Research Article Analysis of Vertical-Horizontal...

12
Research Article Analysis of Vertical-Horizontal Coupling Vibration Characteristics of Rolling Mill Rolls Based on Strip Dynamic Deformation Process Dongxiao Hou, 1 Rongrong Peng, 2 and Haoran Liu 2 1 School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066004, China 2 Institute of Information Technology and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China Correspondence should be addressed to Dongxiao Hou; [email protected] Received 26 October 2013; Revised 21 March 2014; Accepted 21 March 2014; Published 6 April 2014 Academic Editor: Valder Steffen Copyright © 2014 Dongxiao Hou et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nonlinear dynamic rolling forces in the vertical and horizontal directions are, respectively, established, considering the impact of vertical and horizontal directions vibration of rolls. en a vertical-horizontal coupling nonlinear vibration dynamic model of rolling mill rolls is proposed, based on the interactions between this dynamic rolling force and mill structure. e amplitude- frequency equations of the main resonance and inner resonance are carried out by using multiple-scale method. e characteristics of amplitude frequency under nonlinear stiffness, damping, and amplitude of the disturbance are obtained by adopting the actual parameters of 1780 rolling mills. Finally, the bifurcation behavior of the system is studied, and it is found that many dynamic behaviors such as period, period-3 motion, and chaos exist in rolling mill, and this behavior could be restrained effectively by choosing proper system parameters. 1. Introduction e vibration of rolling mill oſten occurs in rolling process. e occurrence of vibration not only affects the quality of rolling products, but also leads to breakdown of the rolling equipment. In order to understand the vibration behaviors of mills, a number of models have been developed during the past few decades [15]. However, in most open literatures, the vibrations in the horizontal direction and in the vertical direction are studied separately. In recent years, the coupling relationship in rolling mill is proposed; Hu et al. studied the linear vibration characteristics in vertical and horizontal direction [6]. Yang et al. studied the stability of coupling dynamic vertical model of cold rolling mill, which consists of the rolling process model, the mill roll stand structure model, and the hydraulic servo system model [7]. In the process of studying rolling mill vibration, modeling of rolling force dir- ectly determines the accuracy of vibration model. In the early years, the rolling force in the rolling process is quasistatic, which assumes that only dynamic variations in roll spacing produce variations in force, strip speed, and strip thickness to those occurring under steady-state conditions [810]. Yun et al. proposed a dynamic model of rolling mill, which consid- ers the rate variation of change of the roll spacing. But in order to simplify calculation, he only selected the linear section of rolling force by using Taylor formula [11]. In fact, most of the literatures adopted the method of Yun, by taking the rolling force as a linear factor and neglecting nonlinear section. In this paper, nonlinear dynamic rolling forces in the vertical and horizontal directions are proposed, respectively. en a vertical-horizontal coupling vibration dynamic model of rolling mill rolls is constructed based on the interac- tions between this dynamic nonlinear rolling force and mill structure. en the amplitude-frequency characteristics of the main resonance and inner resonance are analyzed under the nonlinear stiffness, damping, and the amplitude of the disturbance stiffness. Finally, the conditions of different dynamical motions are obtained by analyzing bifurcation behavior of the system, which could provide theoretical base for understanding of vibration mechanism of mill. Hindawi Publishing Corporation Shock and Vibration Volume 2014, Article ID 543793, 11 pages http://dx.doi.org/10.1155/2014/543793

Transcript of Research Article Analysis of Vertical-Horizontal...

Research ArticleAnalysis of Vertical-Horizontal CouplingVibration Characteristics of Rolling Mill Rolls Based onStrip Dynamic Deformation Process

Dongxiao Hou1 Rongrong Peng2 and Haoran Liu2

1 School of Control Engineering Northeastern University at Qinhuangdao Qinhuangdao Hebei 066004 China2 Institute of Information Technology and Engineering Yanshan University Qinhuangdao Hebei 066004 China

Correspondence should be addressed to Dongxiao Hou houdongxiao1982163com

Received 26 October 2013 Revised 21 March 2014 Accepted 21 March 2014 Published 6 April 2014

Academic Editor Valder Steffen

Copyright copy 2014 Dongxiao Hou et alThis is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Nonlinear dynamic rolling forces in the vertical and horizontal directions are respectively established considering the impactof vertical and horizontal directions vibration of rolls Then a vertical-horizontal coupling nonlinear vibration dynamic modelof rolling mill rolls is proposed based on the interactions between this dynamic rolling force and mill structure The amplitude-frequency equations of the main resonance and inner resonance are carried out by usingmultiple-scale methodThe characteristicsof amplitude frequency under nonlinear stiffness damping and amplitude of the disturbance are obtained by adopting the actualparameters of 1780 rolling mills Finally the bifurcation behavior of the system is studied and it is found that many dynamicbehaviors such as period period-3 motion and chaos exist in rolling mill and this behavior could be restrained effectively bychoosing proper system parameters

1 Introduction

The vibration of rolling mill often occurs in rolling processThe occurrence of vibration not only affects the quality ofrolling products but also leads to breakdown of the rollingequipment In order to understand the vibration behaviorsof mills a number of models have been developed during thepast few decades [1ndash5] However inmost open literatures thevibrations in the horizontal direction and in the verticaldirection are studied separately In recent years the couplingrelationship in rolling mill is proposed Hu et al studiedthe linear vibration characteristics in vertical and horizontaldirection [6] Yang et al studied the stability of couplingdynamic vertical model of cold rolling mill which consists ofthe rolling process model themill roll stand structuremodeland the hydraulic servo system model [7] In the process ofstudying rolling mill vibration modeling of rolling force dir-ectly determines the accuracy of vibrationmodel In the earlyyears the rolling force in the rolling process is quasistaticwhich assumes that only dynamic variations in roll spacing

produce variations in force strip speed and strip thicknessto those occurring under steady-state conditions [8ndash10] Yunet al proposed a dynamicmodel of rollingmill which consid-ers the rate variation of change of the roll spacing But in orderto simplify calculation he only selected the linear section ofrolling force by using Taylor formula [11] In fact most of theliteratures adopted the method of Yun by taking the rollingforce as a linear factor and neglecting nonlinear section

In this paper nonlinear dynamic rolling forces in thevertical and horizontal directions are proposed respectivelyThen a vertical-horizontal coupling vibration dynamicmodelof rolling mill rolls is constructed based on the interac-tions between this dynamic nonlinear rolling force and millstructure Then the amplitude-frequency characteristics ofthe main resonance and inner resonance are analyzed underthe nonlinear stiffness damping and the amplitude of thedisturbance stiffness Finally the conditions of differentdynamical motions are obtained by analyzing bifurcationbehavior of the system which could provide theoretical basefor understanding of vibration mechanism of mill

Hindawi Publishing CorporationShock and VibrationVolume 2014 Article ID 543793 11 pageshttpdxdoiorg1011552014543793

2 Shock and Vibration

y

R

O x

120579

R

xc

xc

lx

1

h1h2h0

0

120591b hx

120591f

xn

x2

x1

yc

yc

Figure 1 The dynamic deformation process of strip

2 Nonlinear Rolling Force Based onDynamic Deformation Process of Strip

21 Parameters of Deformation Zone under Vibration Condi-tions Considering the influence of vertical and horizontalvibration of roll the dynamic deformation process of strip isshown in Figure 1

As shown in Figure 1 the solid line represents the steady-state position of roll and the dashed line is the position of rollunder vibration conditions

Considering the elastic flattening of the rolls the roll gapis treated as a parabolic curve [11] Based on Von Karmanrsquosstudy [10] considering the vertical displacement of rolls thethickness ℎ

119909of the rolling mill at any arbitrary position 119909 is

ℎ119909= ℎ0+ 2119910119888+(119909 minus 119909

119888)2

119877 (1)

Assuming that the thickness ℎ1at entry position is con-

stant the entry coordinate of strip can be derived from (1) as

1199091= 119909119888+ radic119877 (ℎ

1minus ℎ0minus 2119910119888) (2)

Then the velocity at entry position along horizontaldirection can be derived form (2) as

1= 119888minus (ℎ1minus ℎ0minus 2119910119888)minus12

11987712

119910 (3)

Considering the influence of roll horizontal vibration theequivalent velocity at the entry position will be composed oftwoparts the entrance velocity V

1of strip and entrance rate

1

at entry position and it can be expressed as

V10158401= V1minus 1 (4)

From Figure 1 the exit thickness of strip under vibrationconditions can be obtained as

ℎ2= ℎ0+ 2119910119888 (5)

Under vibration conditions the bulk of metal in defor-mation zone is not constant so the equation of constant massthroughput is no longer suitable for vibration conditionsThen a new principal of metal flow per second will be pro-posed and the dynamic flow at any arbitrary position 119909 canbe expressed as

V119909ℎ119909= V10158401ℎ1minus Δ (6)

where V119909ℎ119909is equivalent exit flow at any arbitrary position 119909

and V10158401ℎ1is equivalent entry flow

Where the volume in deformation zone range from 1199091to

119909 can be expressed as

Δ119881 =1

2(1199091minus 119909) (ℎ

1+ ℎ119909) minus 2119877

2 arcsin119897119909

119877+1

4119897119909radic41198772 minus 1198972

119909

(7)

where

119897119909=radic(1199091minus 119909)2

+(ℎ1minus ℎ119909)2

4

(8)

the derivative of (7) can be obtained as

Δ =1

21(ℎ1+ ℎ119909) +

1

2(1199091minus 119909) ℎ

119909

minus21198772 119897119909

radic1198772 minus 1198972119909

+1

4

119897119909radic41198772 minus 1198972

119909minus1

41198972

119909

119897119909

radic41198772 minus 1198972119909

(9)

where

ℎ119909= 2 119910119888minus2119888(119909 minus 119909

119888)

119877

119897119909=4 (1199091minus 119909)

1minus ℎ119909(ℎ1minus ℎ119909)

2radic4(1199091minus 119909)2

+ (ℎ1minus ℎ119909)

(10)

Shock and Vibration 3

Then the speed V119909at any arbitrary position can be

expressed as

V119909=V10158401ℎ1minus Δ

ℎ119909

(11)

When the horizontal component of surface speed of roll isequal to (11) namely

V119909=V119877

119877

radic1198772 minus (119909 minus 119909119888)2

(12)

at the moment the position 119909 is the position of neutral point119909119899in (12) Due to119877 ≫ (119909minus119909

119888) and |119909minus119909

119888| ≪ 1 and neglecting

high-order item (119909 minus 119909119888)2 the neutral point can be derived as

119909119899= 1199091minus

(ℎ1minus ℎ2)radic(41198772 minus 2) (1198622 minus 1)

81198772 minus 1198622

(13)

where

119862 = V119877ℎ2minus V10158401ℎ1+1

21(ℎ1+ ℎ2) + 1199091119910119888 (14)

22 Nonlinear Dynamic Rolling Force in Horizontal andVertical Direction According to slabmethod [10] take a sliceof the strip in Figure 2

Based on force balance theory in deformation zone byVon Karman [10] the force balance expression in horizontaldirection can be expressed as

119889ℎ119909

119889119909(119875 + 120591

119909) + ℎ119909

119889120591119909

119889119909plusmn 2119865120583= 0 (15)

where 119865120583= 120583120575 when 119909 lt 119909

119899 take the negative and when

119909 gt 119909119899 take the positive

By taking account of the assumption of homogeneousdeformation [11] the distribution of stress can be written byvon Mises yield criterion as follows

119889120591119909

119889119909=2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877) (16)

Integrating (16) the tension 120591119909can be express as

120591119909= 120591119887+ int

119909

1199091

2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877)119889119909 (17)

The unit rolling force by (17) can be expressed as

119875 (119909) = 2120575 minus [120591119887+ int

119909

1199091

2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877)119889119909] (18)

The rolling force in horizontal and vertical direction canbe obtained as follows

119865119909= minusint

1199091

1199092

119875 (119909) tan 120579 119889119909 + int

1199091

1199092

∓120583120575 119889119909

119865119910= int

1199091

1199092

119875 (119909) 119889119909 + int

1199091

1199092

∓120583120575 tan 120579 119889119909(19)

where

tan 120579 =119909 minus 119909119888

radic1198772 minus (119909 minus 119909119888)2

(20)

In (19) integrating zone is composed of two sectionsnamely 119909

2sim 119909119899and 119909

119899sim 1199091 Integrating (19) we obtained

119865119909= minus 120583120575ℎ

2radic

119877

ℎ0+ 2119910119888

[2tanminus1 (119909119899minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)

minustanminus1 (1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)]

+120591119887

2(ℎ1minus ℎ2) minus 120575ℎ

2ln ℎ1

ℎ2

119865119910= [2120575 ln(ℎ1

ℎ2

) minus 2120575 minus 120591119887] (1199091minus119909119888)

+ 4120575radic119877ℎ0+ 2119877119910

119888tanminus1 (

1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)

+ 2120583120575radic119877

ℎ0+ 2119910119888

(1199091minus119909119888)

times [2tanminus1 (119909119899minus 119909119888

radic119877ℎ0+ 2119877119910

119888

) minus tanminus1 (1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)]

+ 120583120575119877 ln(ℎ1ℎ2

ℎ2119899

)

(21)

3 The Vertical-Horizontal CouplingDynamic Equation of Mill Rolls

Set 1199091198880

and 1199101198880

which are the balance points of rolls in thehorizontal and vertical direction respectively Under steadyconditions

1198880= 0 and 119910

1198880= 0 by using Taylor formula (21)

can be expressed as

119865119909(119909119888 119888 119910119888 119910119888) = 119865119909(1199091198880 0 1199101198880 0) + Δ119865

119909(119909119888 119888 119910119888 119910119888)

119865119910(119909119888 119888 119910119888 119910119888) = 119865119910(1199091198880 0 1199101198880 0) + Δ119865

119910(119909119888 119888 119910119888 119910119888)

(22)

where 119865(1199091198880 0 1199101198880 0) is rolling force when there is no vibra-

tion and Δ119865(119909119888 119888 119910119888 119910119888) is dynamic parts of rolling force

because too many parameters for simplify the calculationtake the parts of first and third order as follows

Δ119865119909(119909119888 119888 119910119888 119910119888)

= 1198861119909119888+ 1198862119888+ 1198863119910119888+ 1198864119910119888+ 11988651199093

