(119911 119911) = 0 Moreover 119911 isin ⋂119902

119894=1119860119894

Each Picard sequence 119909119899= 119879119899

1199090 1199090isin 119884 converges to 119911 in

topology 120591119901

Proof Let 1199090be an arbitrary point of 119884 Then there exists

some 1198940such that 119909

0isin 1198601198940 Now 119909

1= 119879119909

0isin 1198601198940+1

andsimilarly 119909

119899= 119879119909

119899minus1= 119879119899

1199090isin 1198601198940+119899

for 119899 isin N where119860119902+119896

= 119860119896 In the case 119901(119909

1198990 1199091198990+1

) = 0 for some 1198990isin N0 it

is clear that 1199091198990is a fixed point of 119879

Without loss of the generality we may assume that

119901 (119909119899 119909119899+1) gt 0 forall119899 isin N (7)

From the condition (NZ1) we observe that for all 119899 thereexists 119894 = 119894(119899) isin 1 2 119902 such that (119909

119899 119909119899+1) isin 119860119894times 119860119894+1

Putting 119909 = 119909119899and 119910 = 119909

119899+1in (NZ2) condition we have

119901 (119909119899+1 119909119899+2) =119901 (119879119909

119899 119879119909119899+1)

le119872(119909119899 119909119899+1) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119879119909119899))

=max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

1

2[119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1)]

minus 120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

(8)

By (1199014) we have

119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1) le 119901 (119909

119899 119909119899+1) + 119901 (119909

119899+1 119909119899+2)

(9)

Therefore

max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

1

2[119901 (119909119899 119909119899+2) + 119901 (119909

119899+1 119909119899+1)]

le max 119901 (119909119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

(10)

By (8) and (10) we have

119901 (119909119899+1 119909119899+2) lemax 119901 (119909

119899 119909119899+1) 119901 (119909

119899+1 119909119899+2)

minus 120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

(11)

If max119901(119909119899 119909119899+1) 119901(119909119899+1 119909119899+2) = 119901(119909

119899+1 119909119899+2) then from

(11) we have

119901 (119909119899+1 119909119899+2)

le 119901 (119909119899+1 119909119899+2) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119909119899+1))

lt 119901 (119909119899+1 119909119899+2)

(12)

which is a contradiction (it was used that 120595(119901(119909119899 119909119899+1)

119901(119909119899 119909119899+1)) gt 0 since 119901(119909

119899 119909119899+1) gt 0) Hence 119901(119909

119899 119909119899+1) =

0 and 119909119899= 119909119899+1

which is excluded Therefore we havemax119901(119909

119899 119909119899+1) 119901(119909119899+1 119909119899+2) = 119901(119909

119899 119909119899+1) and hence

119901 (119909119899+1 119909119899+2)

le 119901 (119909119899 119909119899+1) minus 120595 (119901 (119909

119899 119909119899+1) 119901 (119909

119899 119909119899+1))

le 119901 (119909119899 119909119899+1)

(13)

By (13) we have that 119901(119909119899 119909119899+1) is a nonincreasing

sequence of positive real numbers Thus there exists 119903 ge 0

such that

lim119899rarrinfin

119901 (119909119899 119909119899+1) = 119903 (14)

4 International Journal of Analysis

Passing to the limit as 119899 rarr infin in (13) and using (14) andlower semicontinuity of 120595 we have

119903 le 119903 minus lim inf119899rarrinfin

120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

le 119903 minus 120595 (119903 119903)

(15)

thus 120595(119903 119903) = 0 and hence 119903 = 0 Therefore

lim119899rarrinfin

119901 (119909119899 119909119899+1) = 0 (16)

Next we claim that 119909119899 is a 0-Cauchy sequence in the

space (119883 119901) Suppose that this is not the case Then thereexists 120576 gt 0 for which we can find two sequences of positiveintegers 119898(119896) and 119899(119896) such that for all positive integers 119896

119899 (119896) gt 119898 (119896) gt 119896

119901 (119909119898(119896)

119909119899(119896)

) ge 120576

119901 (119909119898(119896)

119909119899(119896)minus1

) lt 120576

(17)

Using (17) and (1199014) we get

120576 le119901 (119909119899(119896)

119909119898(119896)

)

le119901 (119909119898(119896)

119909119899(119896)minus1

)

+ 119901 (119909119899(119896)minus1

119909119899(119896)

) minus 119901 (119909119899(119896)minus1

119909119899(119896)minus1

)

lt120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

)

(18)

Thus we have

120576 le 119901 (119909119899(119896)

119909119898(119896)

) lt 120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

) (19)

Passing to the limit as 119896 rarr infin in the above inequality andusing (16) we obtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)

) = 120576 (20)

On the other hand for all 119896 there exists 119895(119896) isin 1 119902

such that 119899(119896) minus 119898(119896) + 119895(119896) equiv 1[119902] Then 119909119898(119896)minus119895(119896)

(for 119896large enough119898(119896) gt 119895(119896)) and119909

119899(119896)lie in different adjacently

labelled sets 119860119894and 119860

119894+1for certain 119894 isin 1 119902

Using (1199014) and (20) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)

)

+ 119901 (119909119899(119896)

119909119898(119896)

) minus 119901 (119909119899(119896)

119909119899(119896)

)

le

119895(119896)minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

) + 119901 (119909119899(119896)

119909119898(119896)

)

le

119902minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

)

+ 119901 (119909119899(119896)

119909119898(119896)

) 997888rarr 120576 as 119896 997888rarr infin (from (16))

(21)

that is

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) = 120576 (22)

Using (16) we have

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

) = 0 (23)

lim119896rarrinfin

119901 (119909119899(119896)+1

119909119899(119896)

) = 0 (24)

Again using (1199014) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) le 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

+ 119901 (119909119899(119896)

119909119899(119896)+1

) minus 119901 (119909119899(119896)

119909119899(119896)

)

(25)

Passing to the limit as 119896 rarr infin in the pervious inequality andusing (24) and (22) we get

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) = 120576 (26)

Similarly we have by (1199014)

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)+1

)

+ 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) minus 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)

)

(27)

Passing to the limit as 119896 rarr infin and using (16) and (22) weobtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

) = 120576 (28)

Similarly we have by (1199014)

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

) = 120576 (29)

Using (NZ2) we obtain

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

)

le max 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

)

119901 (119909119899(119896)+1

119909119899(119896)

) 1

2119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

)

+119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

minus 120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

(30)

for all 119896 Passing to the limit as 119896 rarr infin in the last inequality(and using the lower semicontinuity of the function 120595) weobtain

120576 le 120576 minus lim inf119899rarrinfin

120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

le 120576 minus 120595 (120576 0)

(31)

International Journal of Analysis 5

which implies that 120595(120576 0) = 0 that is a contradiction since120576 gt 0 We deduce that 119909

119899 is a 0-Cauchy sequence

Since (119883 119901) is 0-complete and 119884 is closed it follows thatthe sequence 119909

119899 converges to some 119906 isin 119884 that is

lim119899rarrinfin

119909119899= 119906 (32)

We shall prove that

119906 isin

119902

119894=1

119860119894 (33)

From condition (NZ1) and since 1199090isin 1198601 we have 119909

119899119902119899ge0

sube

1198601 Since 119860

1is closed from (32) we get that 119906 isin 119860

1 Again

from the condition (NZ1) we have 119909119899119902+1

119899ge0

sube 1198602 Since

1198602is closed from (32) we get that 119906 isin 119860

2 Continuing this

process we obtain (33) and 119901(119906 119906) = 0Now we shall prove that 119906 is a fixed point of 119879 Indeed

from (33) since for all 119899 there exists 119894(119899) isin 1 2 119902 suchthat 119909

119899isin 119860119894(119899)

applying (NZ2) with 119909 = 119906 and 119910 = 119909119899 we

obtain

119901 (119879119906 119909119899+1) = 119901 (119879119906 119879119909

119899)

lemax 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus 120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

(34)

for all 119899 Passing to the limit as 119899 rarr infin in (34) and using(32) we get

119901 (119906 119879119906) le lim119899rarrinfin

max 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus lim inf119899rarrinfin

120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

lemax 0 119901 (119906 119879119906) 0 12119901 (119906 119879119906)

minus 120595 (0 119901 (119906 119879119906)) = 119901 (119906 119879119906) minus 120595 (0 119901 (119906 119879119906))

(35)

which is impossible unless 120595(0 119901(119906 119879119906)) = 0 so

119906 = 119879119906 (36)

that is 119906 is a fixed point of 119879We claim that there is a unique fixed point of 119879 Assume

on the contrary that 119879119906 = 119906 and 119879119907 = 119907 with 119901(119906 119907) gt 0

By supposition we can replace 119909 by 119906 and 119910 by 119907 in (NZ2) toobtain

119901 (119906 119907) =119901 (119879119906 119879119907)

lemax 119901 (119906 119907) 119901 (119906 119879119906) 119901 (119907 119879119907)

1

2[119901 (119906 119879119907) + 119901 (119879119906 119907)]

minus 120595 (119901 (119906 119907) 119901 (119906 119879119906))

=119901 (119906 119907) minus 120595 (119901 (119906 119907) 0) lt 119901 (119906 119907)

(37)

a contradiction Hence 119901(119906 119907) = 0 that is 119906 = 119907 Weconclude that 119879 has only one fixed point in 119883 The proof iscomplete

If we take 119902 = 1 and 1198601= 119883 in Theorem 13 then we get

the following fixed point theorem

Corollary 14 Let (119883 119901) be a 0-complete partial metric spaceand let 119879 119883 rarr 119883 satisfy the following condition there existsa lower semicontinuous mapping 120595 [0infin)

2

rarr [0infin) suchthat 120595(119905 119904) = 0 if and only if 119905 = 119904 = 0 and that

119901 (119879119909 119879119910) lemax 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119910 119879119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(38)

for all 119909 119910 isin 119883 Then 119879 has a unique fixed point 119911 isin 119883Moreover 119901(119911 119911) = 0

Corollary 14 extends and generalizes many existing fixedpoint theorems in the literature

By taking 120595(119904 119905) = (1 minus 119903)max119904 119905 where 119903 isin [0 1) inTheorem 13 we have the following result