119888+ 11988661199103

119888

Δ119865119910(119909119888 119888 119910119888 119910119888)

= 1198871119909119888+ 1198872119888+ 1198873119910119888+ 1198874119910119888+ 11988751199093

119888+ 11988761199103

119888

(23)

4 Shock and Vibration

hx

120591x

F120583

F120583

dx

P

P

hx minus dhx

120591x minus d120591x

Figure 2 The pressure diagram of strip

where

1198861=

120597

120597119909119888

119865119909(1199091198880 0 1199101198880 0)

1198871=

120597

120597119909119888

119865119910(1199091198880 0 1199101198880 0)

1198862=

120597

120597119888

119865119909(1199091198880 0 1199101198880 0)

1198872=

120597

120597119888

119865119910(1199091198880 0 1199101198880 0)

1198863=

120597

120597119910119888

119865119909(1199091198880 0 1199101198880 0)

1198873=

120597

120597119910119888

119865119910(1199091198880 0 1199101198880 0)

1198864=

120597

120597 119910119888

119865119909(1199091198880 0 1199101198880 0)

1198874=

120597

120597 119910119888

119865119910(1199091198880 0 1199101198880 0)

1198865=1

6

1205973

1205971199093119888

119865119909(1199091198880 0 1199101198880 0)

1198875=1

6

1205973

1205971199093119888

119865119910(1199091198880 0 1199101198880 0)

1198866=1

6

1205973

1205971199103119888

119865119909(1199091198880 0 1199101198880 0)

1198876=1

6

1205973

1205971199103119888

119865119910(1199091198880 0 1199101198880 0)

(24)

Based on the assumption that the mass of working rollsare much smaller than that of backup rolls the mass of the

working rolls may be neglected [6] The vertical-horizontalcoupling nonlinear vibration model of rolling mill with non-linear dynamic rolling force is illustrated in Figure 3

The dynamic equation in Figure 3 can be written as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198791

1198982119888+ 1198883119888+ 1198964(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

minus1198982119910119888minus 1198884119910119888minus 1198964(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198792

(25)

Assuming that the structure of rolling mill and vibrationare symmetrical in relation to the rolled strip [6] then thereexist 119896

1= 1198963 1198962= 1198964 1198881= 1198883 1198882= 11988841198981= 1198982 and119879

1= minus1198792

and (25) can be simplified as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(26)

Under steady conditions the external disturbance force1198791= 0 there exist

119888= 119910119888= 0

119888= 119910119888= 0 and 119909

119888= 119910119888= 0

and the balance equation can be obtained as follows

11989611199091198880+ 119865119909(1199091198880 0 2119910

1198880 0) = 0

11989621199101198880+ 119865119910(1199091198880 0 2119910

1198880 0) = 0

(27)

Substituting (27) into (26) (26) can be expressed as

1198981119888+ 1198881119888+ 1198961119909119888+ Δ119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962119910119888+ Δ119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(28)

Shock and Vibration 5

k2c2

k1

k4

k3

c1

c3

c4

m1

m2

T2

T1

Fx

Fy

yc

yc

xc

xc

Figure 3The vertical-horizontal coupling dynamicmodel of rollingmill rolls

Substitute (23) and (27) into (28) and set

1205962

1=(1198961+ 1198861)

1198981

1205721=(1198881+ 1198862)

1198981

1205731=

1198863

1198981

1205741=

1198864

1198981

1205781=81198865

1198981

1205891=81198866

1198981

1205962

2=(1198962+ 1198873)

1198981

1205722=(1198882+ 1198874)

1198981

1205732=

1198871

1198981

1205742=1198872

119898 1

1205782=81198875

119898 1 120589

2=81198876

1198981

119879 =1198791

1198981

(29)

Equation (28) can be rewritten as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888+ 12057811199093

119888+ 12058911199103

119888= 0

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888+ 12057821199093

119888+ 12058921199103

119888= 119879

(30)

Equation (28) is vertical-horizontal coupling dynamicequation of mill rolls under vibration conditions where 120573 120574120589 are coupling coefficients

4 The Resonance Characteristics of Equation

Assuming that the external disturbance119879 = 120576119865 cos120596119905 and thesystem is a weak nonlinear system (30) can expressed as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888= minus120576 (120578

11199093

119888+ 12058911199103

119888)

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888

= minus120576 (12057821199093

119888+ 12058921199103

119888+ 119865 cos120596119905)

(31)

By using multiple scales method one has

119879119899= 120576119899

119905 119899 = 0 1

dd119905

= 1198630+ 1205761198631

d2

d1199052= 1198632

0+ 2120576119863

01198631+ 1205762

(1198632

1+ 211986301198631) + sdot sdot sdot

(32)

where119863119899is defined as 120597120597119879

119899and 119899 = 0 1

Set (31) which has solution as follows119909119888= 1199090(1198790 1198791) + 120576119909

1(1198790 1198791) + sdot sdot sdot

119910119888= 1199100(1198790 1198791) + 120576119910

1(1198790 1198791) + sdot sdot sdot

(33)

Substituting (32) and (33) into (31) and separating termsof each order of 120576 one has

1198632

01199090+ 1205962

11199090= 0

1198632

01199100+ 1205962

21199100= 0

(34)

1198632

01199091+ 1205962

11199091= minus 2119863

011986311199090minus 120572111986301199090

minus 12057311199100minus 120574111986301199100minus 12057811199093

0minus 12058911199103

0

1198632

01199101+ 1205962

21199101= minus 2119863

011986311199100minus 120572211986301199100

minus 12057321199090minus 120574211986301199090minus 12057821199093

0minus 12058921199103

0minus 119865 cos120596119905

(35)

Set the solution of (34) as

1199090= 119860 (119879

1) 11989011989412059611198790 + cc 119910

0= 119861 (119879

1) 11989011989412059621198790 + cc (36)

where cc represents complex conjugate of former term and119860(1198791) and 119861(119879

1) are undetermined complex function

Substituting (36) into (35) the following equation can beexpressed as

1198632

01199091+ 1205962

11199091= (minus2119894120596

11198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

) 11989011989412059611198790

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 11989011989412059621198790

minus 12057811198603

119890311989412059611198790 minus 12058911198613

119890311989412059621198790 + cc

1198632

01199101+ 1205962

21199101= (minus2119894120596

21198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

) 11989011989412059621198790

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059611198790

minus 12058921198613

119890311989412059621198790 minus 12057821198603

119890311989412059611198790 +

1198651198901198941205961198790

2+ cc(37)

6 Shock and Vibration

41 The Analysis of Main Resonance In the case of main res-onance set 120596 = 120596

2+ 120576120590 and eliminating secular term of (37)

one can obtain

minus211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

= 0

minus211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

+1198651198901198941205901198791

2= 0

(38)

The polar coordinate form of 119860 and 119861 in (36) is intro-duced as follows

119860 =1

2119886 (1198791) 1198901198941205931(1198791)

119861 =1

2119887 (1198791) 1198901198941205932(1198791)

(39)

By substituting (39) into (38) and separating the real andimaginary parts the average equation of coupling system canbe obtained as follows

119886 = minus1

21205721119886

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

= minus1

21205722119887 +

119865

21205962

sin 120579

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 120579

(40)

where 120579 = 1205901198791minus1205932 In the steady state existing 119886 = = 0 and

1205792= 0 and eliminating 120579

2from (40) then the amplitude fre-

quency response equation of the system can be written as

9

161205892

21198876

+ 3120596212059012058921198874

+ 1205962

2(1205722

2+ 41205902

) 1198872

minus 1198652

= 0 (41)

42 The Analysis of Inner Resonance Assuming that 1205961=

1205962+1205761205901and 120596 = 120596

2+120576120590 in order to solve the secular term of

(37) 119860 and 119861must meet conditions as follows

minus 211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 119890minus11989412059011198791 = 0

minus 211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059011198791 =

minus1198651198901198941205901198791

2

(42)

Substituting (39) into (42) the average equation can beobtained under the polar coordinate that is

119886 = minus1

21205721119886 minus

2

21205961

[(3

412058911198872

+ 1205731) sin 120579

1+ 12059621205741cos 1205791]

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

+119887

21205961

[(3

412058911198872

+ 1205731) cos 120579

1minus 12059621205741sin 1205791]

= minus1

21205722119887 +

1198650

21205962

sin 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) sin 120579

1minus 12059611205742cos 1205791]

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) cos 120579

1+ 12059611205742sin 1205791]

(43)

where 1205791= 1205932minus 1205931minus 12059011198791and 1205792= 1205901198791minus 1205932

When the system has a periodic motion (43) will exist119886 = = 120579

1= 1205792= 0 eliminate 120579

1and 1205792from (43) and then

the frequency response equation of the coupling system canbe obtained as

1205962

11205722

11198862

+ 41205962

11198662

= 1198872

119872 (44)

(3

412057821198863

+ 1205732119886)

2

+ (21205962120590119887 +

3

412058921198873

)

2

+ 1205962

11205742

21198862

+ 1205962

21205722

21198872

+1205961119886

119872(21205962120590 +

3

412058921198872

)

times (21205721119886119885 minus 119866119873) minus

120596112059621205722119886

119872(21205721119886119873 + 119866119885) = 119865

2

(45)

where

119872 = minus1205962

21205742

1+ (

3

412058911198872

+ 1205731)

2

119873 = (3

412058911198872

+ 1205731)(

3

412057821198862

+ 1205732) minus 1205961120596212057411205742

119885 = minus12059621205741(3

412057821198862

+ 1205732) minus 12059611205742(3

412058911198872

+ 1205731)

119866 = (120590 minus 1205901) 119886 +

3

81205961

12057811198863

(46)

5 Numerical Experiments

Taking the 1780 rolling mills of Chengde Steel Co as anexample the parameters of this mill are listed as follows

ℎ1= 00141m ℎ

0= 00082m 119898 = 144 119905 V

119877= 25ms

120583 = 026 120591119887= 38Mpa 120591

119891= 55Mpa 119877 = 042m 120575 =

30Mpa 1198881= 2times10

5Nsdotsm 1198961= 201times10

11Nm 1198962= 208times

1011Nm and 119888

2= 865 times 10

5NsdotsmParameters of rolling force can be listed as follows 120576 =

001 1198861= 58 times 10

6Nm 1198862= 146 times 10

8Nsdotsm 1198863=

2136Nm 1198864= minus1131Nsdotsm 120576119886

5= 4 times 10

6Nm3 1205761198866=

minus747 times 1011Nm3 119887

1= 6978 times 10

7Nm 1198872= minus2593Nsdotsm

1198873= minus216 times 10

9Nm 1198874= 14 times 10

4Nsdotsm 1205761198875= 265 times

109Nm3 and 120576119887

6= minus37 times 10

15Nm3Figures 4sim6 show the curve of main resonance amplitude

frequency of rolling mill under different parametersIn Figure 4 the main resonance amplitude-frequency

response curves for several values of nonlinear stiffness 1198873are

illustrated by (40) It can be seen that the nonlinear stiffness

Shock and Vibration 7

0 5 10 15 200

02

04

06

08

1

12

minus20 minus15 minus10 minus5

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b3 = minus216 times 109 Nm

b3 = minus27 times 1010 Nm

b3 = minus51 times 1010 Nm

Figure 4 Main resonance amplitude-frequency curve of differentnonlinear stiffness 119887

3

1198873directly affects the vertical natural frequency of the rolling

millThe natural frequency decreases with the decrease of thestiffness 119887

3 and themain resonance amplitude becomes larger

and the backbone of rolling mill curve deviates toward rightsimultaneously

In Figure 5 themain resonance amplitude-frequency res-ponse curves for different values of parameter 119888

2are illus-

trated by (44) With the increasing of the parameter 1198882 the

resonance amplitude of vibration decreasesFigure 6 shows the curve of the main resonance ampli-

tude frequency in coupling rolling mill system for differentnonlinear parameter 119887

6 It can be seen that with the decrease

of 1198876 the frequency response curve deviates toward right and

the jumpphenomenonbecomesmore obviousWhen the dis-turbance frequency 120590 changes negative to positive the ampli-tude changes according to 1-2-3-5 route and jumps in 3-5when the disturbance frequency 120590 is changed from positiveto negative the amplitude changes according to 5-4-2 routeand jumps in 4-2 which will lead to the jump phenomenon

In Figure 7 it can be seen that when disturbance ampli-tude 120576119865 is small value the frequency response curve is singlevalue of system With the increase of 120576119865 the main resonanceamplitude increases gradually and the resonance point ofcoupling system shifts right and a clear jump phenomenonarises

Figures 8 and 9 show the curves of inner resonanceamplitude-frequency under different parameters in horizon-tal and vertical directions respectively It can be seen that thesystem will raise resonance when disturb frequency is near toor equal to natural frequency 120596

1or 1205962 and it has two reso-

nance zones in coupling systemIn Figure 8 when 120576119865 = 03MN the curve in horizontal

direction has two resonance points and the result is uniqueand stabile With the increase of disturb amplitude 120576119865 when120576119865 = 05MN the right resonance zone becomes bend toright and the jump phenomenon arises in Figure 8(b) andthen the system is instable

In Figure 9 the change of tendency of curve in verticaldirection is similar to the curve in horizontal direction

0 20 40 600

01

02

03

04

05

06

07

08

minus40 minus20

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

c2 = 865 times 105 Nmiddotsm

c2 = 12 times 106 Nmiddotsm

c2 = 18 times 106 Nmiddotsm

Figure 5 Main resonance amplitude frequency curve of differentstructural damping 119888

2

0 10 20 30 400

01

02

03

04

05

06

07

08

09

minus30 minus20 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b6 = minus744 times 1016 Nm3

b6 = minus21 times 1016 Nm3

b6 = minus37 times 1017 Nm3

Figure 6 Main resonance amplitude frequency curve of differentnonlinear stiffness 119887

6

0 10 20 30 40 500

01

02

03

04

05

06

07

08

09

minus20minus30minus40minus50 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

120576F = 05MN

120576F = 08MN

120576F = 02MN

Figure 7 Curve of main resonance amplitude frequency withdifferent disturb amplitude 120576119865

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

2 Shock and Vibration

y

R

O x

120579

R

xc

xc

lx

1

h1h2h0

0

120591b hx

120591f

xn

x2

x1

yc

yc

Figure 1 The dynamic deformation process of strip

2 Nonlinear Rolling Force Based onDynamic Deformation Process of Strip

21 Parameters of Deformation Zone under Vibration Condi-tions Considering the influence of vertical and horizontalvibration of roll the dynamic deformation process of strip isshown in Figure 1

As shown in Figure 1 the solid line represents the steady-state position of roll and the dashed line is the position of rollunder vibration conditions

Considering the elastic flattening of the rolls the roll gapis treated as a parabolic curve [11] Based on Von Karmanrsquosstudy [10] considering the vertical displacement of rolls thethickness ℎ

119909of the rolling mill at any arbitrary position 119909 is

ℎ119909= ℎ0+ 2119910119888+(119909 minus 119909

119888)2

119877 (1)

Assuming that the thickness ℎ1at entry position is con-

stant the entry coordinate of strip can be derived from (1) as

1199091= 119909119888+ radic119877 (ℎ

1minus ℎ0minus 2119910119888) (2)

Then the velocity at entry position along horizontaldirection can be derived form (2) as

1= 119888minus (ℎ1minus ℎ0minus 2119910119888)minus12

11987712

119910 (3)

Considering the influence of roll horizontal vibration theequivalent velocity at the entry position will be composed oftwoparts the entrance velocity V

1of strip and entrance rate

1

at entry position and it can be expressed as

V10158401= V1minus 1 (4)

From Figure 1 the exit thickness of strip under vibrationconditions can be obtained as

ℎ2= ℎ0+ 2119910119888 (5)

Under vibration conditions the bulk of metal in defor-mation zone is not constant so the equation of constant massthroughput is no longer suitable for vibration conditionsThen a new principal of metal flow per second will be pro-posed and the dynamic flow at any arbitrary position 119909 canbe expressed as

V119909ℎ119909= V10158401ℎ1minus Δ (6)

where V119909ℎ119909is equivalent exit flow at any arbitrary position 119909

and V10158401ℎ1is equivalent entry flow

Where the volume in deformation zone range from 1199091to

119909 can be expressed as

Δ119881 =1

2(1199091minus 119909) (ℎ

1+ ℎ119909) minus 2119877

2 arcsin119897119909

119877+1

4119897119909radic41198772 minus 1198972

119909

(7)

where

119897119909=radic(1199091minus 119909)2

+(ℎ1minus ℎ119909)2

4

(8)

the derivative of (7) can be obtained as

Δ =1

21(ℎ1+ ℎ119909) +

1

2(1199091minus 119909) ℎ

119909

minus21198772 119897119909

radic1198772 minus 1198972119909

+1

4

119897119909radic41198772 minus 1198972

119909minus1

41198972

119909

119897119909

radic41198772 minus 1198972119909

(9)

where

ℎ119909= 2 119910119888minus2119888(119909 minus 119909

119888)

119877

119897119909=4 (1199091minus 119909)

1minus ℎ119909(ℎ1minus ℎ119909)

2radic4(1199091minus 119909)2

+ (ℎ1minus ℎ119909)

(10)

Shock and Vibration 3

Then the speed V119909at any arbitrary position can be

expressed as

V119909=V10158401ℎ1minus Δ

ℎ119909

(11)

When the horizontal component of surface speed of roll isequal to (11) namely

V119909=V119877

119877

radic1198772 minus (119909 minus 119909119888)2

(12)

at the moment the position 119909 is the position of neutral point119909119899in (12) Due to119877 ≫ (119909minus119909

119888) and |119909minus119909

119888| ≪ 1 and neglecting

high-order item (119909 minus 119909119888)2 the neutral point can be derived as

119909119899= 1199091minus

(ℎ1minus ℎ2)radic(41198772 minus 2) (1198622 minus 1)

81198772 minus 1198622

(13)

where

119862 = V119877ℎ2minus V10158401ℎ1+1

21(ℎ1+ ℎ2) + 1199091119910119888 (14)

22 Nonlinear Dynamic Rolling Force in Horizontal andVertical Direction According to slabmethod [10] take a sliceof the strip in Figure 2

Based on force balance theory in deformation zone byVon Karman [10] the force balance expression in horizontaldirection can be expressed as

119889ℎ119909

119889119909(119875 + 120591

119909) + ℎ119909

119889120591119909

119889119909plusmn 2119865120583= 0 (15)

where 119865120583= 120583120575 when 119909 lt 119909

119899 take the negative and when

119909 gt 119909119899 take the positive

By taking account of the assumption of homogeneousdeformation [11] the distribution of stress can be written byvon Mises yield criterion as follows

119889120591119909

119889119909=2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877) (16)

Integrating (16) the tension 120591119909can be express as

120591119909= 120591119887+ int

119909

1199091

2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877)119889119909 (17)

The unit rolling force by (17) can be expressed as

119875 (119909) = 2120575 minus [120591119887+ int

119909

1199091

2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877)119889119909] (18)

The rolling force in horizontal and vertical direction canbe obtained as follows

119865119909= minusint

1199091

1199092

119875 (119909) tan 120579 119889119909 + int

1199091

1199092

∓120583120575 119889119909

119865119910= int

1199091

1199092

119875 (119909) 119889119909 + int

1199091

1199092

∓120583120575 tan 120579 119889119909(19)

where

tan 120579 =119909 minus 119909119888

radic1198772 minus (119909 minus 119909119888)2

(20)

In (19) integrating zone is composed of two sectionsnamely 119909

2sim 119909119899and 119909

119899sim 1199091 Integrating (19) we obtained

119865119909= minus 120583120575ℎ

2radic

119877

ℎ0+ 2119910119888

[2tanminus1 (119909119899minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)

minustanminus1 (1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)]

+120591119887

2(ℎ1minus ℎ2) minus 120575ℎ

2ln ℎ1

ℎ2

119865119910= [2120575 ln(ℎ1

ℎ2

) minus 2120575 minus 120591119887] (1199091minus119909119888)

+ 4120575radic119877ℎ0+ 2119877119910

119888tanminus1 (

1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)

+ 2120583120575radic119877

ℎ0+ 2119910119888

(1199091minus119909119888)

times [2tanminus1 (119909119899minus 119909119888

radic119877ℎ0+ 2119877119910

119888

) minus tanminus1 (1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)]

+ 120583120575119877 ln(ℎ1ℎ2

ℎ2119899

)

(21)

3 The Vertical-Horizontal CouplingDynamic Equation of Mill Rolls

Set 1199091198880

and 1199101198880

which are the balance points of rolls in thehorizontal and vertical direction respectively Under steadyconditions

1198880= 0 and 119910

1198880= 0 by using Taylor formula (21)

can be expressed as

119865119909(119909119888 119888 119910119888 119910119888) = 119865119909(1199091198880 0 1199101198880 0) + Δ119865

119909(119909119888 119888 119910119888 119910119888)

119865119910(119909119888 119888 119910119888 119910119888) = 119865119910(1199091198880 0 1199101198880 0) + Δ119865

119910(119909119888 119888 119910119888 119910119888)

(22)

where 119865(1199091198880 0 1199101198880 0) is rolling force when there is no vibra-

tion and Δ119865(119909119888 119888 119910119888 119910119888) is dynamic parts of rolling force

because too many parameters for simplify the calculationtake the parts of first and third order as follows

Δ119865119909(119909119888 119888 119910119888 119910119888)

= 1198861119909119888+ 1198862119888+ 1198863119910119888+ 1198864119910119888+ 11988651199093

119888+ 11988661199103

119888

Δ119865119910(119909119888 119888 119910119888 119910119888)

= 1198871119909119888+ 1198872119888+ 1198873119910119888+ 1198874119910119888+ 11988751199093

119888+ 11988761199103

119888

(23)

4 Shock and Vibration

hx

120591x

F120583

F120583

dx

P

P

hx minus dhx

120591x minus d120591x

Figure 2 The pressure diagram of strip

where

1198861=

120597

120597119909119888

119865119909(1199091198880 0 1199101198880 0)

1198871=

120597

120597119909119888

119865119910(1199091198880 0 1199101198880 0)

1198862=

120597

120597119888

119865119909(1199091198880 0 1199101198880 0)

1198872=

120597

120597119888

119865119910(1199091198880 0 1199101198880 0)

1198863=

120597

120597119910119888

119865119909(1199091198880 0 1199101198880 0)

1198873=

120597

120597119910119888

119865119910(1199091198880 0 1199101198880 0)

1198864=

120597

120597 119910119888

119865119909(1199091198880 0 1199101198880 0)

1198874=

120597

120597 119910119888

119865119910(1199091198880 0 1199101198880 0)

1198865=1

6

1205973

1205971199093119888

119865119909(1199091198880 0 1199101198880 0)

1198875=1

6

1205973

1205971199093119888

119865119910(1199091198880 0 1199101198880 0)

1198866=1

6

1205973

1205971199103119888

119865119909(1199091198880 0 1199101198880 0)

1198876=1

6

1205973

1205971199103119888

119865119910(1199091198880 0 1199101198880 0)

(24)

Based on the assumption that the mass of working rollsare much smaller than that of backup rolls the mass of the

working rolls may be neglected [6] The vertical-horizontalcoupling nonlinear vibration model of rolling mill with non-linear dynamic rolling force is illustrated in Figure 3

The dynamic equation in Figure 3 can be written as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198791

1198982119888+ 1198883119888+ 1198964(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

minus1198982119910119888minus 1198884119910119888minus 1198964(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198792

(25)

Assuming that the structure of rolling mill and vibrationare symmetrical in relation to the rolled strip [6] then thereexist 119896

1= 1198963 1198962= 1198964 1198881= 1198883 1198882= 11988841198981= 1198982 and119879

1= minus1198792

and (25) can be simplified as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(26)

Under steady conditions the external disturbance force1198791= 0 there exist

119888= 119910119888= 0

119888= 119910119888= 0 and 119909

119888= 119910119888= 0

and the balance equation can be obtained as follows

11989611199091198880+ 119865119909(1199091198880 0 2119910

1198880 0) = 0

11989621199101198880+ 119865119910(1199091198880 0 2119910

1198880 0) = 0

(27)

Substituting (27) into (26) (26) can be expressed as

1198981119888+ 1198881119888+ 1198961119909119888+ Δ119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962119910119888+ Δ119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(28)

Shock and Vibration 5

k2c2

k1

k4

k3

c1

c3

c4

m1

m2

T2

T1

Fx

Fy

yc

yc

xc

xc

Figure 3The vertical-horizontal coupling dynamicmodel of rollingmill rolls

Substitute (23) and (27) into (28) and set

1205962

1=(1198961+ 1198861)

1198981

1205721=(1198881+ 1198862)

1198981

1205731=

1198863

1198981

1205741=

1198864

1198981

1205781=81198865

1198981

1205891=81198866

1198981

1205962

2=(1198962+ 1198873)

1198981

1205722=(1198882+ 1198874)

1198981

1205732=

1198871

1198981

1205742=1198872

119898 1

1205782=81198875

119898 1 120589

2=81198876

1198981

119879 =1198791

1198981

(29)

Equation (28) can be rewritten as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888+ 12057811199093

119888+ 12058911199103

119888= 0

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888+ 12057821199093

119888+ 12058921199103

119888= 119879

(30)

Equation (28) is vertical-horizontal coupling dynamicequation of mill rolls under vibration conditions where 120573 120574120589 are coupling coefficients

4 The Resonance Characteristics of Equation

Assuming that the external disturbance119879 = 120576119865 cos120596119905 and thesystem is a weak nonlinear system (30) can expressed as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888= minus120576 (120578

11199093

119888+ 12058911199103

119888)

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888

= minus120576 (12057821199093

119888+ 12058921199103

119888+ 119865 cos120596119905)

(31)

By using multiple scales method one has

119879119899= 120576119899

119905 119899 = 0 1

dd119905

= 1198630+ 1205761198631

d2

d1199052= 1198632

0+ 2120576119863

01198631+ 1205762

(1198632

1+ 211986301198631) + sdot sdot sdot

(32)

where119863119899is defined as 120597120597119879

119899and 119899 = 0 1

Set (31) which has solution as follows119909119888= 1199090(1198790 1198791) + 120576119909

1(1198790 1198791) + sdot sdot sdot

119910119888= 1199100(1198790 1198791) + 120576119910

1(1198790 1198791) + sdot sdot sdot

(33)

Substituting (32) and (33) into (31) and separating termsof each order of 120576 one has

1198632

01199090+ 1205962

11199090= 0

1198632

01199100+ 1205962

21199100= 0

(34)

1198632

01199091+ 1205962

11199091= minus 2119863

011986311199090minus 120572111986301199090

minus 12057311199100minus 120574111986301199100minus 12057811199093

0minus 12058911199103

0

1198632

01199101+ 1205962

21199101= minus 2119863

011986311199100minus 120572211986301199100

minus 12057321199090minus 120574211986301199090minus 12057821199093

0minus 12058921199103

0minus 119865 cos120596119905

(35)

Set the solution of (34) as

1199090= 119860 (119879

1) 11989011989412059611198790 + cc 119910

0= 119861 (119879

1) 11989011989412059621198790 + cc (36)

where cc represents complex conjugate of former term and119860(1198791) and 119861(119879

1) are undetermined complex function

Substituting (36) into (35) the following equation can beexpressed as

1198632

01199091+ 1205962

11199091= (minus2119894120596

11198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

) 11989011989412059611198790

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 11989011989412059621198790

minus 12057811198603

119890311989412059611198790 minus 12058911198613

119890311989412059621198790 + cc

1198632

01199101+ 1205962

21199101= (minus2119894120596

21198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

) 11989011989412059621198790

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059611198790

minus 12058921198613

119890311989412059621198790 minus 12057821198603

119890311989412059611198790 +

1198651198901198941205961198790

2+ cc(37)

6 Shock and Vibration

41 The Analysis of Main Resonance In the case of main res-onance set 120596 = 120596

2+ 120576120590 and eliminating secular term of (37)

one can obtain

minus211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

= 0

minus211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

+1198651198901198941205901198791

2= 0

(38)

The polar coordinate form of 119860 and 119861 in (36) is intro-duced as follows

119860 =1

2119886 (1198791) 1198901198941205931(1198791)

119861 =1

2119887 (1198791) 1198901198941205932(1198791)

(39)

By substituting (39) into (38) and separating the real andimaginary parts the average equation of coupling system canbe obtained as follows

119886 = minus1

21205721119886

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

= minus1

21205722119887 +

119865

21205962

sin 120579

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 120579

(40)

where 120579 = 1205901198791minus1205932 In the steady state existing 119886 = = 0 and