Corollary 15 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with respect

to 119879(NZ3) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119903max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(39)

where 119903 isin [0 1) Then 119879 has a unique fixed point 119911 belongingto⋂119902119894=1119860119894 moreover 119901(119911 119911) = 0

As a special case of Corollary 15 we obtain Matthewsrsquosversion of Banach contraction principle [10]

6 International Journal of Analysis

Corollary 16 Let (119883 119901) be a 0-complete partial metric spacelet 119901 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119883 = ⋃119902

119894=1119860119894is a cyclic representation of119883with respect

to 119879(NZ4) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119899

119909 119879119899

119910) lemax 119901 (119909 119910) 119901 (119909 119879119899119909) 119901 (119910 119879119899119910)

1

2[119901 (119909 119879

119899

119910) + 119901 (119910 119879119899

119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119899

119909))

(40)

where 119899 is a positive integer and 120595 [0infin)2

rarr [0infin) is alower semi-continuous mapping such that 120595(119905 119904) = 0 if andonly if 119905 = 119904 = 0 Then 119879 has a unique fixed point belonging to⋂119902

119894=1119860119894

4 Examples

The following example shows howTheorem 13 can be used Itis adapted from [38 Example 29]

Example 17 Consider the partial metric space (119883 119889) ofExample 8 (2) It is easy to see that it is 0-complete Considerthe following closed subsets of119883

1198601= [1 minus 2

minus119899

1] 119899 isin N cup 1

1198602= [1 1 + 2

minus119899

] 119899 isin N cup 1 (41)

119884 = 1198601cup 1198602 and define a mapping 119879 119884 rarr 119884 by

119879119909 =

[1 1 + 2minus(119899+1)

] if 119909 = [1 minus 2minus119899 1]

[1 minus 2minus(119899+1)

1] if 119909 = [1 1 + 2minus119899]

1 if 119909 = 1

(42)

Obviously 119884 = 1198601cup 1198602is a cyclic representation of 119884 with

respect to 119879 We will show that 119879 satisfies the contractivecondition (NZ2) of Definition 12 with the control function120595 [0 +infin)

2

rarr [0 +infin) given by 120595(119904 119905) = (12)max119904 119905Let (119909 119910) isin 119860

1times 1198602(the other possibility is treated

similarly) and consider the following cases

(1) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 lt 119896 that is119899 + 1 le 119896 Then 119901(119879119909 119879119910) = 119901([1 1 + 2

minus(119899+1)

] [1 minus

2minus(119896+1)

1]) = (12)(2minus119899

+ 2minus119896

) le (34) sdot 2minus119899

119872(119909 119910) =max 2minus119899 + 2minus119896 32sdot 2minus119899

3

2sdot 2minus119896

1

2(100381610038161003816100381610038162minus119899

minus 2minus(119896+1)

10038161003816100381610038161003816+100381610038161003816100381610038162minus119896

minus 2minus(119899+1)

10038161003816100381610038161003816)

=3

2sdot 2minus119899

(43)

and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot 2minus119899 = (34)sdot2minus119899 Hence the condition (NZ2) reduces to (34) sdot

2minus119899

le (32) sdot 2minus119899

minus (34) sdot 2minus119899 and holds true

(2) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 = 119896Then 119901(119879119909 119879119910) = 2

minus119899 119872(119909 119910) = 2 sdot 2minus119899 and

120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot 2 sdot 2minus119899

= 2minus119899 hence

(NZ2) reduces to 2minus119899 le 2 sdot 2minus119899 minus 2minus119899(3) 119909 = [1 minus 2

minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 gt 119896 that is119899 ge 119896 + 1 Then 119901(119879119909 119879119910) le (34) sdot 2

minus119896 119872(119909 119910) =

(32) sdot 2minus119896 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119896

= (34)sdot2minus119896 Hence (NZ2) reduces to (34)sdot2minus119896 le

(32) sdot 2minus119896

minus (34) sdot 2minus119896 and holds true

(4) 119909 = [1 minus 2minus119899

1] 119910 = 1 Then 119901(119879119909 119879119910) = 119901([1 1 +

2minus(119899+1)

] 1) = (12) sdot 2minus119899 119872(119909 119910) = 119901(119909 119879119909) =

(32) sdot 2minus119899 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119899

= (34) sdot 2minus119899 (NZ2) reduces to (12) sdot 2

minus119899

le

(32) sdot 2minus119899

minus (34) sdot 2minus119899

(5) The case 119909 = 1 119910 = [1 1 + 2minus119896

] is treated symmet-rically

(6) The case 119909 = 119910 = 1 is trivial

We conclude that all conditions of Theorem 13 aresatisfied The mapping 119879 has a unique fixed point 1 isin 119860

1cap

1198602

Here is another example showing the use of Theorem 13

Example 18 Let 119883 = [0 1] be equipped with the partialmetric given as

119901 (119909 119910) =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 if 119909 119910 isin [0 1)

1 if 119909 = 1 or 119910 = 1(44)

Then (119883 119901) is a 0-complete partial metric space Let 1198601=

[0 12] 1198602= [12 1] and 119879 119883 rarr 119883 be given as

119879119909 =

1

2 if 119909 isin [0 1)

1

6 if 119909 = 1

(45)

Obviously 119883 = 1198601cup 1198602is a cyclic representation of 119883 with

respect to 119879 We will check the contractive condition (NZ2)of Definition 12 with the control function 120595 [0 +infin)

2

rarr

[0 +infin) given by120595(119904 119905) = (119904+119905)(2+119904+119905) Let (119909 119910) isin 1198601times1198602

(the other possibility is treated symmetrically) Consider thefollowing possible cases

(1) 119909 isin [0 12] 119910 isin [12 1) Then 119901(119879119909 119879119910) =

119901(12 12) = 0 119872(119909 119910) = max119910 minus 119909 12 minus

119909 119910 minus 12 (12)(12 minus 119909 + 119910 minus 12) = 119910 minus 119909120595(119901(119909 119910) 119901(119909 119879119909)) = (119910 + 12 minus 2119909)(52 + 119910 minus 2119909)It is easy to check that

119901 (119879119909 119879119910) = 0 le 119910 minus 119909 minus119910 + 12 minus 2119909

52 + 119910 minus 2119909

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(46)

holds for the given values of 119909 and 119910

International Journal of Analysis 7

(2) 119909 isin [0 12] 119910 = 1 Then 119901(119879119909 119879119910) = 119901(12 16) =

13 119872(119909 119910) = 1 and 120595(119901(119909 119910) 119901(119909 119879119909)) =

120595(1 12 minus 119909) = (32 minus 119909)(72 minus 119909) The condition(NZ2) reduces to

1

3le 1 minus

3 minus 2119909

7 minus 2119909(47)

and can be checked directlyThus all the conditions of Theorem 13 are fulfilled and

we conclude that 119879 has a unique fixed point 12 isin 1198601cap 1198602

We state amore involved example that is inspiredwith theone from [48]

Example 19 Let119883 sub ℓ1119883 ni 119909 = (119909

119899)infin

119899=1if and only if 119909

119899ge 0

for each 119899 isin N Define a partial metric 119901 on119883 by

119901 ((119909119899) (119910119899)) =

infin

sum

119899=1

max 119909119899 119910119899 (48)

(it is easy to check that axioms (1199011)ndash(1199014) hold true) Let 120572 isin

(0 1) be fixed denote 0 = (0)infin119899=1

and consider the subsets1198601

and1198602of119883 defined by119860

1= 1198601015840

cup 0 1198602= 11986010158401015840

cup 0 where

1198601015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 or 119899 = 2119896 minus 1 119896 isin N

120572119899

119899 = 2119896 ge 2119897119897 = 1 2

11986010158401015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 minus 1 or 119899 = 2119896 119896 isin N

120572119899

119899 = 2119896 minus 1 ge 2119897 minus 1119897 = 1 2

(49)

Denote 119884 = 1198601cup 1198602(obviously 119860

1cap 1198602= 0)

Consider the mapping 119879 119884 rarr 119884 given by

119879 (0) = 0

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 )

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897+1

1205722119897+2

0 1205722119897+4

0 )

(50)

Obviously 119879(1198601) sub 119860

2and 119879(119860

2) sub 119860

1 hence 119884 = 119860

1cup

1198602is a cyclic representation of 119884 with respect to 119879 Take 120595

[0 +infin)2

rarr [0 +infin) defined by 120595(119904 119905) = (1 minus 120572)max119904 119905Let us check the contractive condition (NZ2) of Theo-

rem 13 Take 119909 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ) isin 1198601and

119910 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119898

1205722119898+1

0 1205722119898+3

0 ) isin 1198602and assume for

example that 119897 le 119898 (the case 119897 gt 119898 is treated similarly aswell as the case when 119909 or 119910 is equal to 0) Then

119901 (119909 119910) = 1205722119897

+ sdot sdot sdot + 1205722119898minus2

+1205722119898

1 minus 120572

119901 (119879119909 119879119910) = 1205722119897+1

+ sdot sdot sdot + 1205722119898minus1

+1205722119898+1

1 minus 120572

119901 (119909 119879119909) =1205722119897

1 minus 120572 119901 (119910 119879119910) =

1205722119898+1

1 minus 120572

(51)

Hence

119901 (119879119909 119879119910) = 120572119901 (119909 119910) le 120572 sdot1205722119897

1 minus 120572

=1205722119897

1 minus 120572minus (1 minus 120572)

1205722119897

1 minus 120572

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(52)

Obviously 119879 has a unique fixed point 0 isin 1198601cap 1198602

Finally we present an example showing that in certainsituations the existence of a fixed point can be concludedunder partial metric conditions while the same cannot beobtained using the standard metric

Example 20 Let 119883 = R+ be equipped with the usual partialmetric 119901(119909 119910) = max119909 119910 Suppose 119860

1= [0 1] 119860

2=

[0 12] 1198603= [0 16] 119860

4= [0 142] and 119884 = ⋃

4

119894=1119860119894

Consider the mapping 119879 119884 rarr 119884 defined by

119879119909 =1199092

1 + 119909 (53)

It is clear that ⋃4119894=1119860119894is a cyclic representation of 119884 with

respect to 119879 Further consider the function 120595 [0 +infin)2

rarr

[0 +infin) given by

120595 (119904 119905) =119904 + 119905

2 + 119904 + 119905 (54)