1205792= 0 and eliminating 120579

2from (40) then the amplitude fre-

quency response equation of the system can be written as

9

161205892

21198876

+ 3120596212059012058921198874

+ 1205962

2(1205722

2+ 41205902

) 1198872

minus 1198652

= 0 (41)

42 The Analysis of Inner Resonance Assuming that 1205961=

1205962+1205761205901and 120596 = 120596

2+120576120590 in order to solve the secular term of

(37) 119860 and 119861must meet conditions as follows

minus 211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 119890minus11989412059011198791 = 0

minus 211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059011198791 =

minus1198651198901198941205901198791

2

(42)

Substituting (39) into (42) the average equation can beobtained under the polar coordinate that is

119886 = minus1

21205721119886 minus

2

21205961

[(3

412058911198872

+ 1205731) sin 120579

1+ 12059621205741cos 1205791]

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

+119887

21205961

[(3

412058911198872

+ 1205731) cos 120579

1minus 12059621205741sin 1205791]

= minus1

21205722119887 +

1198650

21205962

sin 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) sin 120579

1minus 12059611205742cos 1205791]

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) cos 120579

1+ 12059611205742sin 1205791]

(43)

where 1205791= 1205932minus 1205931minus 12059011198791and 1205792= 1205901198791minus 1205932

When the system has a periodic motion (43) will exist119886 = = 120579

1= 1205792= 0 eliminate 120579

1and 1205792from (43) and then

the frequency response equation of the coupling system canbe obtained as

1205962

11205722

11198862

+ 41205962

11198662

= 1198872

119872 (44)

(3

412057821198863

+ 1205732119886)

2

+ (21205962120590119887 +

3

412058921198873

)

2

+ 1205962

11205742

21198862

+ 1205962

21205722

21198872

+1205961119886

119872(21205962120590 +

3

412058921198872

)

times (21205721119886119885 minus 119866119873) minus

120596112059621205722119886

119872(21205721119886119873 + 119866119885) = 119865

2

(45)

where

119872 = minus1205962

21205742

1+ (

3

412058911198872

+ 1205731)

2

119873 = (3

412058911198872

+ 1205731)(

3

412057821198862

+ 1205732) minus 1205961120596212057411205742

119885 = minus12059621205741(3

412057821198862

+ 1205732) minus 12059611205742(3

412058911198872

+ 1205731)

119866 = (120590 minus 1205901) 119886 +

3

81205961

12057811198863

(46)

5 Numerical Experiments

Taking the 1780 rolling mills of Chengde Steel Co as anexample the parameters of this mill are listed as follows

ℎ1= 00141m ℎ

0= 00082m 119898 = 144 119905 V

119877= 25ms

120583 = 026 120591119887= 38Mpa 120591

119891= 55Mpa 119877 = 042m 120575 =

30Mpa 1198881= 2times10

5Nsdotsm 1198961= 201times10

11Nm 1198962= 208times

1011Nm and 119888

2= 865 times 10

5NsdotsmParameters of rolling force can be listed as follows 120576 =

001 1198861= 58 times 10

6Nm 1198862= 146 times 10

8Nsdotsm 1198863=

2136Nm 1198864= minus1131Nsdotsm 120576119886

5= 4 times 10

6Nm3 1205761198866=

minus747 times 1011Nm3 119887

1= 6978 times 10

7Nm 1198872= minus2593Nsdotsm

1198873= minus216 times 10

9Nm 1198874= 14 times 10

4Nsdotsm 1205761198875= 265 times

109Nm3 and 120576119887

6= minus37 times 10

15Nm3Figures 4sim6 show the curve of main resonance amplitude

frequency of rolling mill under different parametersIn Figure 4 the main resonance amplitude-frequency

response curves for several values of nonlinear stiffness 1198873are

illustrated by (40) It can be seen that the nonlinear stiffness

Shock and Vibration 7

0 5 10 15 200

02

04

06

08

1

12

minus20 minus15 minus10 minus5

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b3 = minus216 times 109 Nm

b3 = minus27 times 1010 Nm

b3 = minus51 times 1010 Nm

Figure 4 Main resonance amplitude-frequency curve of differentnonlinear stiffness 119887

3

1198873directly affects the vertical natural frequency of the rolling

millThe natural frequency decreases with the decrease of thestiffness 119887

3 and themain resonance amplitude becomes larger

and the backbone of rolling mill curve deviates toward rightsimultaneously

In Figure 5 themain resonance amplitude-frequency res-ponse curves for different values of parameter 119888

2are illus-

trated by (44) With the increasing of the parameter 1198882 the

resonance amplitude of vibration decreasesFigure 6 shows the curve of the main resonance ampli-

tude frequency in coupling rolling mill system for differentnonlinear parameter 119887

6 It can be seen that with the decrease

of 1198876 the frequency response curve deviates toward right and

the jumpphenomenonbecomesmore obviousWhen the dis-turbance frequency 120590 changes negative to positive the ampli-tude changes according to 1-2-3-5 route and jumps in 3-5when the disturbance frequency 120590 is changed from positiveto negative the amplitude changes according to 5-4-2 routeand jumps in 4-2 which will lead to the jump phenomenon

In Figure 7 it can be seen that when disturbance ampli-tude 120576119865 is small value the frequency response curve is singlevalue of system With the increase of 120576119865 the main resonanceamplitude increases gradually and the resonance point ofcoupling system shifts right and a clear jump phenomenonarises

Figures 8 and 9 show the curves of inner resonanceamplitude-frequency under different parameters in horizon-tal and vertical directions respectively It can be seen that thesystem will raise resonance when disturb frequency is near toor equal to natural frequency 120596

1or 1205962 and it has two reso-

nance zones in coupling systemIn Figure 8 when 120576119865 = 03MN the curve in horizontal

direction has two resonance points and the result is uniqueand stabile With the increase of disturb amplitude 120576119865 when120576119865 = 05MN the right resonance zone becomes bend toright and the jump phenomenon arises in Figure 8(b) andthen the system is instable

In Figure 9 the change of tendency of curve in verticaldirection is similar to the curve in horizontal direction

0 20 40 600

01

02

03

04

05

06

07

08

minus40 minus20

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

c2 = 865 times 105 Nmiddotsm

c2 = 12 times 106 Nmiddotsm

c2 = 18 times 106 Nmiddotsm

Figure 5 Main resonance amplitude frequency curve of differentstructural damping 119888

2

0 10 20 30 400

01

02

03

04

05

06

07

08

09

minus30 minus20 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b6 = minus744 times 1016 Nm3

b6 = minus21 times 1016 Nm3

b6 = minus37 times 1017 Nm3

Figure 6 Main resonance amplitude frequency curve of differentnonlinear stiffness 119887

6

0 10 20 30 40 500

01

02

03

04

05

06

07

08

09

minus20minus30minus40minus50 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

120576F = 05MN

120576F = 08MN

120576F = 02MN

Figure 7 Curve of main resonance amplitude frequency withdifferent disturb amplitude 120576119865

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Shock and Vibration 3

Then the speed V119909at any arbitrary position can be

expressed as

V119909=V10158401ℎ1minus Δ

ℎ119909

(11)

When the horizontal component of surface speed of roll isequal to (11) namely

V119909=V119877

119877

radic1198772 minus (119909 minus 119909119888)2

(12)

at the moment the position 119909 is the position of neutral point119909119899in (12) Due to119877 ≫ (119909minus119909

119888) and |119909minus119909

119888| ≪ 1 and neglecting

high-order item (119909 minus 119909119888)2 the neutral point can be derived as

119909119899= 1199091minus

(ℎ1minus ℎ2)radic(41198772 minus 2) (1198622 minus 1)

81198772 minus 1198622

(13)

where

119862 = V119877ℎ2minus V10158401ℎ1+1

21(ℎ1+ ℎ2) + 1199091119910119888 (14)

22 Nonlinear Dynamic Rolling Force in Horizontal andVertical Direction According to slabmethod [10] take a sliceof the strip in Figure 2

Based on force balance theory in deformation zone byVon Karman [10] the force balance expression in horizontaldirection can be expressed as

119889ℎ119909

119889119909(119875 + 120591

119909) + ℎ119909

119889120591119909

119889119909plusmn 2119865120583= 0 (15)

where 119865120583= 120583120575 when 119909 lt 119909

119899 take the negative and when

119909 gt 119909119899 take the positive

By taking account of the assumption of homogeneousdeformation [11] the distribution of stress can be written byvon Mises yield criterion as follows

119889120591119909

119889119909=2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877) (16)

Integrating (16) the tension 120591119909can be express as

120591119909= 120591119887+ int

119909

1199091

2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877)119889119909 (17)

The unit rolling force by (17) can be expressed as

119875 (119909) = 2120575 minus [120591119887+ int

119909

1199091

2120575

ℎ119909

(∓120583 minus2 (119909 minus 119909

119888)

119877)119889119909] (18)

The rolling force in horizontal and vertical direction canbe obtained as follows

119865119909= minusint

1199091

1199092

119875 (119909) tan 120579 119889119909 + int

1199091

1199092

∓120583120575 119889119909

119865119910= int

1199091

1199092

119875 (119909) 119889119909 + int

1199091

1199092

∓120583120575 tan 120579 119889119909(19)

where

tan 120579 =119909 minus 119909119888

radic1198772 minus (119909 minus 119909119888)2

(20)

In (19) integrating zone is composed of two sectionsnamely 119909

2sim 119909119899and 119909

119899sim 1199091 Integrating (19) we obtained

119865119909= minus 120583120575ℎ

2radic

119877

ℎ0+ 2119910119888

[2tanminus1 (119909119899minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)

minustanminus1 (1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)]

+120591119887

2(ℎ1minus ℎ2) minus 120575ℎ

2ln ℎ1

ℎ2

119865119910= [2120575 ln(ℎ1

ℎ2

) minus 2120575 minus 120591119887] (1199091minus119909119888)

+ 4120575radic119877ℎ0+ 2119877119910

119888tanminus1 (

1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)

+ 2120583120575radic119877

ℎ0+ 2119910119888

(1199091minus119909119888)

times [2tanminus1 (119909119899minus 119909119888

radic119877ℎ0+ 2119877119910

119888

) minus tanminus1 (1199091minus 119909119888

radic119877ℎ0+ 2119877119910

119888

)]

+ 120583120575119877 ln(ℎ1ℎ2

ℎ2119899

)

(21)

3 The Vertical-Horizontal CouplingDynamic Equation of Mill Rolls

Set 1199091198880

and 1199101198880

which are the balance points of rolls in thehorizontal and vertical direction respectively Under steadyconditions

1198880= 0 and 119910

1198880= 0 by using Taylor formula (21)

can be expressed as

119865119909(119909119888 119888 119910119888 119910119888) = 119865119909(1199091198880 0 1199101198880 0) + Δ119865

119909(119909119888 119888 119910119888 119910119888)

119865119910(119909119888 119888 119910119888 119910119888) = 119865119910(1199091198880 0 1199101198880 0) + Δ119865

119910(119909119888 119888 119910119888 119910119888)

(22)

where 119865(1199091198880 0 1199101198880 0) is rolling force when there is no vibra-

tion and Δ119865(119909119888 119888 119910119888 119910119888) is dynamic parts of rolling force

because too many parameters for simplify the calculationtake the parts of first and third order as follows

Δ119865119909(119909119888 119888 119910119888 119910119888)

= 1198861119909119888+ 1198862119888+ 1198863119910119888+ 1198864119910119888+ 11988651199093

119888+ 11988661199103

119888

Δ119865119910(119909119888 119888 119910119888 119910119888)

= 1198871119909119888+ 1198872119888+ 1198873119910119888+ 1198874119910119888+ 11988751199093

119888+ 11988761199103

119888

(23)

4 Shock and Vibration

hx

120591x

F120583

F120583

dx

P

P

hx minus dhx

120591x minus d120591x

Figure 2 The pressure diagram of strip

where

1198861=

120597

120597119909119888

119865119909(1199091198880 0 1199101198880 0)

1198871=

120597

120597119909119888

119865119910(1199091198880 0 1199101198880 0)

1198862=

120597

120597119888

119865119909(1199091198880 0 1199101198880 0)

1198872=

120597

120597119888

119865119910(1199091198880 0 1199101198880 0)

1198863=

120597

120597119910119888

119865119909(1199091198880 0 1199101198880 0)

1198873=

120597

120597119910119888

119865119910(1199091198880 0 1199101198880 0)

1198864=

120597

120597 119910119888

119865119909(1199091198880 0 1199101198880 0)

1198874=

120597

120597 119910119888

119865119910(1199091198880 0 1199101198880 0)

1198865=1

6

1205973

1205971199093119888

119865119909(1199091198880 0 1199101198880 0)

1198875=1

6

1205973

1205971199093119888

119865119910(1199091198880 0 1199101198880 0)

1198866=1

6

1205973

1205971199103119888

119865119909(1199091198880 0 1199101198880 0)

1198876=1

6

1205973

1205971199103119888

119865119910(1199091198880 0 1199101198880 0)

(24)

Based on the assumption that the mass of working rollsare much smaller than that of backup rolls the mass of the

working rolls may be neglected [6] The vertical-horizontalcoupling nonlinear vibration model of rolling mill with non-linear dynamic rolling force is illustrated in Figure 3

The dynamic equation in Figure 3 can be written as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198791

1198982119888+ 1198883119888+ 1198964(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

minus1198982119910119888minus 1198884119910119888minus 1198964(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198792

(25)

Assuming that the structure of rolling mill and vibrationare symmetrical in relation to the rolled strip [6] then thereexist 119896

1= 1198963 1198962= 1198964 1198881= 1198883 1198882= 11988841198981= 1198982 and119879

1= minus1198792

and (25) can be simplified as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(26)

Under steady conditions the external disturbance force1198791= 0 there exist

119888= 119910119888= 0

119888= 119910119888= 0 and 119909

119888= 119910119888= 0

and the balance equation can be obtained as follows

11989611199091198880+ 119865119909(1199091198880 0 2119910

1198880 0) = 0

11989621199101198880+ 119865119910(1199091198880 0 2119910

1198880 0) = 0

(27)

Substituting (27) into (26) (26) can be expressed as

1198981119888+ 1198881119888+ 1198961119909119888+ Δ119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962119910119888+ Δ119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(28)