Take an arbitrary pair (119909 119910) isin 119860119894times119860119894+1

with say 119910 le 119909 (theother possibility can be treated in a similar way) Then

119901 (119879119909 119879119910) = max 1199092

1 + 1199091199102

1 + 119910 =

1199092

1 + 119909 (55)

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

4 International Journal of Analysis

Passing to the limit as 119899 rarr infin in (13) and using (14) andlower semicontinuity of 120595 we have

119903 le 119903 minus lim inf119899rarrinfin

120595 (119901 (119909119899 119909119899+1) 119901 (119909

119899 119909119899+1))

le 119903 minus 120595 (119903 119903)

(15)

thus 120595(119903 119903) = 0 and hence 119903 = 0 Therefore

lim119899rarrinfin

119901 (119909119899 119909119899+1) = 0 (16)

Next we claim that 119909119899 is a 0-Cauchy sequence in the

space (119883 119901) Suppose that this is not the case Then thereexists 120576 gt 0 for which we can find two sequences of positiveintegers 119898(119896) and 119899(119896) such that for all positive integers 119896

119899 (119896) gt 119898 (119896) gt 119896

119901 (119909119898(119896)

119909119899(119896)

) ge 120576

119901 (119909119898(119896)

119909119899(119896)minus1

) lt 120576

(17)

Using (17) and (1199014) we get

120576 le119901 (119909119899(119896)

119909119898(119896)

)

le119901 (119909119898(119896)

119909119899(119896)minus1

)

+ 119901 (119909119899(119896)minus1

119909119899(119896)

) minus 119901 (119909119899(119896)minus1

119909119899(119896)minus1

)

lt120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

)

(18)

Thus we have

120576 le 119901 (119909119899(119896)

119909119898(119896)

) lt 120576 + 119901 (119909119899(119896)

119909119899(119896)minus1

) (19)

Passing to the limit as 119896 rarr infin in the above inequality andusing (16) we obtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)

) = 120576 (20)

On the other hand for all 119896 there exists 119895(119896) isin 1 119902

such that 119899(119896) minus 119898(119896) + 119895(119896) equiv 1[119902] Then 119909119898(119896)minus119895(119896)

(for 119896large enough119898(119896) gt 119895(119896)) and119909

119899(119896)lie in different adjacently

labelled sets 119860119894and 119860

119894+1for certain 119894 isin 1 119902

Using (1199014) and (20) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)

)

+ 119901 (119909119899(119896)

119909119898(119896)

) minus 119901 (119909119899(119896)

119909119899(119896)

)

le

119895(119896)minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

) + 119901 (119909119899(119896)

119909119898(119896)

)

le

119902minus1

sum

119897=0

119901 (119909119898(119896)minus119895(119896)+119897

119909119898(119896)minus119895(119896)+119897+1

)

+ 119901 (119909119899(119896)

119909119898(119896)

) 997888rarr 120576 as 119896 997888rarr infin (from (16))

(21)

that is

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) = 120576 (22)

Using (16) we have

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

) = 0 (23)

lim119896rarrinfin

119901 (119909119899(119896)+1

119909119899(119896)

) = 0 (24)

Again using (1199014) we get

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) le 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

+ 119901 (119909119899(119896)

119909119899(119896)+1

) minus 119901 (119909119899(119896)

119909119899(119896)

)

(25)

Passing to the limit as 119896 rarr infin in the pervious inequality andusing (24) and (22) we get

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

) = 120576 (26)

Similarly we have by (1199014)

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

le 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)+1

)

+ 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) minus 119901 (119909119898(119896)minus119895(119896)

119909119898(119896)minus119895(119896)

)

(27)

Passing to the limit as 119896 rarr infin and using (16) and (22) weobtain

lim119896rarrinfin

119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

) = 120576 (28)

Similarly we have by (1199014)

lim119896rarrinfin

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

) = 120576 (29)

Using (NZ2) we obtain

119901 (119909119898(119896)minus119895(119896)+1

119909119899(119896)+1

)

le max 119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

)

119901 (119909119899(119896)+1

119909119899(119896)

) 1

2119901 (119909119898(119896)minus119895(119896)

119909119899(119896)+1

)

+119901 (119909119899(119896)

119909119898(119896)minus119895(119896)+1

)

minus 120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

) 119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

(30)

for all 119896 Passing to the limit as 119896 rarr infin in the last inequality(and using the lower semicontinuity of the function 120595) weobtain

120576 le 120576 minus lim inf119899rarrinfin

120595 (119901 (119909119898(119896)minus119895(119896)

119909119899(119896)

)

119901 (119909119898(119896)minus119895(119896)+1

119909119898(119896)minus119895(119896)

))

le 120576 minus 120595 (120576 0)

(31)

International Journal of Analysis 5

which implies that 120595(120576 0) = 0 that is a contradiction since120576 gt 0 We deduce that 119909

119899 is a 0-Cauchy sequence

Since (119883 119901) is 0-complete and 119884 is closed it follows thatthe sequence 119909

119899 converges to some 119906 isin 119884 that is

lim119899rarrinfin

119909119899= 119906 (32)

We shall prove that

119906 isin

119902

119894=1

119860119894 (33)

From condition (NZ1) and since 1199090isin 1198601 we have 119909

119899119902119899ge0

sube

1198601 Since 119860

1is closed from (32) we get that 119906 isin 119860

1 Again

from the condition (NZ1) we have 119909119899119902+1

119899ge0

sube 1198602 Since

1198602is closed from (32) we get that 119906 isin 119860

2 Continuing this

process we obtain (33) and 119901(119906 119906) = 0Now we shall prove that 119906 is a fixed point of 119879 Indeed

from (33) since for all 119899 there exists 119894(119899) isin 1 2 119902 suchthat 119909

119899isin 119860119894(119899)

applying (NZ2) with 119909 = 119906 and 119910 = 119909119899 we

obtain

119901 (119879119906 119909119899+1) = 119901 (119879119906 119879119909

119899)

lemax 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus 120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

(34)

for all 119899 Passing to the limit as 119899 rarr infin in (34) and using(32) we get

119901 (119906 119879119906) le lim119899rarrinfin

max 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus lim inf119899rarrinfin

120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

lemax 0 119901 (119906 119879119906) 0 12119901 (119906 119879119906)

minus 120595 (0 119901 (119906 119879119906)) = 119901 (119906 119879119906) minus 120595 (0 119901 (119906 119879119906))

(35)

which is impossible unless 120595(0 119901(119906 119879119906)) = 0 so

119906 = 119879119906 (36)

that is 119906 is a fixed point of 119879We claim that there is a unique fixed point of 119879 Assume

on the contrary that 119879119906 = 119906 and 119879119907 = 119907 with 119901(119906 119907) gt 0

By supposition we can replace 119909 by 119906 and 119910 by 119907 in (NZ2) toobtain

119901 (119906 119907) =119901 (119879119906 119879119907)

lemax 119901 (119906 119907) 119901 (119906 119879119906) 119901 (119907 119879119907)

1

2[119901 (119906 119879119907) + 119901 (119879119906 119907)]

minus 120595 (119901 (119906 119907) 119901 (119906 119879119906))

=119901 (119906 119907) minus 120595 (119901 (119906 119907) 0) lt 119901 (119906 119907)

(37)

a contradiction Hence 119901(119906 119907) = 0 that is 119906 = 119907 Weconclude that 119879 has only one fixed point in 119883 The proof iscomplete

If we take 119902 = 1 and 1198601= 119883 in Theorem 13 then we get

the following fixed point theorem

Corollary 14 Let (119883 119901) be a 0-complete partial metric spaceand let 119879 119883 rarr 119883 satisfy the following condition there existsa lower semicontinuous mapping 120595 [0infin)

2

rarr [0infin) suchthat 120595(119905 119904) = 0 if and only if 119905 = 119904 = 0 and that

119901 (119879119909 119879119910) lemax 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119910 119879119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(38)

for all 119909 119910 isin 119883 Then 119879 has a unique fixed point 119911 isin 119883Moreover 119901(119911 119911) = 0

Corollary 14 extends and generalizes many existing fixedpoint theorems in the literature

By taking 120595(119904 119905) = (1 minus 119903)max119904 119905 where 119903 isin [0 1) inTheorem 13 we have the following result

Corollary 15 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with respect

to 119879(NZ3) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119903max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(39)

where 119903 isin [0 1) Then 119879 has a unique fixed point 119911 belongingto⋂119902119894=1119860119894 moreover 119901(119911 119911) = 0

As a special case of Corollary 15 we obtain Matthewsrsquosversion of Banach contraction principle [10]

6 International Journal of Analysis

Corollary 16 Let (119883 119901) be a 0-complete partial metric spacelet 119901 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119883 = ⋃119902

119894=1119860119894is a cyclic representation of119883with respect

to 119879(NZ4) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119899

119909 119879119899

119910) lemax 119901 (119909 119910) 119901 (119909 119879119899119909) 119901 (119910 119879119899119910)

1

2[119901 (119909 119879

119899

119910) + 119901 (119910 119879119899

119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119899

119909))

(40)

where 119899 is a positive integer and 120595 [0infin)2

rarr [0infin) is alower semi-continuous mapping such that 120595(119905 119904) = 0 if andonly if 119905 = 119904 = 0 Then 119879 has a unique fixed point belonging to⋂119902

119894=1119860119894

4 Examples

The following example shows howTheorem 13 can be used Itis adapted from [38 Example 29]

Example 17 Consider the partial metric space (119883 119889) ofExample 8 (2) It is easy to see that it is 0-complete Considerthe following closed subsets of119883

1198601= [1 minus 2

minus119899

1] 119899 isin N cup 1

1198602= [1 1 + 2

minus119899

] 119899 isin N cup 1 (41)

119884 = 1198601cup 1198602 and define a mapping 119879 119884 rarr 119884 by

119879119909 =

[1 1 + 2minus(119899+1)

] if 119909 = [1 minus 2minus119899 1]

[1 minus 2minus(119899+1)

1] if 119909 = [1 1 + 2minus119899]

1 if 119909 = 1

(42)