Shock and Vibration 5

k2c2

k1

k4

k3

c1

c3

c4

m1

m2

T2

T1

Fx

Fy

yc

yc

xc

xc

Figure 3The vertical-horizontal coupling dynamicmodel of rollingmill rolls

Substitute (23) and (27) into (28) and set

1205962

1=(1198961+ 1198861)

1198981

1205721=(1198881+ 1198862)

1198981

1205731=

1198863

1198981

1205741=

1198864

1198981

1205781=81198865

1198981

1205891=81198866

1198981

1205962

2=(1198962+ 1198873)

1198981

1205722=(1198882+ 1198874)

1198981

1205732=

1198871

1198981

1205742=1198872

119898 1

1205782=81198875

119898 1 120589

2=81198876

1198981

119879 =1198791

1198981

(29)

Equation (28) can be rewritten as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888+ 12057811199093

119888+ 12058911199103

119888= 0

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888+ 12057821199093

119888+ 12058921199103

119888= 119879

(30)

Equation (28) is vertical-horizontal coupling dynamicequation of mill rolls under vibration conditions where 120573 120574120589 are coupling coefficients

4 The Resonance Characteristics of Equation

Assuming that the external disturbance119879 = 120576119865 cos120596119905 and thesystem is a weak nonlinear system (30) can expressed as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888= minus120576 (120578

11199093

119888+ 12058911199103

119888)

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888

= minus120576 (12057821199093

119888+ 12058921199103

119888+ 119865 cos120596119905)

(31)

By using multiple scales method one has

119879119899= 120576119899

119905 119899 = 0 1

dd119905

= 1198630+ 1205761198631

d2

d1199052= 1198632

0+ 2120576119863

01198631+ 1205762

(1198632

1+ 211986301198631) + sdot sdot sdot

(32)

where119863119899is defined as 120597120597119879

119899and 119899 = 0 1

Set (31) which has solution as follows119909119888= 1199090(1198790 1198791) + 120576119909

1(1198790 1198791) + sdot sdot sdot

119910119888= 1199100(1198790 1198791) + 120576119910

1(1198790 1198791) + sdot sdot sdot

(33)

Substituting (32) and (33) into (31) and separating termsof each order of 120576 one has

1198632

01199090+ 1205962

11199090= 0

1198632

01199100+ 1205962

21199100= 0

(34)

1198632

01199091+ 1205962

11199091= minus 2119863

011986311199090minus 120572111986301199090

minus 12057311199100minus 120574111986301199100minus 12057811199093

0minus 12058911199103

0

1198632

01199101+ 1205962

21199101= minus 2119863

011986311199100minus 120572211986301199100

minus 12057321199090minus 120574211986301199090minus 12057821199093

0minus 12058921199103

0minus 119865 cos120596119905

(35)

Set the solution of (34) as

1199090= 119860 (119879

1) 11989011989412059611198790 + cc 119910

0= 119861 (119879

1) 11989011989412059621198790 + cc (36)

where cc represents complex conjugate of former term and119860(1198791) and 119861(119879

1) are undetermined complex function

Substituting (36) into (35) the following equation can beexpressed as

1198632

01199091+ 1205962

11199091= (minus2119894120596

11198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

) 11989011989412059611198790

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 11989011989412059621198790

minus 12057811198603

119890311989412059611198790 minus 12058911198613

119890311989412059621198790 + cc

1198632

01199101+ 1205962

21199101= (minus2119894120596

21198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

) 11989011989412059621198790

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059611198790

minus 12058921198613

119890311989412059621198790 minus 12057821198603

119890311989412059611198790 +

1198651198901198941205961198790

2+ cc(37)

6 Shock and Vibration

41 The Analysis of Main Resonance In the case of main res-onance set 120596 = 120596

2+ 120576120590 and eliminating secular term of (37)

one can obtain

minus211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

= 0

minus211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

+1198651198901198941205901198791

2= 0

(38)

The polar coordinate form of 119860 and 119861 in (36) is intro-duced as follows

119860 =1

2119886 (1198791) 1198901198941205931(1198791)

119861 =1

2119887 (1198791) 1198901198941205932(1198791)

(39)

By substituting (39) into (38) and separating the real andimaginary parts the average equation of coupling system canbe obtained as follows

119886 = minus1

21205721119886

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

= minus1

21205722119887 +

119865

21205962

sin 120579

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 120579

(40)

where 120579 = 1205901198791minus1205932 In the steady state existing 119886 = = 0 and

1205792= 0 and eliminating 120579

2from (40) then the amplitude fre-

quency response equation of the system can be written as

9

161205892

21198876

+ 3120596212059012058921198874

+ 1205962

2(1205722

2+ 41205902

) 1198872

minus 1198652

= 0 (41)

42 The Analysis of Inner Resonance Assuming that 1205961=

1205962+1205761205901and 120596 = 120596

2+120576120590 in order to solve the secular term of

(37) 119860 and 119861must meet conditions as follows

minus 211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 119890minus11989412059011198791 = 0

minus 211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059011198791 =

minus1198651198901198941205901198791

2

(42)

Substituting (39) into (42) the average equation can beobtained under the polar coordinate that is

119886 = minus1

21205721119886 minus

2

21205961

[(3

412058911198872

+ 1205731) sin 120579

1+ 12059621205741cos 1205791]

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

+119887

21205961

[(3

412058911198872

+ 1205731) cos 120579

1minus 12059621205741sin 1205791]

= minus1

21205722119887 +

1198650

21205962

sin 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) sin 120579

1minus 12059611205742cos 1205791]

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) cos 120579

1+ 12059611205742sin 1205791]

(43)

where 1205791= 1205932minus 1205931minus 12059011198791and 1205792= 1205901198791minus 1205932

When the system has a periodic motion (43) will exist119886 = = 120579

1= 1205792= 0 eliminate 120579

1and 1205792from (43) and then

the frequency response equation of the coupling system canbe obtained as

1205962

11205722

11198862

+ 41205962

11198662

= 1198872

119872 (44)

(3

412057821198863

+ 1205732119886)

2

+ (21205962120590119887 +

3

412058921198873

)

2

+ 1205962

11205742

21198862

+ 1205962

21205722

21198872

+1205961119886

119872(21205962120590 +

3

412058921198872

)

times (21205721119886119885 minus 119866119873) minus

120596112059621205722119886

119872(21205721119886119873 + 119866119885) = 119865

2

(45)

where

119872 = minus1205962

21205742

1+ (

3

412058911198872

+ 1205731)

2

119873 = (3

412058911198872

+ 1205731)(

3

412057821198862

+ 1205732) minus 1205961120596212057411205742

119885 = minus12059621205741(3

412057821198862

+ 1205732) minus 12059611205742(3

412058911198872

+ 1205731)

119866 = (120590 minus 1205901) 119886 +

3

81205961

12057811198863

(46)

5 Numerical Experiments

Taking the 1780 rolling mills of Chengde Steel Co as anexample the parameters of this mill are listed as follows

ℎ1= 00141m ℎ

0= 00082m 119898 = 144 119905 V

119877= 25ms

120583 = 026 120591119887= 38Mpa 120591

119891= 55Mpa 119877 = 042m 120575 =

30Mpa 1198881= 2times10

5Nsdotsm 1198961= 201times10

11Nm 1198962= 208times

1011Nm and 119888

2= 865 times 10

5NsdotsmParameters of rolling force can be listed as follows 120576 =

001 1198861= 58 times 10

6Nm 1198862= 146 times 10

8Nsdotsm 1198863=

2136Nm 1198864= minus1131Nsdotsm 120576119886

5= 4 times 10

6Nm3 1205761198866=

minus747 times 1011Nm3 119887

1= 6978 times 10

7Nm 1198872= minus2593Nsdotsm

1198873= minus216 times 10

9Nm 1198874= 14 times 10

4Nsdotsm 1205761198875= 265 times

109Nm3 and 120576119887

6= minus37 times 10

15Nm3Figures 4sim6 show the curve of main resonance amplitude

frequency of rolling mill under different parametersIn Figure 4 the main resonance amplitude-frequency

response curves for several values of nonlinear stiffness 1198873are

illustrated by (40) It can be seen that the nonlinear stiffness

Shock and Vibration 7

0 5 10 15 200

02

04

06

08

1

12

minus20 minus15 minus10 minus5

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b3 = minus216 times 109 Nm

b3 = minus27 times 1010 Nm

b3 = minus51 times 1010 Nm

Figure 4 Main resonance amplitude-frequency curve of differentnonlinear stiffness 119887

3

1198873directly affects the vertical natural frequency of the rolling

millThe natural frequency decreases with the decrease of thestiffness 119887

3 and themain resonance amplitude becomes larger

and the backbone of rolling mill curve deviates toward rightsimultaneously

In Figure 5 themain resonance amplitude-frequency res-ponse curves for different values of parameter 119888

2are illus-

trated by (44) With the increasing of the parameter 1198882 the

resonance amplitude of vibration decreasesFigure 6 shows the curve of the main resonance ampli-

tude frequency in coupling rolling mill system for differentnonlinear parameter 119887

6 It can be seen that with the decrease

of 1198876 the frequency response curve deviates toward right and

the jumpphenomenonbecomesmore obviousWhen the dis-turbance frequency 120590 changes negative to positive the ampli-tude changes according to 1-2-3-5 route and jumps in 3-5when the disturbance frequency 120590 is changed from positiveto negative the amplitude changes according to 5-4-2 routeand jumps in 4-2 which will lead to the jump phenomenon

In Figure 7 it can be seen that when disturbance ampli-tude 120576119865 is small value the frequency response curve is singlevalue of system With the increase of 120576119865 the main resonanceamplitude increases gradually and the resonance point ofcoupling system shifts right and a clear jump phenomenonarises

Figures 8 and 9 show the curves of inner resonanceamplitude-frequency under different parameters in horizon-tal and vertical directions respectively It can be seen that thesystem will raise resonance when disturb frequency is near toor equal to natural frequency 120596

1or 1205962 and it has two reso-

nance zones in coupling systemIn Figure 8 when 120576119865 = 03MN the curve in horizontal

direction has two resonance points and the result is uniqueand stabile With the increase of disturb amplitude 120576119865 when120576119865 = 05MN the right resonance zone becomes bend toright and the jump phenomenon arises in Figure 8(b) andthen the system is instable

In Figure 9 the change of tendency of curve in verticaldirection is similar to the curve in horizontal direction

0 20 40 600

01

02

03

04

05

06

07

08

minus40 minus20

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

c2 = 865 times 105 Nmiddotsm

c2 = 12 times 106 Nmiddotsm

c2 = 18 times 106 Nmiddotsm

Figure 5 Main resonance amplitude frequency curve of differentstructural damping 119888

2

0 10 20 30 400

01

02

03

04

05

06

07

08

09

minus30 minus20 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b6 = minus744 times 1016 Nm3

b6 = minus21 times 1016 Nm3

b6 = minus37 times 1017 Nm3

Figure 6 Main resonance amplitude frequency curve of differentnonlinear stiffness 119887

6

0 10 20 30 40 500

01

02

03

04

05

06

07

08

09

minus20minus30minus40minus50 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

120576F = 05MN

120576F = 08MN

120576F = 02MN

Figure 7 Curve of main resonance amplitude frequency withdifferent disturb amplitude 120576119865

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

4 Shock and Vibration

hx

120591x

F120583

F120583

dx

P

P

hx minus dhx

120591x minus d120591x

Figure 2 The pressure diagram of strip

where

1198861=

120597

120597119909119888

119865119909(1199091198880 0 1199101198880 0)

1198871=

120597

120597119909119888

119865119910(1199091198880 0 1199101198880 0)

1198862=

120597

120597119888

119865119909(1199091198880 0 1199101198880 0)

1198872=

120597

120597119888

119865119910(1199091198880 0 1199101198880 0)

1198863=

120597

120597119910119888

119865119909(1199091198880 0 1199101198880 0)

1198873=

120597

120597119910119888

119865119910(1199091198880 0 1199101198880 0)

1198864=

120597

120597 119910119888

119865119909(1199091198880 0 1199101198880 0)

1198874=

120597

120597 119910119888

119865119910(1199091198880 0 1199101198880 0)

1198865=1

6

1205973

1205971199093119888

119865119909(1199091198880 0 1199101198880 0)

1198875=1

6

1205973

1205971199093119888

119865119910(1199091198880 0 1199101198880 0)

1198866=1

6

1205973

1205971199103119888

119865119909(1199091198880 0 1199101198880 0)

1198876=1

6

1205973

1205971199103119888

119865119910(1199091198880 0 1199101198880 0)

(24)

Based on the assumption that the mass of working rollsare much smaller than that of backup rolls the mass of the

working rolls may be neglected [6] The vertical-horizontalcoupling nonlinear vibration model of rolling mill with non-linear dynamic rolling force is illustrated in Figure 3

The dynamic equation in Figure 3 can be written as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198791

1198982119888+ 1198883119888+ 1198964(119909119888+ 1199091198880) + 119865119909(119909119888 119888 119910119888 119910119888) = 0

minus1198982119910119888minus 1198884119910119888minus 1198964(119910119888+ 1199101198880) + 119865119910(119909119888 119888 119910119888 119910119888) = 1198792

(25)

Assuming that the structure of rolling mill and vibrationare symmetrical in relation to the rolled strip [6] then thereexist 119896

1= 1198963 1198962= 1198964 1198881= 1198883 1198882= 11988841198981= 1198982 and119879

1= minus1198792

and (25) can be simplified as

1198981119888+ 1198881119888+ 1198961(119909119888+ 1199091198880) + 119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962(119910119888+ 1199101198880) + 119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(26)

Under steady conditions the external disturbance force1198791= 0 there exist

119888= 119910119888= 0

119888= 119910119888= 0 and 119909

119888= 119910119888= 0

and the balance equation can be obtained as follows

11989611199091198880+ 119865119909(1199091198880 0 2119910

1198880 0) = 0

11989621199101198880+ 119865119910(1199091198880 0 2119910

1198880 0) = 0

(27)

Substituting (27) into (26) (26) can be expressed as

1198981119888+ 1198881119888+ 1198961119909119888+ Δ119865119909(119909119888 119888 2119910119888 2 119910119888) = 0

1198981119910119888+ 1198882119910119888+ 1198962119910119888+ Δ119865119910(119909119888 119888 2119910119888 2 119910119888) = 1198791

(28)

Shock and Vibration 5

k2c2

k1

k4

k3

c1

c3

c4

m1

m2

T2

T1

Fx

Fy

yc

yc

xc

xc

Figure 3The vertical-horizontal coupling dynamicmodel of rollingmill rolls

Substitute (23) and (27) into (28) and set

1205962

1=(1198961+ 1198861)

1198981

1205721=(1198881+ 1198862)

1198981

1205731=

1198863

1198981

1205741=

1198864

1198981

1205781=81198865

1198981

1205891=81198866

1198981

1205962

2=(1198962+ 1198873)

1198981

1205722=(1198882+ 1198874)

1198981

1205732=

1198871

1198981

1205742=1198872

119898 1

1205782=81198875

119898 1 120589

2=81198876

1198981

119879 =1198791

1198981

(29)

Equation (28) can be rewritten as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888+ 12057811199093

119888+ 12058911199103

119888= 0

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888+ 12057821199093

119888+ 12058921199103

119888= 119879

(30)

Equation (28) is vertical-horizontal coupling dynamicequation of mill rolls under vibration conditions where 120573 120574120589 are coupling coefficients

4 The Resonance Characteristics of Equation

Assuming that the external disturbance119879 = 120576119865 cos120596119905 and thesystem is a weak nonlinear system (30) can expressed as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888= minus120576 (120578

11199093

119888+ 12058911199103

119888)

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888

= minus120576 (12057821199093

119888+ 12058921199103

119888+ 119865 cos120596119905)

(31)

By using multiple scales method one has

119879119899= 120576119899

119905 119899 = 0 1

dd119905

= 1198630+ 1205761198631

d2

d1199052= 1198632

0+ 2120576119863

01198631+ 1205762

(1198632

1+ 211986301198631) + sdot sdot sdot

(32)

where119863119899is defined as 120597120597119879

119899and 119899 = 0 1

Set (31) which has solution as follows119909119888= 1199090(1198790 1198791) + 120576119909

1(1198790 1198791) + sdot sdot sdot

119910119888= 1199100(1198790 1198791) + 120576119910

1(1198790 1198791) + sdot sdot sdot

(33)

Substituting (32) and (33) into (31) and separating termsof each order of 120576 one has

1198632

01199090+ 1205962

11199090= 0

1198632

01199100+ 1205962

21199100= 0

(34)

1198632

01199091+ 1205962

11199091= minus 2119863

011986311199090minus 120572111986301199090

minus 12057311199100minus 120574111986301199100minus 12057811199093

0minus 12058911199103

0

1198632

01199101+ 1205962

21199101= minus 2119863

011986311199100minus 120572211986301199100

minus 12057321199090minus 120574211986301199090minus 12057821199093

0minus 12058921199103

0minus 119865 cos120596119905

(35)

Set the solution of (34) as

1199090= 119860 (119879

1) 11989011989412059611198790 + cc 119910

0= 119861 (119879

1) 11989011989412059621198790 + cc (36)

where cc represents complex conjugate of former term and119860(1198791) and 119861(119879

1) are undetermined complex function

Substituting (36) into (35) the following equation can beexpressed as

1198632

01199091+ 1205962

11199091= (minus2119894120596

11198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

) 11989011989412059611198790

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 11989011989412059621198790

minus 12057811198603

119890311989412059611198790 minus 12058911198613

119890311989412059621198790 + cc

1198632

01199101+ 1205962

21199101= (minus2119894120596

21198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

) 11989011989412059621198790

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059611198790

minus 12058921198613

119890311989412059621198790 minus 12057821198603

119890311989412059611198790 +

1198651198901198941205961198790

2+ cc(37)

6 Shock and Vibration

41 The Analysis of Main Resonance In the case of main res-onance set 120596 = 120596

2+ 120576120590 and eliminating secular term of (37)

one can obtain

minus211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

= 0

minus211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

+1198651198901198941205901198791

2= 0

(38)

The polar coordinate form of 119860 and 119861 in (36) is intro-duced as follows

119860 =1

2119886 (1198791) 1198901198941205931(1198791)

119861 =1

2119887 (1198791) 1198901198941205932(1198791)

(39)

By substituting (39) into (38) and separating the real andimaginary parts the average equation of coupling system canbe obtained as follows

119886 = minus1

21205721119886

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

= minus1

21205722119887 +

119865

21205962

sin 120579

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 120579

(40)

where 120579 = 1205901198791minus1205932 In the steady state existing 119886 = = 0 and

1205792= 0 and eliminating 120579

2from (40) then the amplitude fre-

quency response equation of the system can be written as

9

161205892

21198876

+ 3120596212059012058921198874

+ 1205962

2(1205722

2+ 41205902

) 1198872

minus 1198652

= 0 (41)

42 The Analysis of Inner Resonance Assuming that 1205961=

1205962+1205761205901and 120596 = 120596

2+120576120590 in order to solve the secular term of

(37) 119860 and 119861must meet conditions as follows

minus 211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 119890minus11989412059011198791 = 0

minus 211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059011198791 =

minus1198651198901198941205901198791

2

(42)

Substituting (39) into (42) the average equation can beobtained under the polar coordinate that is

119886 = minus1

21205721119886 minus

2

21205961

[(3

412058911198872

+ 1205731) sin 120579

1+ 12059621205741cos 1205791]

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

+119887

21205961

[(3

412058911198872

+ 1205731) cos 120579

1minus 12059621205741sin 1205791]

= minus1

21205722119887 +

1198650

21205962

sin 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) sin 120579

1minus 12059611205742cos 1205791]

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) cos 120579

1+ 12059611205742sin 1205791]

(43)

where 1205791= 1205932minus 1205931minus 12059011198791and 1205792= 1205901198791minus 1205932

When the system has a periodic motion (43) will exist119886 = = 120579

1= 1205792= 0 eliminate 120579

1and 1205792from (43) and then

the frequency response equation of the coupling system canbe obtained as

1205962

11205722

11198862

+ 41205962

11198662

= 1198872

119872 (44)

(3

412057821198863

+ 1205732119886)

2

+ (21205962120590119887 +

3

412058921198873

)

2

+ 1205962

11205742

21198862

+ 1205962

21205722

21198872

+1205961119886

119872(21205962120590 +

3

412058921198872

)

times (21205721119886119885 minus 119866119873) minus

120596112059621205722119886

119872(21205721119886119873 + 119866119885) = 119865

2

(45)

where

119872 = minus1205962

21205742

1+ (

3

412058911198872

+ 1205731)

2

119873 = (3

412058911198872

+ 1205731)(

3

412057821198862

+ 1205732) minus 1205961120596212057411205742

119885 = minus12059621205741(3

412057821198862

+ 1205732) minus 12059611205742(3

412058911198872

+ 1205731)

119866 = (120590 minus 1205901) 119886 +

3

81205961

12057811198863

(46)

5 Numerical Experiments

Taking the 1780 rolling mills of Chengde Steel Co as anexample the parameters of this mill are listed as follows

ℎ1= 00141m ℎ

0= 00082m 119898 = 144 119905 V

119877= 25ms

120583 = 026 120591119887= 38Mpa 120591

119891= 55Mpa 119877 = 042m 120575 =

30Mpa 1198881= 2times10

5Nsdotsm 1198961= 201times10

11Nm 1198962= 208times

1011Nm and 119888

2= 865 times 10

5NsdotsmParameters of rolling force can be listed as follows 120576 =

001 1198861= 58 times 10

6Nm 1198862= 146 times 10

8Nsdotsm 1198863=

2136Nm 1198864= minus1131Nsdotsm 120576119886

5= 4 times 10

6Nm3 1205761198866=

minus747 times 1011Nm3 119887

1= 6978 times 10

7Nm 1198872= minus2593Nsdotsm

1198873= minus216 times 10

9Nm 1198874= 14 times 10

4Nsdotsm 1205761198875= 265 times

109Nm3 and 120576119887

6= minus37 times 10

15Nm3Figures 4sim6 show the curve of main resonance amplitude

frequency of rolling mill under different parametersIn Figure 4 the main resonance amplitude-frequency

response curves for several values of nonlinear stiffness 1198873are

illustrated by (40) It can be seen that the nonlinear stiffness

Shock and Vibration 7

0 5 10 15 200

02

04

06

08

1

12

minus20 minus15 minus10 minus5

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b3 = minus216 times 109 Nm

b3 = minus27 times 1010 Nm

b3 = minus51 times 1010 Nm

Figure 4 Main resonance amplitude-frequency curve of differentnonlinear stiffness 119887

3

1198873directly affects the vertical natural frequency of the rolling

millThe natural frequency decreases with the decrease of thestiffness 119887

3 and themain resonance amplitude becomes larger

and the backbone of rolling mill curve deviates toward rightsimultaneously

In Figure 5 themain resonance amplitude-frequency res-ponse curves for different values of parameter 119888

2are illus-

trated by (44) With the increasing of the parameter 1198882 the

resonance amplitude of vibration decreasesFigure 6 shows the curve of the main resonance ampli-

tude frequency in coupling rolling mill system for differentnonlinear parameter 119887

6 It can be seen that with the decrease

of 1198876 the frequency response curve deviates toward right and

the jumpphenomenonbecomesmore obviousWhen the dis-turbance frequency 120590 changes negative to positive the ampli-tude changes according to 1-2-3-5 route and jumps in 3-5when the disturbance frequency 120590 is changed from positiveto negative the amplitude changes according to 5-4-2 routeand jumps in 4-2 which will lead to the jump phenomenon

In Figure 7 it can be seen that when disturbance ampli-tude 120576119865 is small value the frequency response curve is singlevalue of system With the increase of 120576119865 the main resonanceamplitude increases gradually and the resonance point ofcoupling system shifts right and a clear jump phenomenonarises

Figures 8 and 9 show the curves of inner resonanceamplitude-frequency under different parameters in horizon-tal and vertical directions respectively It can be seen that thesystem will raise resonance when disturb frequency is near toor equal to natural frequency 120596

1or 1205962 and it has two reso-

nance zones in coupling systemIn Figure 8 when 120576119865 = 03MN the curve in horizontal

direction has two resonance points and the result is uniqueand stabile With the increase of disturb amplitude 120576119865 when120576119865 = 05MN the right resonance zone becomes bend toright and the jump phenomenon arises in Figure 8(b) andthen the system is instable

In Figure 9 the change of tendency of curve in verticaldirection is similar to the curve in horizontal direction

0 20 40 600

01

02

03

04

05

06

07

08

minus40 minus20

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

c2 = 865 times 105 Nmiddotsm

c2 = 12 times 106 Nmiddotsm

c2 = 18 times 106 Nmiddotsm

Figure 5 Main resonance amplitude frequency curve of differentstructural damping 119888

2

0 10 20 30 400

01

02

03

04

05

06

07

08

09

minus30 minus20 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b6 = minus744 times 1016 Nm3

b6 = minus21 times 1016 Nm3

b6 = minus37 times 1017 Nm3

Figure 6 Main resonance amplitude frequency curve of differentnonlinear stiffness 119887

6

0 10 20 30 40 500

01

02

03

04

05

06

07

08

09

minus20minus30minus40minus50 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

120576F = 05MN

120576F = 08MN

120576F = 02MN

Figure 7 Curve of main resonance amplitude frequency withdifferent disturb amplitude 120576119865

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Shock and Vibration 5

k2c2

k1

k4

k3

c1

c3

c4

m1

m2

T2

T1

Fx

Fy

yc

yc

xc

xc

Figure 3The vertical-horizontal coupling dynamicmodel of rollingmill rolls

Substitute (23) and (27) into (28) and set

1205962

1=(1198961+ 1198861)

1198981

1205721=(1198881+ 1198862)

1198981

1205731=

1198863

1198981

1205741=

1198864

1198981

1205781=81198865

1198981

1205891=81198866

1198981

1205962

2=(1198962+ 1198873)

1198981

1205722=(1198882+ 1198874)

1198981

1205732=

1198871

1198981

1205742=1198872

119898 1

1205782=81198875

119898 1 120589

2=81198876

1198981

119879 =1198791

1198981

(29)

Equation (28) can be rewritten as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888+ 12057811199093

119888+ 12058911199103

119888= 0

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888+ 12057821199093

119888+ 12058921199103

119888= 119879

(30)

Equation (28) is vertical-horizontal coupling dynamicequation of mill rolls under vibration conditions where 120573 120574120589 are coupling coefficients

4 The Resonance Characteristics of Equation

Assuming that the external disturbance119879 = 120576119865 cos120596119905 and thesystem is a weak nonlinear system (30) can expressed as

119888+ 1205962

1119909119888+ 1205721119888+ 1205731119910119888+ 1205741119910119888= minus120576 (120578

11199093

119888+ 12058911199103

119888)

119910119888+ 1205962

2119910119888+ 1205722119910119888+ 1205732119909119888+ 1205742119888

= minus120576 (12057821199093

119888+ 12058921199103

119888+ 119865 cos120596119905)

(31)

By using multiple scales method one has

119879119899= 120576119899

119905 119899 = 0 1

dd119905

= 1198630+ 1205761198631

d2

d1199052= 1198632

0+ 2120576119863

01198631+ 1205762

(1198632

1+ 211986301198631) + sdot sdot sdot

(32)

where119863119899is defined as 120597120597119879

119899and 119899 = 0 1

Set (31) which has solution as follows119909119888= 1199090(1198790 1198791) + 120576119909

1(1198790 1198791) + sdot sdot sdot

119910119888= 1199100(1198790 1198791) + 120576119910

1(1198790 1198791) + sdot sdot sdot

(33)

Substituting (32) and (33) into (31) and separating termsof each order of 120576 one has

1198632

01199090+ 1205962

11199090= 0

1198632

01199100+ 1205962

21199100= 0

(34)

1198632

01199091+ 1205962

11199091= minus 2119863

011986311199090minus 120572111986301199090

minus 12057311199100minus 120574111986301199100minus 12057811199093

0minus 12058911199103

0

1198632

01199101+ 1205962

21199101= minus 2119863

011986311199100minus 120572211986301199100

minus 12057321199090minus 120574211986301199090minus 12057821199093

0minus 12058921199103

0minus 119865 cos120596119905

(35)

Set the solution of (34) as

1199090= 119860 (119879

1) 11989011989412059611198790 + cc 119910

0= 119861 (119879

1) 11989011989412059621198790 + cc (36)

where cc represents complex conjugate of former term and119860(1198791) and 119861(119879