Obviously 119884 = 1198601cup 1198602is a cyclic representation of 119884 with

respect to 119879 We will show that 119879 satisfies the contractivecondition (NZ2) of Definition 12 with the control function120595 [0 +infin)

2

rarr [0 +infin) given by 120595(119904 119905) = (12)max119904 119905Let (119909 119910) isin 119860

1times 1198602(the other possibility is treated

similarly) and consider the following cases

(1) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 lt 119896 that is119899 + 1 le 119896 Then 119901(119879119909 119879119910) = 119901([1 1 + 2

minus(119899+1)

] [1 minus

2minus(119896+1)

1]) = (12)(2minus119899

+ 2minus119896

) le (34) sdot 2minus119899

119872(119909 119910) =max 2minus119899 + 2minus119896 32sdot 2minus119899

3

2sdot 2minus119896

1

2(100381610038161003816100381610038162minus119899

minus 2minus(119896+1)

10038161003816100381610038161003816+100381610038161003816100381610038162minus119896

minus 2minus(119899+1)

10038161003816100381610038161003816)

=3

2sdot 2minus119899

(43)

and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot 2minus119899 = (34)sdot2minus119899 Hence the condition (NZ2) reduces to (34) sdot

2minus119899

le (32) sdot 2minus119899

minus (34) sdot 2minus119899 and holds true

(2) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 = 119896Then 119901(119879119909 119879119910) = 2

minus119899 119872(119909 119910) = 2 sdot 2minus119899 and

120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot 2 sdot 2minus119899

= 2minus119899 hence

(NZ2) reduces to 2minus119899 le 2 sdot 2minus119899 minus 2minus119899(3) 119909 = [1 minus 2

minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 gt 119896 that is119899 ge 119896 + 1 Then 119901(119879119909 119879119910) le (34) sdot 2

minus119896 119872(119909 119910) =

(32) sdot 2minus119896 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119896

= (34)sdot2minus119896 Hence (NZ2) reduces to (34)sdot2minus119896 le

(32) sdot 2minus119896

minus (34) sdot 2minus119896 and holds true

(4) 119909 = [1 minus 2minus119899

1] 119910 = 1 Then 119901(119879119909 119879119910) = 119901([1 1 +

2minus(119899+1)

] 1) = (12) sdot 2minus119899 119872(119909 119910) = 119901(119909 119879119909) =

(32) sdot 2minus119899 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119899

= (34) sdot 2minus119899 (NZ2) reduces to (12) sdot 2

minus119899

le

(32) sdot 2minus119899

minus (34) sdot 2minus119899

(5) The case 119909 = 1 119910 = [1 1 + 2minus119896

] is treated symmet-rically

(6) The case 119909 = 119910 = 1 is trivial

We conclude that all conditions of Theorem 13 aresatisfied The mapping 119879 has a unique fixed point 1 isin 119860

1cap

1198602

Here is another example showing the use of Theorem 13

Example 18 Let 119883 = [0 1] be equipped with the partialmetric given as

119901 (119909 119910) =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 if 119909 119910 isin [0 1)

1 if 119909 = 1 or 119910 = 1(44)

Then (119883 119901) is a 0-complete partial metric space Let 1198601=

[0 12] 1198602= [12 1] and 119879 119883 rarr 119883 be given as

119879119909 =

1

2 if 119909 isin [0 1)

1

6 if 119909 = 1

(45)

Obviously 119883 = 1198601cup 1198602is a cyclic representation of 119883 with

respect to 119879 We will check the contractive condition (NZ2)of Definition 12 with the control function 120595 [0 +infin)

2

rarr

[0 +infin) given by120595(119904 119905) = (119904+119905)(2+119904+119905) Let (119909 119910) isin 1198601times1198602

(the other possibility is treated symmetrically) Consider thefollowing possible cases

(1) 119909 isin [0 12] 119910 isin [12 1) Then 119901(119879119909 119879119910) =

119901(12 12) = 0 119872(119909 119910) = max119910 minus 119909 12 minus

119909 119910 minus 12 (12)(12 minus 119909 + 119910 minus 12) = 119910 minus 119909120595(119901(119909 119910) 119901(119909 119879119909)) = (119910 + 12 minus 2119909)(52 + 119910 minus 2119909)It is easy to check that

119901 (119879119909 119879119910) = 0 le 119910 minus 119909 minus119910 + 12 minus 2119909

52 + 119910 minus 2119909

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(46)

holds for the given values of 119909 and 119910

International Journal of Analysis 7

(2) 119909 isin [0 12] 119910 = 1 Then 119901(119879119909 119879119910) = 119901(12 16) =

13 119872(119909 119910) = 1 and 120595(119901(119909 119910) 119901(119909 119879119909)) =

120595(1 12 minus 119909) = (32 minus 119909)(72 minus 119909) The condition(NZ2) reduces to

1

3le 1 minus

3 minus 2119909

7 minus 2119909(47)

and can be checked directlyThus all the conditions of Theorem 13 are fulfilled and

we conclude that 119879 has a unique fixed point 12 isin 1198601cap 1198602

We state amore involved example that is inspiredwith theone from [48]

Example 19 Let119883 sub ℓ1119883 ni 119909 = (119909

119899)infin

119899=1if and only if 119909

119899ge 0

for each 119899 isin N Define a partial metric 119901 on119883 by

119901 ((119909119899) (119910119899)) =

infin

sum

119899=1

max 119909119899 119910119899 (48)

(it is easy to check that axioms (1199011)ndash(1199014) hold true) Let 120572 isin

(0 1) be fixed denote 0 = (0)infin119899=1

and consider the subsets1198601

and1198602of119883 defined by119860

1= 1198601015840

cup 0 1198602= 11986010158401015840

cup 0 where

1198601015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 or 119899 = 2119896 minus 1 119896 isin N

120572119899

119899 = 2119896 ge 2119897119897 = 1 2

11986010158401015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 minus 1 or 119899 = 2119896 119896 isin N

120572119899

119899 = 2119896 minus 1 ge 2119897 minus 1119897 = 1 2

(49)

Denote 119884 = 1198601cup 1198602(obviously 119860

1cap 1198602= 0)

Consider the mapping 119879 119884 rarr 119884 given by

119879 (0) = 0

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 )

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897+1

1205722119897+2

0 1205722119897+4

0 )

(50)

Obviously 119879(1198601) sub 119860

2and 119879(119860

2) sub 119860

1 hence 119884 = 119860

1cup

1198602is a cyclic representation of 119884 with respect to 119879 Take 120595

[0 +infin)2

rarr [0 +infin) defined by 120595(119904 119905) = (1 minus 120572)max119904 119905Let us check the contractive condition (NZ2) of Theo-

rem 13 Take 119909 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ) isin 1198601and

119910 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119898

1205722119898+1

0 1205722119898+3

0 ) isin 1198602and assume for

example that 119897 le 119898 (the case 119897 gt 119898 is treated similarly aswell as the case when 119909 or 119910 is equal to 0) Then

119901 (119909 119910) = 1205722119897

+ sdot sdot sdot + 1205722119898minus2

+1205722119898

1 minus 120572

119901 (119879119909 119879119910) = 1205722119897+1

+ sdot sdot sdot + 1205722119898minus1

+1205722119898+1

1 minus 120572

119901 (119909 119879119909) =1205722119897

1 minus 120572 119901 (119910 119879119910) =

1205722119898+1

1 minus 120572

(51)

Hence

119901 (119879119909 119879119910) = 120572119901 (119909 119910) le 120572 sdot1205722119897

1 minus 120572

=1205722119897

1 minus 120572minus (1 minus 120572)

1205722119897

1 minus 120572

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(52)

Obviously 119879 has a unique fixed point 0 isin 1198601cap 1198602

Finally we present an example showing that in certainsituations the existence of a fixed point can be concludedunder partial metric conditions while the same cannot beobtained using the standard metric

Example 20 Let 119883 = R+ be equipped with the usual partialmetric 119901(119909 119910) = max119909 119910 Suppose 119860

1= [0 1] 119860

2=

[0 12] 1198603= [0 16] 119860

4= [0 142] and 119884 = ⋃

4

119894=1119860119894

Consider the mapping 119879 119884 rarr 119884 defined by

119879119909 =1199092

1 + 119909 (53)

It is clear that ⋃4119894=1119860119894is a cyclic representation of 119884 with

respect to 119879 Further consider the function 120595 [0 +infin)2

rarr

[0 +infin) given by

120595 (119904 119905) =119904 + 119905

2 + 119904 + 119905 (54)

Take an arbitrary pair (119909 119910) isin 119860119894times119860119894+1

with say 119910 le 119909 (theother possibility can be treated in a similar way) Then

119901 (119879119909 119879119910) = max 1199092

1 + 1199091199102

1 + 119910 =

1199092

1 + 119909 (55)

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

International Journal of Analysis 5

which implies that 120595(120576 0) = 0 that is a contradiction since120576 gt 0 We deduce that 119909

119899 is a 0-Cauchy sequence

Since (119883 119901) is 0-complete and 119884 is closed it follows thatthe sequence 119909

119899 converges to some 119906 isin 119884 that is

lim119899rarrinfin

119909119899= 119906 (32)

We shall prove that

119906 isin

119902

119894=1

119860119894 (33)

From condition (NZ1) and since 1199090isin 1198601 we have 119909

119899119902119899ge0

sube

1198601 Since 119860

1is closed from (32) we get that 119906 isin 119860

1 Again

from the condition (NZ1) we have 119909119899119902+1

119899ge0

sube 1198602 Since

1198602is closed from (32) we get that 119906 isin 119860

2 Continuing this

process we obtain (33) and 119901(119906 119906) = 0Now we shall prove that 119906 is a fixed point of 119879 Indeed

from (33) since for all 119899 there exists 119894(119899) isin 1 2 119902 suchthat 119909

119899isin 119860119894(119899)

applying (NZ2) with 119909 = 119906 and 119910 = 119909119899 we

obtain

119901 (119879119906 119909119899+1) = 119901 (119879119906 119879119909

119899)

lemax 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus 120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

(34)

for all 119899 Passing to the limit as 119899 rarr infin in (34) and using(32) we get

119901 (119906 119879119906) le lim119899rarrinfin

max 119901 (119906 119909119899) 119901 (119906 119879119906) 119901 (119909

119899 119909119899+1)

1

2119901 (119906 119909

119899+1) + 119901 (119909

119899 119879119906)

minus lim inf119899rarrinfin

120595 (119901 (119906 119909119899) 119901 (119906 119879119906))

lemax 0 119901 (119906 119879119906) 0 12119901 (119906 119879119906)

minus 120595 (0 119901 (119906 119879119906)) = 119901 (119906 119879119906) minus 120595 (0 119901 (119906 119879119906))

(35)

which is impossible unless 120595(0 119901(119906 119879119906)) = 0 so

119906 = 119879119906 (36)

that is 119906 is a fixed point of 119879We claim that there is a unique fixed point of 119879 Assume

on the contrary that 119879119906 = 119906 and 119879119907 = 119907 with 119901(119906 119907) gt 0

By supposition we can replace 119909 by 119906 and 119910 by 119907 in (NZ2) toobtain

119901 (119906 119907) =119901 (119879119906 119879119907)

lemax 119901 (119906 119907) 119901 (119906 119879119906) 119901 (119907 119879119907)

1

2[119901 (119906 119879119907) + 119901 (119879119906 119907)]

minus 120595 (119901 (119906 119907) 119901 (119906 119879119906))

=119901 (119906 119907) minus 120595 (119901 (119906 119907) 0) lt 119901 (119906 119907)

(37)

a contradiction Hence 119901(119906 119907) = 0 that is 119906 = 119907 Weconclude that 119879 has only one fixed point in 119883 The proof iscomplete

If we take 119902 = 1 and 1198601= 119883 in Theorem 13 then we get

the following fixed point theorem

Corollary 14 Let (119883 119901) be a 0-complete partial metric spaceand let 119879 119883 rarr 119883 satisfy the following condition there existsa lower semicontinuous mapping 120595 [0infin)

2

rarr [0infin) suchthat 120595(119905 119904) = 0 if and only if 119905 = 119904 = 0 and that

119901 (119879119909 119879119910) lemax 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119910 119879119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(38)

for all 119909 119910 isin 119883 Then 119879 has a unique fixed point 119911 isin 119883Moreover 119901(119911 119911) = 0

Corollary 14 extends and generalizes many existing fixedpoint theorems in the literature

By taking 120595(119904 119905) = (1 minus 119903)max119904 119905 where 119903 isin [0 1) inTheorem 13 we have the following result

Corollary 15 Let (119883 119901) be a 0-complete partial metric spacelet 119902 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119884 = ⋃119902

119894=1119860119894is a cyclic representation of 119884 with respect

to 119879(NZ3) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119909 119879119910) le 119903max 119901 (119909 119910) 119901 (119909 119879119909) 119901 (119910 119879119910)

1

2[119901 (119909 119879119910) + 119901 (119879119909 119910)]

(39)

where 119903 isin [0 1) Then 119879 has a unique fixed point 119911 belongingto⋂119902119894=1119860119894 moreover 119901(119911 119911) = 0

As a special case of Corollary 15 we obtain Matthewsrsquosversion of Banach contraction principle [10]

6 International Journal of Analysis

Corollary 16 Let (119883 119901) be a 0-complete partial metric spacelet 119901 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119883 = ⋃119902

119894=1119860119894is a cyclic representation of119883with respect

to 119879(NZ4) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119899

119909 119879119899

119910) lemax 119901 (119909 119910) 119901 (119909 119879119899119909) 119901 (119910 119879119899119910)

1

2[119901 (119909 119879

119899

119910) + 119901 (119910 119879119899

119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119899

119909))

(40)

where 119899 is a positive integer and 120595 [0infin)2

rarr [0infin) is alower semi-continuous mapping such that 120595(119905 119904) = 0 if andonly if 119905 = 119904 = 0 Then 119879 has a unique fixed point belonging to⋂119902

119894=1119860119894

4 Examples

The following example shows howTheorem 13 can be used Itis adapted from [38 Example 29]

Example 17 Consider the partial metric space (119883 119889) ofExample 8 (2) It is easy to see that it is 0-complete Considerthe following closed subsets of119883

1198601= [1 minus 2

minus119899

1] 119899 isin N cup 1

1198602= [1 1 + 2

minus119899

] 119899 isin N cup 1 (41)

119884 = 1198601cup 1198602 and define a mapping 119879 119884 rarr 119884 by

119879119909 =

[1 1 + 2minus(119899+1)

] if 119909 = [1 minus 2minus119899 1]

[1 minus 2minus(119899+1)

1] if 119909 = [1 1 + 2minus119899]

1 if 119909 = 1

(42)

Obviously 119884 = 1198601cup 1198602is a cyclic representation of 119884 with

respect to 119879 We will show that 119879 satisfies the contractivecondition (NZ2) of Definition 12 with the control function120595 [0 +infin)

2

rarr [0 +infin) given by 120595(119904 119905) = (12)max119904 119905Let (119909 119910) isin 119860

1times 1198602(the other possibility is treated

similarly) and consider the following cases

(1) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 lt 119896 that is119899 + 1 le 119896 Then 119901(119879119909 119879119910) = 119901([1 1 + 2

minus(119899+1)

] [1 minus

2minus(119896+1)

1]) = (12)(2minus119899

+ 2minus119896

) le (34) sdot 2minus119899

119872(119909 119910) =max 2minus119899 + 2minus119896 32sdot 2minus119899

3

2sdot 2minus119896

1

2(100381610038161003816100381610038162minus119899

minus 2minus(119896+1)

10038161003816100381610038161003816+100381610038161003816100381610038162minus119896

minus 2minus(119899+1)

10038161003816100381610038161003816)

=3

2sdot 2minus119899

(43)

and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot 2minus119899 = (34)sdot2minus119899 Hence the condition (NZ2) reduces to (34) sdot

2minus119899

le (32) sdot 2minus119899

minus (34) sdot 2minus119899 and holds true

(2) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 = 119896Then 119901(119879119909 119879119910) = 2

minus119899 119872(119909 119910) = 2 sdot 2minus119899 and

120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot 2 sdot 2minus119899

= 2minus119899 hence

(NZ2) reduces to 2minus119899 le 2 sdot 2minus119899 minus 2minus119899(3) 119909 = [1 minus 2

minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 gt 119896 that is119899 ge 119896 + 1 Then 119901(119879119909 119879119910) le (34) sdot 2

minus119896 119872(119909 119910) =

(32) sdot 2minus119896 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119896

= (34)sdot2minus119896 Hence (NZ2) reduces to (34)sdot2minus119896 le

(32) sdot 2minus119896

minus (34) sdot 2minus119896 and holds true

(4) 119909 = [1 minus 2minus119899

1] 119910 = 1 Then 119901(119879119909 119879119910) = 119901([1 1 +

2minus(119899+1)

] 1) = (12) sdot 2minus119899 119872(119909 119910) = 119901(119909 119879119909) =

(32) sdot 2minus119899 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119899

= (34) sdot 2minus119899 (NZ2) reduces to (12) sdot 2

minus119899

le

(32) sdot 2minus119899

minus (34) sdot 2minus119899

(5) The case 119909 = 1 119910 = [1 1 + 2minus119896

] is treated symmet-rically

(6) The case 119909 = 119910 = 1 is trivial

We conclude that all conditions of Theorem 13 aresatisfied The mapping 119879 has a unique fixed point 1 isin 119860

1cap

1198602

Here is another example showing the use of Theorem 13

Example 18 Let 119883 = [0 1] be equipped with the partialmetric given as

119901 (119909 119910) =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 if 119909 119910 isin [0 1)

1 if 119909 = 1 or 119910 = 1(44)

Then (119883 119901) is a 0-complete partial metric space Let 1198601=

[0 12] 1198602= [12 1] and 119879 119883 rarr 119883 be given as

119879119909 =

1

2 if 119909 isin [0 1)

1

6 if 119909 = 1

(45)

Obviously 119883 = 1198601cup 1198602is a cyclic representation of 119883 with

respect to 119879 We will check the contractive condition (NZ2)of Definition 12 with the control function 120595 [0 +infin)

2

rarr

[0 +infin) given by120595(119904 119905) = (119904+119905)(2+119904+119905) Let (119909 119910) isin 1198601times1198602

(the other possibility is treated symmetrically) Consider thefollowing possible cases

(1) 119909 isin [0 12] 119910 isin [12 1) Then 119901(119879119909 119879119910) =

119901(12 12) = 0 119872(119909 119910) = max119910 minus 119909 12 minus

119909 119910 minus 12 (12)(12 minus 119909 + 119910 minus 12) = 119910 minus 119909120595(119901(119909 119910) 119901(119909 119879119909)) = (119910 + 12 minus 2119909)(52 + 119910 minus 2119909)It is easy to check that

119901 (119879119909 119879119910) = 0 le 119910 minus 119909 minus119910 + 12 minus 2119909

52 + 119910 minus 2119909

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(46)

holds for the given values of 119909 and 119910

International Journal of Analysis 7

(2) 119909 isin [0 12] 119910 = 1 Then 119901(119879119909 119879119910) = 119901(12 16) =

13 119872(119909 119910) = 1 and 120595(119901(119909 119910) 119901(119909 119879119909)) =

120595(1 12 minus 119909) = (32 minus 119909)(72 minus 119909) The condition(NZ2) reduces to

1

3le 1 minus

3 minus 2119909

7 minus 2119909(47)

and can be checked directlyThus all the conditions of Theorem 13 are fulfilled and

we conclude that 119879 has a unique fixed point 12 isin 1198601cap 1198602

We state amore involved example that is inspiredwith theone from [48]

Example 19 Let119883 sub ℓ1119883 ni 119909 = (119909

119899)infin

119899=1if and only if 119909

119899ge 0

for each 119899 isin N Define a partial metric 119901 on119883 by

119901 ((119909119899) (119910119899)) =

infin

sum

119899=1

max 119909119899 119910119899 (48)

(it is easy to check that axioms (1199011)ndash(1199014) hold true) Let 120572 isin

(0 1) be fixed denote 0 = (0)infin119899=1

and consider the subsets1198601

and1198602of119883 defined by119860

1= 1198601015840

cup 0 1198602= 11986010158401015840

cup 0 where

1198601015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 or 119899 = 2119896 minus 1 119896 isin N