1) are undetermined complex function

Substituting (36) into (35) the following equation can beexpressed as

1198632

01199091+ 1205962

11199091= (minus2119894120596

11198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

) 11989011989412059611198790

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 11989011989412059621198790

minus 12057811198603

119890311989412059611198790 minus 12058911198613

119890311989412059621198790 + cc

1198632

01199101+ 1205962

21199101= (minus2119894120596

21198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

) 11989011989412059621198790

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059611198790

minus 12058921198613

119890311989412059621198790 minus 12057821198603

119890311989412059611198790 +

1198651198901198941205961198790

2+ cc(37)

6 Shock and Vibration

41 The Analysis of Main Resonance In the case of main res-onance set 120596 = 120596

2+ 120576120590 and eliminating secular term of (37)

one can obtain

minus211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

= 0

minus211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

+1198651198901198941205901198791

2= 0

(38)

The polar coordinate form of 119860 and 119861 in (36) is intro-duced as follows

119860 =1

2119886 (1198791) 1198901198941205931(1198791)

119861 =1

2119887 (1198791) 1198901198941205932(1198791)

(39)

By substituting (39) into (38) and separating the real andimaginary parts the average equation of coupling system canbe obtained as follows

119886 = minus1

21205721119886

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

= minus1

21205722119887 +

119865

21205962

sin 120579

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 120579

(40)

where 120579 = 1205901198791minus1205932 In the steady state existing 119886 = = 0 and

1205792= 0 and eliminating 120579

2from (40) then the amplitude fre-

quency response equation of the system can be written as

9

161205892

21198876

+ 3120596212059012058921198874

+ 1205962

2(1205722

2+ 41205902

) 1198872

minus 1198652

= 0 (41)

42 The Analysis of Inner Resonance Assuming that 1205961=

1205962+1205761205901and 120596 = 120596

2+120576120590 in order to solve the secular term of

(37) 119860 and 119861must meet conditions as follows

minus 211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 119890minus11989412059011198791 = 0

minus 211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059011198791 =

minus1198651198901198941205901198791

2

(42)

Substituting (39) into (42) the average equation can beobtained under the polar coordinate that is

119886 = minus1

21205721119886 minus

2

21205961

[(3

412058911198872

+ 1205731) sin 120579

1+ 12059621205741cos 1205791]

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

+119887

21205961

[(3

412058911198872

+ 1205731) cos 120579

1minus 12059621205741sin 1205791]

= minus1

21205722119887 +

1198650

21205962

sin 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) sin 120579

1minus 12059611205742cos 1205791]

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) cos 120579

1+ 12059611205742sin 1205791]

(43)

where 1205791= 1205932minus 1205931minus 12059011198791and 1205792= 1205901198791minus 1205932

When the system has a periodic motion (43) will exist119886 = = 120579

1= 1205792= 0 eliminate 120579

1and 1205792from (43) and then

the frequency response equation of the coupling system canbe obtained as

1205962

11205722

11198862

+ 41205962

11198662

= 1198872

119872 (44)

(3

412057821198863

+ 1205732119886)

2

+ (21205962120590119887 +

3

412058921198873

)

2

+ 1205962

11205742

21198862

+ 1205962

21205722

21198872

+1205961119886

119872(21205962120590 +

3

412058921198872

)

times (21205721119886119885 minus 119866119873) minus

120596112059621205722119886

119872(21205721119886119873 + 119866119885) = 119865

2

(45)

where

119872 = minus1205962

21205742

1+ (

3

412058911198872

+ 1205731)

2

119873 = (3

412058911198872

+ 1205731)(

3

412057821198862

+ 1205732) minus 1205961120596212057411205742

119885 = minus12059621205741(3

412057821198862

+ 1205732) minus 12059611205742(3

412058911198872

+ 1205731)

119866 = (120590 minus 1205901) 119886 +

3

81205961

12057811198863

(46)

5 Numerical Experiments

Taking the 1780 rolling mills of Chengde Steel Co as anexample the parameters of this mill are listed as follows

ℎ1= 00141m ℎ

0= 00082m 119898 = 144 119905 V

119877= 25ms

120583 = 026 120591119887= 38Mpa 120591

119891= 55Mpa 119877 = 042m 120575 =

30Mpa 1198881= 2times10

5Nsdotsm 1198961= 201times10

11Nm 1198962= 208times

1011Nm and 119888

2= 865 times 10

5NsdotsmParameters of rolling force can be listed as follows 120576 =

001 1198861= 58 times 10

6Nm 1198862= 146 times 10

8Nsdotsm 1198863=

2136Nm 1198864= minus1131Nsdotsm 120576119886

5= 4 times 10

6Nm3 1205761198866=

minus747 times 1011Nm3 119887

1= 6978 times 10

7Nm 1198872= minus2593Nsdotsm

1198873= minus216 times 10

9Nm 1198874= 14 times 10

4Nsdotsm 1205761198875= 265 times

109Nm3 and 120576119887

6= minus37 times 10

15Nm3Figures 4sim6 show the curve of main resonance amplitude

frequency of rolling mill under different parametersIn Figure 4 the main resonance amplitude-frequency

response curves for several values of nonlinear stiffness 1198873are

illustrated by (40) It can be seen that the nonlinear stiffness

Shock and Vibration 7

0 5 10 15 200

02

04

06

08

1

12

minus20 minus15 minus10 minus5

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b3 = minus216 times 109 Nm

b3 = minus27 times 1010 Nm

b3 = minus51 times 1010 Nm

Figure 4 Main resonance amplitude-frequency curve of differentnonlinear stiffness 119887

3

1198873directly affects the vertical natural frequency of the rolling

millThe natural frequency decreases with the decrease of thestiffness 119887

3 and themain resonance amplitude becomes larger

and the backbone of rolling mill curve deviates toward rightsimultaneously

In Figure 5 themain resonance amplitude-frequency res-ponse curves for different values of parameter 119888

2are illus-

trated by (44) With the increasing of the parameter 1198882 the

resonance amplitude of vibration decreasesFigure 6 shows the curve of the main resonance ampli-

tude frequency in coupling rolling mill system for differentnonlinear parameter 119887

6 It can be seen that with the decrease

of 1198876 the frequency response curve deviates toward right and

the jumpphenomenonbecomesmore obviousWhen the dis-turbance frequency 120590 changes negative to positive the ampli-tude changes according to 1-2-3-5 route and jumps in 3-5when the disturbance frequency 120590 is changed from positiveto negative the amplitude changes according to 5-4-2 routeand jumps in 4-2 which will lead to the jump phenomenon

In Figure 7 it can be seen that when disturbance ampli-tude 120576119865 is small value the frequency response curve is singlevalue of system With the increase of 120576119865 the main resonanceamplitude increases gradually and the resonance point ofcoupling system shifts right and a clear jump phenomenonarises

Figures 8 and 9 show the curves of inner resonanceamplitude-frequency under different parameters in horizon-tal and vertical directions respectively It can be seen that thesystem will raise resonance when disturb frequency is near toor equal to natural frequency 120596

1or 1205962 and it has two reso-

nance zones in coupling systemIn Figure 8 when 120576119865 = 03MN the curve in horizontal

direction has two resonance points and the result is uniqueand stabile With the increase of disturb amplitude 120576119865 when120576119865 = 05MN the right resonance zone becomes bend toright and the jump phenomenon arises in Figure 8(b) andthen the system is instable

In Figure 9 the change of tendency of curve in verticaldirection is similar to the curve in horizontal direction

0 20 40 600

01

02

03

04

05

06

07

08

minus40 minus20

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

c2 = 865 times 105 Nmiddotsm

c2 = 12 times 106 Nmiddotsm

c2 = 18 times 106 Nmiddotsm

Figure 5 Main resonance amplitude frequency curve of differentstructural damping 119888

2

0 10 20 30 400

01

02

03

04

05

06

07

08

09

minus30 minus20 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b6 = minus744 times 1016 Nm3

b6 = minus21 times 1016 Nm3

b6 = minus37 times 1017 Nm3

Figure 6 Main resonance amplitude frequency curve of differentnonlinear stiffness 119887

6

0 10 20 30 40 500

01

02

03

04

05

06

07

08

09

minus20minus30minus40minus50 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

120576F = 05MN

120576F = 08MN

120576F = 02MN

Figure 7 Curve of main resonance amplitude frequency withdifferent disturb amplitude 120576119865

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

6 Shock and Vibration

41 The Analysis of Main Resonance In the case of main res-onance set 120596 = 120596

2+ 120576120590 and eliminating secular term of (37)

one can obtain

minus211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

= 0

minus211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

+1198651198901198941205901198791

2= 0

(38)

The polar coordinate form of 119860 and 119861 in (36) is intro-duced as follows

119860 =1

2119886 (1198791) 1198901198941205931(1198791)

119861 =1

2119887 (1198791) 1198901198941205932(1198791)

(39)

By substituting (39) into (38) and separating the real andimaginary parts the average equation of coupling system canbe obtained as follows

119886 = minus1

21205721119886

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

= minus1

21205722119887 +

119865

21205962

sin 120579

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 120579

(40)

where 120579 = 1205901198791minus1205932 In the steady state existing 119886 = = 0 and

1205792= 0 and eliminating 120579

2from (40) then the amplitude fre-

quency response equation of the system can be written as

9

161205892

21198876

+ 3120596212059012058921198874

+ 1205962

2(1205722

2+ 41205902

) 1198872

minus 1198652

= 0 (41)

42 The Analysis of Inner Resonance Assuming that 1205961=

1205962+1205761205901and 120596 = 120596

2+120576120590 in order to solve the secular term of

(37) 119860 and 119861must meet conditions as follows

minus 211989412059611198631119860 minus 119894120596

11205721119860 minus 3120578

11198602

minus (312058911198612

+ 1205731119861 + 119894120596

21205741119861) 119890minus11989412059011198791 = 0

minus 211989412059621198631119861 minus 119894120596

21205722119861 minus 3120589

21198612

minus (1205732119860 + 119894120596

11205742119860 + 3120578

21198602

) 11989011989412059011198791 =

minus1198651198901198941205901198791

2

(42)

Substituting (39) into (42) the average equation can beobtained under the polar coordinate that is

119886 = minus1

21205721119886 minus

2

21205961

[(3

412058911198872

+ 1205731) sin 120579

1+ 12059621205741cos 1205791]

1198861= (120590 minus 120590

1) 119886 +

3

81205961

12057811198863

+119887

21205961

[(3

412058911198872

+ 1205731) cos 120579

1minus 12059621205741sin 1205791]

= minus1

21205722119887 +

1198650

21205962

sin 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) sin 120579

1minus 12059611205742cos 1205791]

1198872= 120590119887 +

3

81205962

12058921198873

minus119865

21205962

cos 1205792

+119886

21205962

[(3

412057821198862

+ 1205732) cos 120579

1+ 12059611205742sin 1205791]

(43)

where 1205791= 1205932minus 1205931minus 12059011198791and 1205792= 1205901198791minus 1205932

When the system has a periodic motion (43) will exist119886 = = 120579

1= 1205792= 0 eliminate 120579

1and 1205792from (43) and then

the frequency response equation of the coupling system canbe obtained as

1205962

11205722

11198862

+ 41205962

11198662

= 1198872

119872 (44)

(3

412057821198863

+ 1205732119886)

2

+ (21205962120590119887 +

3

412058921198873

)

2

+ 1205962

11205742

21198862

+ 1205962

21205722

21198872

+1205961119886

119872(21205962120590 +

3

412058921198872

)

times (21205721119886119885 minus 119866119873) minus

120596112059621205722119886

119872(21205721119886119873 + 119866119885) = 119865

2

(45)

where

119872 = minus1205962

21205742

1+ (

3

412058911198872

+ 1205731)

2

119873 = (3

412058911198872

+ 1205731)(

3

412057821198862

+ 1205732) minus 1205961120596212057411205742

119885 = minus12059621205741(3

412057821198862

+ 1205732) minus 12059611205742(3

412058911198872

+ 1205731)

119866 = (120590 minus 1205901) 119886 +

3

81205961

12057811198863

(46)

5 Numerical Experiments

Taking the 1780 rolling mills of Chengde Steel Co as anexample the parameters of this mill are listed as follows

ℎ1= 00141m ℎ

0= 00082m 119898 = 144 119905 V

119877= 25ms

120583 = 026 120591119887= 38Mpa 120591

119891= 55Mpa 119877 = 042m 120575 =

30Mpa 1198881= 2times10

5Nsdotsm 1198961= 201times10

11Nm 1198962= 208times

1011Nm and 119888

2= 865 times 10

5NsdotsmParameters of rolling force can be listed as follows 120576 =

001 1198861= 58 times 10

6Nm 1198862= 146 times 10

8Nsdotsm 1198863=

2136Nm 1198864= minus1131Nsdotsm 120576119886

5= 4 times 10

6Nm3 1205761198866=

minus747 times 1011Nm3 119887

1= 6978 times 10

7Nm 1198872= minus2593Nsdotsm

1198873= minus216 times 10

9Nm 1198874= 14 times 10

4Nsdotsm 1205761198875= 265 times

109Nm3 and 120576119887

6= minus37 times 10

15Nm3Figures 4sim6 show the curve of main resonance amplitude

frequency of rolling mill under different parametersIn Figure 4 the main resonance amplitude-frequency

response curves for several values of nonlinear stiffness 1198873are

illustrated by (40) It can be seen that the nonlinear stiffness

Shock and Vibration 7

0 5 10 15 200

02

04

06

08

1

12

minus20 minus15 minus10 minus5

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b3 = minus216 times 109 Nm

b3 = minus27 times 1010 Nm

b3 = minus51 times 1010 Nm

Figure 4 Main resonance amplitude-frequency curve of differentnonlinear stiffness 119887

3

1198873directly affects the vertical natural frequency of the rolling

millThe natural frequency decreases with the decrease of thestiffness 119887

3 and themain resonance amplitude becomes larger

and the backbone of rolling mill curve deviates toward rightsimultaneously

In Figure 5 themain resonance amplitude-frequency res-ponse curves for different values of parameter 119888

2are illus-

trated by (44) With the increasing of the parameter 1198882 the

resonance amplitude of vibration decreasesFigure 6 shows the curve of the main resonance ampli-

tude frequency in coupling rolling mill system for differentnonlinear parameter 119887