120572119899

119899 = 2119896 ge 2119897119897 = 1 2

11986010158401015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 minus 1 or 119899 = 2119896 119896 isin N

120572119899

119899 = 2119896 minus 1 ge 2119897 minus 1119897 = 1 2

(49)

Denote 119884 = 1198601cup 1198602(obviously 119860

1cap 1198602= 0)

Consider the mapping 119879 119884 rarr 119884 given by

119879 (0) = 0

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 )

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897+1

1205722119897+2

0 1205722119897+4

0 )

(50)

Obviously 119879(1198601) sub 119860

2and 119879(119860

2) sub 119860

1 hence 119884 = 119860

1cup

1198602is a cyclic representation of 119884 with respect to 119879 Take 120595

[0 +infin)2

rarr [0 +infin) defined by 120595(119904 119905) = (1 minus 120572)max119904 119905Let us check the contractive condition (NZ2) of Theo-

rem 13 Take 119909 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ) isin 1198601and

119910 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119898

1205722119898+1

0 1205722119898+3

0 ) isin 1198602and assume for

example that 119897 le 119898 (the case 119897 gt 119898 is treated similarly aswell as the case when 119909 or 119910 is equal to 0) Then

119901 (119909 119910) = 1205722119897

+ sdot sdot sdot + 1205722119898minus2

+1205722119898

1 minus 120572

119901 (119879119909 119879119910) = 1205722119897+1

+ sdot sdot sdot + 1205722119898minus1

+1205722119898+1

1 minus 120572

119901 (119909 119879119909) =1205722119897

1 minus 120572 119901 (119910 119879119910) =

1205722119898+1

1 minus 120572

(51)

Hence

119901 (119879119909 119879119910) = 120572119901 (119909 119910) le 120572 sdot1205722119897

1 minus 120572

=1205722119897

1 minus 120572minus (1 minus 120572)

1205722119897

1 minus 120572

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(52)

Obviously 119879 has a unique fixed point 0 isin 1198601cap 1198602

Finally we present an example showing that in certainsituations the existence of a fixed point can be concludedunder partial metric conditions while the same cannot beobtained using the standard metric

Example 20 Let 119883 = R+ be equipped with the usual partialmetric 119901(119909 119910) = max119909 119910 Suppose 119860

1= [0 1] 119860

2=

[0 12] 1198603= [0 16] 119860

4= [0 142] and 119884 = ⋃

4

119894=1119860119894

Consider the mapping 119879 119884 rarr 119884 defined by

119879119909 =1199092

1 + 119909 (53)

It is clear that ⋃4119894=1119860119894is a cyclic representation of 119884 with

respect to 119879 Further consider the function 120595 [0 +infin)2

rarr

[0 +infin) given by

120595 (119904 119905) =119904 + 119905

2 + 119904 + 119905 (54)

Take an arbitrary pair (119909 119910) isin 119860119894times119860119894+1

with say 119910 le 119909 (theother possibility can be treated in a similar way) Then

119901 (119879119909 119879119910) = max 1199092

1 + 1199091199102

1 + 119910 =

1199092

1 + 119909 (55)

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

6 International Journal of Analysis

Corollary 16 Let (119883 119901) be a 0-complete partial metric spacelet 119901 isin N 119860

1 1198602 119860

119902be nonempty closed subsets of 119883

119884 = ⋃119902

119894=1119860119894 and 119879 119884 rarr 119884 such that

(NZ1) 119883 = ⋃119902

119894=1119860119894is a cyclic representation of119883with respect

to 119879(NZ4) for any (119909 119910) isin 119860

119894times119860119894+1 119894 = 1 2 119902 (with119860

119902+1=

1198601)

119901 (119879119899

119909 119879119899

119910) lemax 119901 (119909 119910) 119901 (119909 119879119899119909) 119901 (119910 119879119899119910)

1

2[119901 (119909 119879

119899

119910) + 119901 (119910 119879119899

119909)]

minus 120595 (119901 (119909 119910) 119901 (119909 119879119899

119909))

(40)

where 119899 is a positive integer and 120595 [0infin)2

rarr [0infin) is alower semi-continuous mapping such that 120595(119905 119904) = 0 if andonly if 119905 = 119904 = 0 Then 119879 has a unique fixed point belonging to⋂119902

119894=1119860119894

4 Examples

The following example shows howTheorem 13 can be used Itis adapted from [38 Example 29]

Example 17 Consider the partial metric space (119883 119889) ofExample 8 (2) It is easy to see that it is 0-complete Considerthe following closed subsets of119883

1198601= [1 minus 2

minus119899

1] 119899 isin N cup 1

1198602= [1 1 + 2

minus119899

] 119899 isin N cup 1 (41)

119884 = 1198601cup 1198602 and define a mapping 119879 119884 rarr 119884 by

119879119909 =

[1 1 + 2minus(119899+1)

] if 119909 = [1 minus 2minus119899 1]

[1 minus 2minus(119899+1)

1] if 119909 = [1 1 + 2minus119899]

1 if 119909 = 1

(42)

Obviously 119884 = 1198601cup 1198602is a cyclic representation of 119884 with

respect to 119879 We will show that 119879 satisfies the contractivecondition (NZ2) of Definition 12 with the control function120595 [0 +infin)

2

rarr [0 +infin) given by 120595(119904 119905) = (12)max119904 119905Let (119909 119910) isin 119860

1times 1198602(the other possibility is treated

similarly) and consider the following cases

(1) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 lt 119896 that is119899 + 1 le 119896 Then 119901(119879119909 119879119910) = 119901([1 1 + 2

minus(119899+1)

] [1 minus

2minus(119896+1)

1]) = (12)(2minus119899

+ 2minus119896

) le (34) sdot 2minus119899

119872(119909 119910) =max 2minus119899 + 2minus119896 32sdot 2minus119899

3

2sdot 2minus119896

1

2(100381610038161003816100381610038162minus119899

minus 2minus(119896+1)

10038161003816100381610038161003816+100381610038161003816100381610038162minus119896

minus 2minus(119899+1)

10038161003816100381610038161003816)

=3

2sdot 2minus119899

(43)

and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot 2minus119899 = (34)sdot2minus119899 Hence the condition (NZ2) reduces to (34) sdot

2minus119899

le (32) sdot 2minus119899

minus (34) sdot 2minus119899 and holds true

(2) 119909 = [1 minus 2minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 = 119896Then 119901(119879119909 119879119910) = 2

minus119899 119872(119909 119910) = 2 sdot 2minus119899 and

120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot 2 sdot 2minus119899

= 2minus119899 hence

(NZ2) reduces to 2minus119899 le 2 sdot 2minus119899 minus 2minus119899(3) 119909 = [1 minus 2

minus119899

1] 119910 = [1 1 + 2minus119896

] and 119899 gt 119896 that is119899 ge 119896 + 1 Then 119901(119879119909 119879119910) le (34) sdot 2

minus119896 119872(119909 119910) =

(32) sdot 2minus119896 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119896

= (34)sdot2minus119896 Hence (NZ2) reduces to (34)sdot2minus119896 le

(32) sdot 2minus119896

minus (34) sdot 2minus119896 and holds true

(4) 119909 = [1 minus 2minus119899

1] 119910 = 1 Then 119901(119879119909 119879119910) = 119901([1 1 +

2minus(119899+1)

] 1) = (12) sdot 2minus119899 119872(119909 119910) = 119901(119909 119879119909) =

(32) sdot 2minus119899 and 120595(119901(119909 119910) 119901(119909 119879119909)) = (12) sdot (32) sdot

2minus119899

= (34) sdot 2minus119899 (NZ2) reduces to (12) sdot 2

minus119899

le

(32) sdot 2minus119899

minus (34) sdot 2minus119899

(5) The case 119909 = 1 119910 = [1 1 + 2minus119896

] is treated symmet-rically

(6) The case 119909 = 119910 = 1 is trivial

We conclude that all conditions of Theorem 13 aresatisfied The mapping 119879 has a unique fixed point 1 isin 119860

1cap

1198602

Here is another example showing the use of Theorem 13

Example 18 Let 119883 = [0 1] be equipped with the partialmetric given as

119901 (119909 119910) =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 if 119909 119910 isin [0 1)

1 if 119909 = 1 or 119910 = 1(44)

Then (119883 119901) is a 0-complete partial metric space Let 1198601=

[0 12] 1198602= [12 1] and 119879 119883 rarr 119883 be given as

119879119909 =

1

2 if 119909 isin [0 1)

1

6 if 119909 = 1

(45)

Obviously 119883 = 1198601cup 1198602is a cyclic representation of 119883 with

respect to 119879 We will check the contractive condition (NZ2)of Definition 12 with the control function 120595 [0 +infin)

2

rarr

[0 +infin) given by120595(119904 119905) = (119904+119905)(2+119904+119905) Let (119909 119910) isin 1198601times1198602

(the other possibility is treated symmetrically) Consider thefollowing possible cases

(1) 119909 isin [0 12] 119910 isin [12 1) Then 119901(119879119909 119879119910) =

119901(12 12) = 0 119872(119909 119910) = max119910 minus 119909 12 minus

119909 119910 minus 12 (12)(12 minus 119909 + 119910 minus 12) = 119910 minus 119909120595(119901(119909 119910) 119901(119909 119879119909)) = (119910 + 12 minus 2119909)(52 + 119910 minus 2119909)It is easy to check that

119901 (119879119909 119879119910) = 0 le 119910 minus 119909 minus119910 + 12 minus 2119909

52 + 119910 minus 2119909

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(46)

holds for the given values of 119909 and 119910

International Journal of Analysis 7

(2) 119909 isin [0 12] 119910 = 1 Then 119901(119879119909 119879119910) = 119901(12 16) =

13 119872(119909 119910) = 1 and 120595(119901(119909 119910) 119901(119909 119879119909)) =

120595(1 12 minus 119909) = (32 minus 119909)(72 minus 119909) The condition(NZ2) reduces to

1

3le 1 minus

3 minus 2119909

7 minus 2119909(47)

and can be checked directlyThus all the conditions of Theorem 13 are fulfilled and

we conclude that 119879 has a unique fixed point 12 isin 1198601cap 1198602

We state amore involved example that is inspiredwith theone from [48]

Example 19 Let119883 sub ℓ1119883 ni 119909 = (119909

119899)infin

119899=1if and only if 119909

119899ge 0

for each 119899 isin N Define a partial metric 119901 on119883 by

119901 ((119909119899) (119910119899)) =

infin

sum

119899=1

max 119909119899 119910119899 (48)

(it is easy to check that axioms (1199011)ndash(1199014) hold true) Let 120572 isin

(0 1) be fixed denote 0 = (0)infin119899=1

and consider the subsets1198601

and1198602of119883 defined by119860

1= 1198601015840

cup 0 1198602= 11986010158401015840

cup 0 where

1198601015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 or 119899 = 2119896 minus 1 119896 isin N

120572119899

119899 = 2119896 ge 2119897119897 = 1 2

11986010158401015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 minus 1 or 119899 = 2119896 119896 isin N

120572119899

119899 = 2119896 minus 1 ge 2119897 minus 1119897 = 1 2

(49)

Denote 119884 = 1198601cup 1198602(obviously 119860

1cap 1198602= 0)

Consider the mapping 119879 119884 rarr 119884 given by

119879 (0) = 0

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 )

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897+1

1205722119897+2

0 1205722119897+4

0 )

(50)

Obviously 119879(1198601) sub 119860

2and 119879(119860

2) sub 119860

1 hence 119884 = 119860

1cup

1198602is a cyclic representation of 119884 with respect to 119879 Take 120595

[0 +infin)2

rarr [0 +infin) defined by 120595(119904 119905) = (1 minus 120572)max119904 119905Let us check the contractive condition (NZ2) of Theo-

rem 13 Take 119909 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ) isin 1198601and

119910 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119898

1205722119898+1

0 1205722119898+3

0 ) isin 1198602and assume for

example that 119897 le 119898 (the case 119897 gt 119898 is treated similarly aswell as the case when 119909 or 119910 is equal to 0) Then

119901 (119909 119910) = 1205722119897

+ sdot sdot sdot + 1205722119898minus2

+1205722119898

1 minus 120572

119901 (119879119909 119879119910) = 1205722119897+1

+ sdot sdot sdot + 1205722119898minus1

+1205722119898+1

1 minus 120572

119901 (119909 119879119909) =1205722119897

1 minus 120572 119901 (119910 119879119910) =

1205722119898+1

1 minus 120572

(51)

Hence

119901 (119879119909 119879119910) = 120572119901 (119909 119910) le 120572 sdot1205722119897

1 minus 120572

=1205722119897

1 minus 120572minus (1 minus 120572)

1205722119897

1 minus 120572

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(52)

Obviously 119879 has a unique fixed point 0 isin 1198601cap 1198602

Finally we present an example showing that in certainsituations the existence of a fixed point can be concludedunder partial metric conditions while the same cannot beobtained using the standard metric

Example 20 Let 119883 = R+ be equipped with the usual partialmetric 119901(119909 119910) = max119909 119910 Suppose 119860

1= [0 1] 119860

2=

[0 12] 1198603= [0 16] 119860

4= [0 142] and 119884 = ⋃

4

119894=1119860119894

Consider the mapping 119879 119884 rarr 119884 defined by

119879119909 =1199092

1 + 119909 (53)

It is clear that ⋃4119894=1119860119894is a cyclic representation of 119884 with

respect to 119879 Further consider the function 120595 [0 +infin)2

rarr

[0 +infin) given by

120595 (119904 119905) =119904 + 119905

2 + 119904 + 119905 (54)

Take an arbitrary pair (119909 119910) isin 119860119894times119860119894+1

with say 119910 le 119909 (theother possibility can be treated in a similar way) Then

119901 (119879119909 119879119910) = max 1199092

1 + 1199091199102

1 + 119910 =

1199092

1 + 119909 (55)

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

International Journal of Analysis 7

(2) 119909 isin [0 12] 119910 = 1 Then 119901(119879119909 119879119910) = 119901(12 16) =

13 119872(119909 119910) = 1 and 120595(119901(119909 119910) 119901(119909 119879119909)) =

120595(1 12 minus 119909) = (32 minus 119909)(72 minus 119909) The condition(NZ2) reduces to

1

3le 1 minus

3 minus 2119909

7 minus 2119909(47)

and can be checked directlyThus all the conditions of Theorem 13 are fulfilled and

we conclude that 119879 has a unique fixed point 12 isin 1198601cap 1198602

We state amore involved example that is inspiredwith theone from [48]

Example 19 Let119883 sub ℓ1119883 ni 119909 = (119909

119899)infin

119899=1if and only if 119909

119899ge 0

for each 119899 isin N Define a partial metric 119901 on119883 by

119901 ((119909119899) (119910119899)) =

infin

sum

119899=1

max 119909119899 119910119899 (48)

(it is easy to check that axioms (1199011)ndash(1199014) hold true) Let 120572 isin

(0 1) be fixed denote 0 = (0)infin119899=1

and consider the subsets1198601

and1198602of119883 defined by119860

1= 1198601015840

cup 0 1198602= 11986010158401015840

cup 0 where

1198601015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 or 119899 = 2119896 minus 1 119896 isin N

120572119899

119899 = 2119896 ge 2119897119897 = 1 2

11986010158401015840

ni 119909119897

= (119909119897

119899)infin

119899=1

iff 119909119897

119899=

0 119899 lt 2119897 minus 1 or 119899 = 2119896 119896 isin N

120572119899

119899 = 2119896 minus 1 ge 2119897 minus 1119897 = 1 2

(49)

Denote 119884 = 1198601cup 1198602(obviously 119860

1cap 1198602= 0)

Consider the mapping 119879 119884 rarr 119884 given by

119879 (0) = 0

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 )

119879((0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897

1205722119897+1

0 1205722119897+3

0 ))

= (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897+1

1205722119897+2

0 1205722119897+4

0 )

(50)

Obviously 119879(1198601) sub 119860

2and 119879(119860

2) sub 119860

1 hence 119884 = 119860

1cup

1198602is a cyclic representation of 119884 with respect to 119879 Take 120595

[0 +infin)2

rarr [0 +infin) defined by 120595(119904 119905) = (1 minus 120572)max119904 119905Let us check the contractive condition (NZ2) of Theo-

rem 13 Take 119909 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119897minus1

1205722119897

0 1205722119897+2

0 ) isin 1198601and

119910 = (0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2119898

1205722119898+1

0 1205722119898+3

0 ) isin 1198602and assume for

example that 119897 le 119898 (the case 119897 gt 119898 is treated similarly aswell as the case when 119909 or 119910 is equal to 0) Then

119901 (119909 119910) = 1205722119897

+ sdot sdot sdot + 1205722119898minus2

+1205722119898

1 minus 120572

119901 (119879119909 119879119910) = 1205722119897+1

+ sdot sdot sdot + 1205722119898minus1

+1205722119898+1

1 minus 120572

119901 (119909 119879119909) =1205722119897

1 minus 120572 119901 (119910 119879119910) =

1205722119898+1

1 minus 120572

(51)

Hence

119901 (119879119909 119879119910) = 120572119901 (119909 119910) le 120572 sdot1205722119897

1 minus 120572

=1205722119897

1 minus 120572minus (1 minus 120572)

1205722119897

1 minus 120572

= 119872(119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909))

(52)

Obviously 119879 has a unique fixed point 0 isin 1198601cap 1198602

Finally we present an example showing that in certainsituations the existence of a fixed point can be concludedunder partial metric conditions while the same cannot beobtained using the standard metric

Example 20 Let 119883 = R+ be equipped with the usual partialmetric 119901(119909 119910) = max119909 119910 Suppose 119860

1= [0 1] 119860

2=

[0 12] 1198603= [0 16] 119860

4= [0 142] and 119884 = ⋃

4

119894=1119860119894

Consider the mapping 119879 119884 rarr 119884 defined by

119879119909 =1199092

1 + 119909 (53)

It is clear that ⋃4119894=1119860119894is a cyclic representation of 119884 with

respect to 119879 Further consider the function 120595 [0 +infin)2

rarr

[0 +infin) given by

120595 (119904 119905) =119904 + 119905

2 + 119904 + 119905 (54)

Take an arbitrary pair (119909 119910) isin 119860119894times119860119894+1

with say 119910 le 119909 (theother possibility can be treated in a similar way) Then

119901 (119879119909 119879119910) = max 1199092

1 + 1199091199102

1 + 119910 =

1199092

1 + 119909 (55)

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

8 International Journal of Analysis

On the other hand

119872(119909 119910) =max119901 (119909 119910) 119901(119909 1199092

1 + 119909) 119901(119910

1199102

1 + 119910)

1

2(119901(119909

1199102

1 + 119910) + 119901(119910

1199092

1 + 119909))

=max119909 119909 119910 12(119909 +max119910 119909

2

1 + 119909) = 119909

119872 (119909 119910) minus 120595 (119901 (119909 119910) 119901 (119909 119879119909)) = 119909 minus2119909

2 + 2119909=

1199092

1 + 119909

(56)

Hence condition (NZ2) is satisfied as well as other condi-tions of Theorem 13 (with 119902 = 4) We deduce that 119879 has aunique fixed point 119911 = 0 isin 119860

1cap 1198602cap 1198603cap 1198604

On the other hand consider the same problem in thestandard metric 119889(119909 119910) = |119909minus119910| and take 119909 = 1 and 119910 = 12Then

119889 (119879119909 119879119910) =

1003816100381610038161003816100381610038161003816

1

2minus1

6

1003816100381610038161003816100381610038161003816=1

3

119872 (119909 119910) = max 121

21

31

2(5

6+ 0) =

1

2

(57)

and hence

119872(119909 119910) minus 120595 (119889 (119909 119910) 119889 (119909 119879119909)) =1

2minus1

3=1

6 (58)

Thus condition (NZ2) for 119901 = 119889 does not hold and theexistence of a fixed point of 119879 cannot be derived using thestandard metric

Remark 21 The results of this paper are obtained under theassumption that the given partial metric space is 0-completeTaking into account Lemma 10 and Example 11 it followsthat they also hold if the space is complete but that ourassumption is weaker