6 It can be seen that with the decrease

of 1198876 the frequency response curve deviates toward right and

the jumpphenomenonbecomesmore obviousWhen the dis-turbance frequency 120590 changes negative to positive the ampli-tude changes according to 1-2-3-5 route and jumps in 3-5when the disturbance frequency 120590 is changed from positiveto negative the amplitude changes according to 5-4-2 routeand jumps in 4-2 which will lead to the jump phenomenon

In Figure 7 it can be seen that when disturbance ampli-tude 120576119865 is small value the frequency response curve is singlevalue of system With the increase of 120576119865 the main resonanceamplitude increases gradually and the resonance point ofcoupling system shifts right and a clear jump phenomenonarises

Figures 8 and 9 show the curves of inner resonanceamplitude-frequency under different parameters in horizon-tal and vertical directions respectively It can be seen that thesystem will raise resonance when disturb frequency is near toor equal to natural frequency 120596

1or 1205962 and it has two reso-

nance zones in coupling systemIn Figure 8 when 120576119865 = 03MN the curve in horizontal

direction has two resonance points and the result is uniqueand stabile With the increase of disturb amplitude 120576119865 when120576119865 = 05MN the right resonance zone becomes bend toright and the jump phenomenon arises in Figure 8(b) andthen the system is instable

In Figure 9 the change of tendency of curve in verticaldirection is similar to the curve in horizontal direction

0 20 40 600

01

02

03

04

05

06

07

08

minus40 minus20

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

c2 = 865 times 105 Nmiddotsm

c2 = 12 times 106 Nmiddotsm

c2 = 18 times 106 Nmiddotsm

Figure 5 Main resonance amplitude frequency curve of differentstructural damping 119888

2

0 10 20 30 400

01

02

03

04

05

06

07

08

09

minus30 minus20 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b6 = minus744 times 1016 Nm3

b6 = minus21 times 1016 Nm3

b6 = minus37 times 1017 Nm3

Figure 6 Main resonance amplitude frequency curve of differentnonlinear stiffness 119887

6

0 10 20 30 40 500

01

02

03

04

05

06

07

08

09

minus20minus30minus40minus50 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

120576F = 05MN

120576F = 08MN

120576F = 02MN

Figure 7 Curve of main resonance amplitude frequency withdifferent disturb amplitude 120576119865

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Shock and Vibration 7

0 5 10 15 200

02

04

06

08

1

12

minus20 minus15 minus10 minus5

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b3 = minus216 times 109 Nm

b3 = minus27 times 1010 Nm

b3 = minus51 times 1010 Nm

Figure 4 Main resonance amplitude-frequency curve of differentnonlinear stiffness 119887

3

1198873directly affects the vertical natural frequency of the rolling

millThe natural frequency decreases with the decrease of thestiffness 119887

3 and themain resonance amplitude becomes larger

and the backbone of rolling mill curve deviates toward rightsimultaneously

In Figure 5 themain resonance amplitude-frequency res-ponse curves for different values of parameter 119888

2are illus-

trated by (44) With the increasing of the parameter 1198882 the

resonance amplitude of vibration decreasesFigure 6 shows the curve of the main resonance ampli-

tude frequency in coupling rolling mill system for differentnonlinear parameter 119887

6 It can be seen that with the decrease

of 1198876 the frequency response curve deviates toward right and

the jumpphenomenonbecomesmore obviousWhen the dis-turbance frequency 120590 changes negative to positive the ampli-tude changes according to 1-2-3-5 route and jumps in 3-5when the disturbance frequency 120590 is changed from positiveto negative the amplitude changes according to 5-4-2 routeand jumps in 4-2 which will lead to the jump phenomenon

In Figure 7 it can be seen that when disturbance ampli-tude 120576119865 is small value the frequency response curve is singlevalue of system With the increase of 120576119865 the main resonanceamplitude increases gradually and the resonance point ofcoupling system shifts right and a clear jump phenomenonarises

Figures 8 and 9 show the curves of inner resonanceamplitude-frequency under different parameters in horizon-tal and vertical directions respectively It can be seen that thesystem will raise resonance when disturb frequency is near toor equal to natural frequency 120596

1or 1205962 and it has two reso-

nance zones in coupling systemIn Figure 8 when 120576119865 = 03MN the curve in horizontal

direction has two resonance points and the result is uniqueand stabile With the increase of disturb amplitude 120576119865 when120576119865 = 05MN the right resonance zone becomes bend toright and the jump phenomenon arises in Figure 8(b) andthen the system is instable

In Figure 9 the change of tendency of curve in verticaldirection is similar to the curve in horizontal direction

0 20 40 600

01

02

03

04

05

06

07

08

minus40 minus20

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

c2 = 865 times 105 Nmiddotsm

c2 = 12 times 106 Nmiddotsm

c2 = 18 times 106 Nmiddotsm

Figure 5 Main resonance amplitude frequency curve of differentstructural damping 119888

2

0 10 20 30 400

01

02

03

04

05

06

07

08

09

minus30 minus20 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

b6 = minus744 times 1016 Nm3

b6 = minus21 times 1016 Nm3

b6 = minus37 times 1017 Nm3

Figure 6 Main resonance amplitude frequency curve of differentnonlinear stiffness 119887

6

0 10 20 30 40 500

01

02

03

04

05

06

07

08

09

minus20minus30minus40minus50 minus10

Am

plitu

deb

(mm

)

Disturb frequency 120590 (Hz)

120576F = 05MN

120576F = 08MN

120576F = 02MN

Figure 7 Curve of main resonance amplitude frequency withdifferent disturb amplitude 120576119865

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

8 Shock and Vibration

0 10 20 30 400

01

02

03

04

05

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

1

minus20 minus10

Am

plitu

dea

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 8 Curve of inner resonance amplitude frequency in horizontal direction with disturb amplitude 120576119865

0 10 20 30 400

005

01

015

02

025

03

035

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(a) When 120576119865 = 03MN

0 10 20 30 400

02

04

06

08

minus20 minus10

Am

plitu

deb

(mm

)

Frequency 120590 (Hz)

(b) When 120576119865 = 05MN

Figure 9 Curve of inner resonance amplitude frequency in vertical direction with disturb amplitude 120576119865

05 06 07 08 09 1 11 12002

004

006

008

01

012

014

Vert

ical

vib

ratio

n sp

eed

(mmmiddotsminus

1)

Disturb amplitude 120576F (MN)

Figure 10 Bifurcation characteristics of coupling system with disturb amplitude 120576119865 when 120590 = 50Hz

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Shock and Vibration 9

0 1 2 3

0

05

1

minus1

minus05

minus3 minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(a) Phase diagram

25865 25865 25865 25865 25865 25865

26555

2656

26565

2657

26575

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 11 Periodic motion when 120590 = 50Hz and 120576119865 = 0529MN

0 2 4 6

0

05

1

minus4 minus2minus1

minus05Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

51825 51826 51827 51828 51829

529

53

531

532

533

534

535

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus5

(b) Poincare map

Figure 12 Period-3 motion when 120590 = 50Hz and 120576119865 = 106MN

According to (31) Figure 10 shows the bifurcation dia-gram with the change of disturb parameter 120576119865 in the condi-tion of 120590 = 50Hz It can be seen that the rollingmill may havedifferent motions when it adopts different disturb parameter120576119865 When 120576119865 adopts value from range 047 to 062 the systembecomes periodicmotion and then it becomes chaosmotionWhen 120576119865 adopts value from range 09 to 092 the systembecomes period-2 motionWhen 120576119865 adopts value from range107 to 124 the system becomes period-3 motion

The phase diagrams and Poincare maps are shown inFigures 11sim13 when the system adopts different values of 120576119865in Figure 10

Figure 11 is periodic motion when 120576119865 = 0529MN and itcan be seen that the phase diagram has one closed curve inFigure 11(a) and the Poincare maps have one single point in

Figure 11(b) Figure 12 shows a period-3 motion when 120576119865 =

106MN and it has three single points in Poincare mapFigure 13 illustrates chaos motion when 120576119865 = 045MN

6 Conclusions

(1) The nonlinear rolling force model of rolling mill inthe vertical and horizontal directions is built On thisbasis the dynamic model of nonlinear vertical-hori-zontal coupling vibration model of rolling mill isproposed considering the influence of mill structure

(2) By means of multiple-scale method the amplitude-frequency equations of main resonance and innerresonance of coupling system of rolling mill rollsare carried out The simulation adopting the actual

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

10 Shock and Vibration

0 1 2

0

05

1

minus1

minus05

minus2 minus1

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus3

times10minus5

(a) Phase diagram

33483 33483 33484 33484 33485 33485 3348634348

3435

34352

34354

34356

34358

3436

34362

Vibr

atio

n sp

eedy

(mmmiddotsminus

1)

Vibration displacement y (mm)

times10minus4

times10minus6

(b) Poincare map

Figure 13 Chaotic motion when 120590 = 50Hz and 120576119865 = 045MN

parameters of rolling mill is analyzed It is found thatthe amplitude of vibration increases with an increaseof stiffness and external disturb but the maximumvalue of the main resonance will decrease as theincrease of structure damp when changing nonlinearstiffness jump phenomenon will arise both in mainresonance and in inner resonance so choosing properparameter will restrain resonance vibration of rollingmill

(3) The bifurcation characteristics of vertical-horizontalcoupling system of rolling mill roll are studied andit is found that the system has different motions suchas period motion period-3 motion and chaos andchoosing proper parameters may change the motionstate of rolling mill

Nomenclature

119909 Arbitrary distance from the centerline ofthe rolls

1199091 Distance of the exit plane from thecenterline of the rolls

1199092 Distance of the entry plane from thecenterline of the rolls

119909119899 Distance of the neutral plane from thecenterline of the rolls

119909119888 Variation of the horizontal displacementof rolls

1 Rate of change of the horizontal positionof roll bite

119888 Rate of change of roll horizontaldisplacement

119910 Arbitrary distance from the asymmetryline of the rolls

119910119888 Roll vertical displacement

V0 Strip velocity at exit

V1 Strip velocity at entry

V119877 Roll velocity

V119909 Strip horizontal velocity at any arbitraty

position from the centerline of the rollsV10158401 The equivalent horizontal velocity at entry

ℎ0 Variation of the strip thickness at exit

ℎ1 Strip thickness at entry

ℎ119909 Strip thickness at any arbitrary distance

from the centerline of the rolls120591119891 Forward tensile stress at exit

120591119887 Backward tensile stress at entry

120591119909 Horizontal tensile stress at any arbitrary

distance from the centerline of the rolls119865120583 Shear stress

119875 Interface pressure120583 Friction factor120575 Shear yield strength119865119909 The rolling force in horizontal direction

119865119910 Rolling force in vertical direction

119877 Roll radiusΔ119881 Volume flow in deformation zone range

from 1199091to 119909

Δ The rate of volume flow change indeformation zone range from 119909

1to 119909

1198961 Equivalent stiffness between upper rolls

and upper supporting posts1198962 Equivalent stiffness between upper rolls

and upper beam1198963 Equivalent stiffness between lower rolls

and lower supporting posts1198964 Equivalent stiffness between lower rolls

and lower supporting posts1198881 Equivalent damping between upper rolls

and upper supporting posts1198882 Equivalent damping between upper rolls

and upper beam

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Shock and Vibration 11

1198883 Equivalent damping between lower rolls

and lower supporting posts1198884 Equivalent damping between lower rolls

and lower supporting posts1198981 Equivalent mass of upper rolls

1198982 Equivalent mass of lower rolls

1198791 External disturbance of upper rolls

1198792 External disturbance of lower rolls

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by National Natural ScienceFoundation of China (Grant no 51105324) Natural Sci-ence Foundation of Hebei Province of China (Grant noE2014501006) and Hebei Province Science and TechnologySupport Program (Grant no 13211907D)

References

[1] P M Shi J Z Li J S Jiang B Liu and D Y Han ldquoNonlineardynamics of torsional vibration for rollingmillrsquos main drive sys-tem under parametric excitationrdquo Jounal of Iron and SteelResearch International vol 20 no 1 pp 7ndash12 2013

[2] Z Drzymala A Swiatoniowski and A Bar ldquoNonlinear vibra-tion in cold rolling millsrdquo Mechanique amp Industries vol 4 no2 pp 151ndash158 2003

[3] J L Sun P Y Peng andHM Liu ldquoCoupled dynamicmodelingof rolls model andmetal model for four highmill based on stripcrown controlrdquo Chinese Journal of Mechanical Engineering vol26 no 1 pp 144ndash150 2013

[4] H Li BWen and J Zhang ldquoAsymptoticmethod and numericalanalysis for self-excited vibration in rollingmill with clearancerdquoShock and Vibration vol 8 no 1 pp 9ndash14 2001

[5] Q Y Wang Z Y Jiang J W Zhao and M Fang ldquoMulti-factorcoupling system characteristic of the dynamic roll gap in thehigh-speed rolling mill during the unsteady lubrication pro-cessrdquo Tribology International vol 67 pp 174ndash181 2013

[6] P-AHuH Zhao andK F Ehmann ldquoThird-octave-mode chat-ter in rollingmdashpart 1 chatter modelrdquo Proceedings of the Institu-tion of Mechanical Engineers B vol 220 no 8 pp 1267ndash12772006

[7] X Yang C-N Tong G-F Yue and J-J Meng ldquoCoupling dyna-mic model of chatter for cold rollingrdquo Journal of Iron and SteelResearch International vol 17 no 12 pp 30ndash34 2010

[8] E Orowan ldquoThe calculation of roll pressure in hot and cold flatrollingrdquo Proceedings of the Institution of Mechanical Engineersvol 150 no 4 pp 140ndash167 1943

[9] R B Sims ldquoCalculation of roll force and torque in cold rollingby graphical and experimental methodsrdquo Journal of Iron andSteel Institute vol 178 pp 19ndash34 1954

[10] T Von Karman ldquoBeitrag zur theorie des walzorgangesrdquoZeitschrift fur Angewandte Mathematik und Mechanik vol 5pp 1939ndash1141 1925

[11] I-S Yun W R D Wilson and K F Ehmann ldquoChatter in thestrip rolling processmdashpart 1 dynamic model of rollingrdquo Journalof Manufacturing Science and Engineering Transactions of theASME vol 120 no 2 pp 330ndash336 1998

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of