Acknowledgments

The authors thank the referees for valuable suggestionsthat helped them to improve the text The second authoris thankful to the Ministry of Science and TechnologicalDevelopment of Serbia

References

[1] W A Kirk P S Srinivasan and P Veeramani ldquoFixed points formappings satisfying cyclical contractive conditionsrdquo Fixed PointTheory vol 4 no 1 pp 79ndash89 2003

[2] M Pacurar and I A Rus ldquoFixed point theory for cyclic 120593-contractionsrdquo Nonlinear Analysis vol 72 no 3-4 pp 1181ndash11872010

[3] E Karapınar ldquoFixed point theory for cyclic weak 120601-contrac-tionrdquo Applied Mathematics Letters vol 24 no 6 pp 822ndash8252011

[4] E Karapinar M Jleli and B Samet ldquoFixed point resultsfor almost generalized cyclic (Ψ 120601)-weak contractive typemappings with applicationsrdquoAbstract and Applied Analysis vol2012 Article ID 917831 17 pages 2012

[5] E Karapinar and K Sadarangani ldquoFixed point theory for cyclic(120593 minus 120595)-contractionsrdquo Fixed Point Theory and Applications vol2011 article 69 2011

[6] E Karapinar and SMoradi ldquoFixed point theory for cyclic gene-talized (120601 120601)-contraction mappingsrdquo Annali DellrsquoUniversitarsquo diFerrara In press

[7] E Karapinar and H K Nashine ldquoFixed point theorem forcyclic weakly Chatterjea type contractionsrdquo Journal of AppliedMathematics vol 2012 Article ID 165698 15 pages 2012

[8] E Karapinar and H K Nashine ldquoFixed point theorems forKanaan type cyclicweakly contractionsrdquoNonlinearAnalysis andOptimization In press

[9] H K Nashine ldquoCyclic generalized 120595-weakly contractive map-pings and fixed point results with applications to integralequationsrdquo Nonlinear Analysis vol 75 no 16 pp 6160ndash61692012

[10] S G Matthews ldquoPartial metric topologyrdquo Annals of the NewYork Academy of Sciences vol 728 pp 183ndash197 1994 Proceed-ings of the 8th Summer Conference on General Topology andApplications

[11] R Heckmann ldquoApproximation of metric spaces by partialmetric spacesrdquo Applied Categorical Structures vol 7 no 1-2 pp71ndash83 1999

[12] S Oltra and O Valero ldquoBanachrsquos fixed point theorem forpartial metric spacesrdquo Rendiconti dellrsquoIstituto di MatematicadellrsquoUniversita di Trieste vol 36 no 1-2 pp 17ndash26 2004

[13] O Valero ldquoOn Banach fixed point theorems for partial metricspacesrdquo Applied General Topology vol 6 no 2 pp 229ndash2402005

[14] H-P A Kunzi H Pajoohesh and M P Schellekens ldquoPartialquasi-metricsrdquoTheoretical Computer Science vol 365 no 3 pp237ndash246 2006

[15] M Bukatin R Kopperman S Matthews and H PajooheshldquoPartial metric spacesrdquo American Mathematical Monthly vol116 no 8 pp 708ndash718 2009

[16] S Romaguera ldquoAKirk type characterization of completeness forpartial metric spacesrdquo Fixed Point Theory and Applications vol2010 Article ID 493298 6 pages 2010

[17] D Ilic V Pavlovic and V Rakocevic ldquoSome new extensions ofBanachrsquos contraction principle to partial metric spacerdquo AppliedMathematics Letters vol 24 no 8 pp 1326ndash1330 2011

[18] D Ilic V Pavlovic and V Rakocevic ldquoExtensions of theZamfirescu theorem to partialmetric spacesrdquoMathematical andComputer Modelling vol 55 no 3-4 pp 801ndash809 2012

[19] E Karapinar ldquoGeneralizations of Caristi Kirkrsquos theorem onpartial metric spacesrdquo Fixed Point Theory and Applications vol2011 article 4 2011

[20] C Di Bari Z Kadelburg H K Nashine and S RadenovicldquoCommon fixed points of g-quasicontractions and relatedmappings in 0-complete partial metric spacesrdquo Fixed PointTheory and Applications vol 2010 article 113 2012

[21] K P Chi E Karapınar and T D Thanh ldquoA generalizedcontraction principle in partial metric spacesrdquo Mathematicaland Computer Modelling vol 55 no 5-6 pp 1673ndash1681 2012

[22] L Ciric B Samet H Aydi and C Vetro ldquoCommon fixed pointsof generalized contractions on partial metric spaces and anapplicationrdquo Applied Mathematics and Computation vol 218no 6 pp 2398ndash2406 2011

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

International Journal of Analysis 9

[23] E Karapinar ldquoWeak 120601-contraction on partial metric spacesrdquoJournal of Computational Analysis and Applications vol 14 no2 pp 206ndash210 2012

[24] E Karapınar and U Yuksel ldquoSome common fixed point theo-rems in partial metric spacesrdquo Journal of Applied Mathematicsvol 2011 Article ID 263621 16 pages 2011

[25] E Karapinar ldquoA note on common fixed point theorems inpartial metric spacesrdquo Miskolc Mathematical Notes vol 12 no2 pp 185ndash191 2011

[26] S Romaguera ldquoFixed point theorems for generalized contrac-tions on partial metric spacesrdquo Topology and Its Applicationsvol 159 no 1 pp 194ndash199 2012

[27] H K Nashine and E Karapinar ldquoFixed point results in orbitallycomplete partial metric spacesrdquo Bulletin of the MalaysianMathematical Sciences Society In press

[28] H Aydi ldquoFixed point theorems for generalized weakly con-tractive condition in ordered partial metric spacesrdquo Journal ofNonlinear Analysis and Optimization vol 2 no 2 pp 269ndash2842011

[29] H Aydi ldquoCommon fixed point results for mappings satusfying(Ψ 120601)-weak contractions in ordered partial metric spacesrdquoInternational Journal of Mathematics and Statistics vol 12 pp53ndash64 2012

[30] H Aydi E Karapınar and W Shatanawi ldquoCoupled fixed pointresults for (120595 120593)-weakly contractive condition in ordered par-tialmetric spacesrdquoComputers ampMathematics with Applicationsvol 62 no 12 pp 4449ndash4460 2011

[31] S Romaguera ldquoMatkowskirsquos type theorems for generalized con-tractions on (ordered) partial metric spacesrdquo Applied GeneralTopology vol 12 no 2 pp 213ndash220 2011

[32] B Samet ldquoCoupled fixed point theorems for a generalizedMeir-Keeler contraction in partially ordered metric spacesrdquoNonlinear Analysis vol 72 no 12 pp 4508ndash4517 2010

[33] B Samet M Rajovic R Lazovic and R Stoiljkovic ldquoCommonfixed point results for nonlinear contractions in ordered partialmetric spacesrdquo Fixed Point Theory and Applications vol 2011article 71 2011

[34] H K Nashine Z Kadelburg and S Radenovic ldquoCommonfixed point theorems for weakly isotone increasing mappingsin ordered partial metric spacesrdquo Mathematical and ComputerModelling In press

[35] H K Nashine Z Kadelburg S Radenovic and J K KimldquoFixed point theorems under Hardy-Rogers weak contractiveconditions on 0-complete ordered partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 180 2012

[36] D Paesano and P Vetro ldquoSuzukirsquos type characterizations ofcompleteness for partial metric spaces and fixed points forpartially ordered metric spacesrdquo Topology and Its Applicationsvol 159 no 3 pp 911ndash920 2012

[37] C Di Bari and P Vetro ldquoFixed points for weak 120601-contractionson partial metric spacesrdquo International Journal of ContemporaryMathematical Sciences vol 1 pp 5ndash12 2011

[38] M Abbas T Nazir and S Romaguera ldquoFixed point resultsfor generalized cyclic contraction mappings in partial metricspacesrdquo Revista de la Real Academia de Ciencias Exactas Fısicasy Naturales A vol 106 pp 287ndash297 2012

[39] R P Agarwal M A Alghamdi and N Shahzad ldquoFixed pointtheory for cyclic generalized contractions in partial metricspacesrdquo Fixed Point Theory and Applications vol 2012 article40 2012

[40] E Karapınar and I S Yuce ldquoFixed point theory for cyclic gen-eralized weak 120593-contraction on partial metric spacesrdquo AbstractandAppliedAnalysis vol 2012 Article ID491542 12 pages 2012

[41] E Karapinar N Shobkolaei S Sedghi and S M VaezpourldquoA common fixed point theorem for cyclic operators in partialmetric spacesrdquo Filomat vol 26 pp 407ndash414 2012

[42] M S Khan M Swaleh and S Sessa ldquoFixed point theorems byaltering distances between the pointsrdquo Bulletin of the AustralianMathematical Society vol 30 no 1 pp 1ndash9 1984

[43] B S Choudhury ldquoUnique fixed point theorem for weak C-contractive mappingsrdquo Kathmandu University Journal of Sci-ence Engineering and Technology vol 5 pp 6ndash13 2009

[44] A G B Ahmad Z M Fadail H K Nashine Z Kadelburg andS Radenovic ldquoSome new common fixed point results throughgeneralized altering distances on partial metric spacesrdquo FixedPoint Theory and Applications vol 2012 article 120 2012

[45] H Aydi ldquoA common fixed point result by altering distancesinvolving a contractive condition of integral type in partialmetric spacesrdquo Demonstratio Mathematica In press

[46] T Abdeljawad E Karapınar andK Tas ldquoExistence and unique-ness of a common fixed point on partial metric spacesrdquo AppliedMathematics Letters vol 24 no 11 pp 1900ndash1904 2011

[47] E Karapınar and I M Erhan ldquoFixed point theorems for opera-tors on partial metric spacesrdquo Applied Mathematics Letters vol24 no 11 pp 1894ndash1899 2011

[48] M A Petric ldquoBest proximity point theorems for weak cyclicKannan contractionsrdquo Filomat vol 25 no 1 pp 145ndash154 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Cyclic Contractions and Fixed Point ...downloads.hindawi.com/journals/ijanal/2013/726387.pdf · InternationalJournalofAnalysis eorem (see [ ]). Let (, ) be a complete

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of