Report Experiment Design Final

download Report Experiment Design Final

of 20

Transcript of Report Experiment Design Final

  • 8/12/2019 Report Experiment Design Final


    Experiment Design







  • 8/12/2019 Report Experiment Design Final


    1. Introduction

    Interest in small scale wind energy production has increased due to

    raising awareness of environmental issues and the growing acceptanceof wind power as an effective energy source. On the large scale, wind

    farms in South Australia produce 16% (!"#$ of the state&s total

    power generation, and in the future it is predicted that this contri'ution

    will eceed )"""#$ (Australia $ind *nergy Association )"".

    $ind energy is has 'een shown to 'e the cheapest form of renewa'le

    energy, 'ut despite this there has 'een minimal usage of small,

    household wind tur'ines to reduce one&s reliance on grid electricity,

    which still comes predominately from the 'urning of fossil fuels. A

    growing num'er of companies are producing small scale wind tur'ines

    for household use, however most of these are 'ased on a +oriontal-aisdesign and there is little comparison on how +oriontal-ais tur'ines

    will compare to +oriontal-ais wind tur'ines for small scale use in an

    ur'an environment, which may include non-optimal wind conditions.

    $hat is wind

  • 8/12/2019 Report Experiment Design Final


    Windis t)e *+,- ,* gses ,n +rge s/+e. On Ert) -in1/,nsists ,* t)e 23+4 m,5ement ,* ir. In ,3ter sp/e s,+r -in1 ist)e m,5ement ,* gses ,r /)rge1 prti/+es *r,m t)e s3n t)r,3g)sp/e -)i+e p+netr6 -in1 is t)e ,3t gssing ,* +ig)t /)emi/+

    e+ements *r,m p+net7s tm,sp)ere int, sp/e.

    In mete,r,+,g6 -in1s re ,*ten re*erre1 t, //,r1ing t, t)eirstrengt) n1 t)e 1ire/ti,n *r,m -)i/) t)e -in1 is 2+,-ing.

    !. S),rt 23rsts ,* )ig) spee1 -in1 re terme1 g3sts

    ". L,ng813rti,n -in1s )5e 5ri,3s nmes ss,/ite1 -it) t)eir5erge strengt) s3/) s 2ree9e st,rm )3rri/ne n1 t6p),,n

    Uses of Wind Energy

    Win1 t3r2ines /n /,n5ert t)e energ6 in t)e -in1 int, me/)ni/+p,-er t)t /n 2e 3se1 *,r 5riet6 ,* /ti5ities +i4e p3mping

    -ter. Win1 t3r2ines /n +s, 3se genert,rs t, /,n5ert -in1energ6 int, e+e/tri/it6.

    How Is Electricity from Wind Energy

    Sent to Users?

  • 8/12/2019 Report Experiment Design Final


    /he electricity is sent to users through a transmission system that consists of

    electric towers, and other components. One challenge for transmission of

    electricity from wind energy is that the wind is intermittent (it comes and goes.

    $inds cannot 'e stored for future use. Small amounts of wind-generated

    electricity can 'e stored using 'atteries0 however, intermittency does create

    concerns for the sta'ility and relia'ility of 3ti+it68s/+e -in1 energ6 generti,n.

    /he integration of wind energy into a transmission system reuires careful

    engineering to properly condition the power generated, and careful planning to

    'alance the mi of wind energy with other sources of energy generation.
  • 8/12/2019 Report Experiment Design Final


    2iterature 3eview.

    $hat is a wind tur'ine

    A wind turbineis a device that converts 4ineti/ energ6from the wind

    into me/)ni/+ energ60 a process 4nown as-in1 p,-er. If themechanical energy is used to produce electricity, the device may 'ecalled a wind generatoror wind charger. If the mechanical energy is

    used to drive machinery, such as for grinding grain or pumping water,

    the device is called a-in1mi++,r -in1 p3mp.

    Thereare two types of wind turbines:

    1.The horizontal- axis wind turbine.

    2.The vertical-axis wind turbine
  • 8/12/2019 Report Experiment Design Final


    Horizontal-axis machines !" vertical-

    axis wind machines

    Horizontal-axis machines

    Y-ing ,* t)e 2+1es.

    T)e 2+1es *,++,- t)e -in1 -it),3t ,s/i++ti,ns 23tt)ere is -in1 s)1,- n1 extr t3r23+en/e in t)e2+1e pt).

    C3se 1mge t, str3/t3re n1 presen/e ,* n,ise.

    T)e spee1 ,* r,tti,n ,* t)e xis is )ig).

    ertical-axis machines

    /he machine can accept wind from any direction without


    or electricity generation, the movement may 'e initiated with the

    electrical induction generator used as a motor.

    /he whole motor of the tur'ine is found on the ground levelwhere'y the etraction of the electricity is easily done.

    /he speed of rotation is low

  • 8/12/2019 Report Experiment Design Final


    #esi$n of the Wind %lade

    Use ,* +3min3m n1 /,mp,site mteri+s in t)eir 2+1es )s /,ntri23te1 t,+,- r,tti,n+ inerti -)i/) mens t)t ne-er -in1 t3r2ines /n //e+erte:3i/4+6 i* t)e -in1s pi/4 3p 4eeping t)e tip spee1 rti, m,re ner+6/,nstnt.

    In /,ntrst ,+1er st6+e -in1 t3r2ines -ere 1esigne1 -it) )e5ier stee+2+1es -)i/) )5e )ig)er inerti n1 r,tte1 t spee1s.

    T)e spee1 n1 t,r:3e t -)i/) -in1 t3r2ine r,ttes m3st 2e /,ntr,++e1*,r se5er+ res,ns;

    1. /o optimie the aerodynamic efficiency of the rotor in light winds.

    ). /o 4eep the generator within its speed and torue limits.

    7. /o 4eep the rotor and hu' within their centrifugal force limits. /he centrifugal

    force from the spinning rotors increases as the suare of the rotation speed,

    which ma4es this structure sensitive to over speed.

    !.T, 4eep t)e r,t,r n1 t,-er -it)in t)eir strengt) +imits.

    %.T, en2+e mintenn/e. Sin/e it is 1nger,3s t, )5e pe,p+e -,r4ing ,n

    -in1 t3r2ine -)i+e it is /ti5e it is s,metimes ne/essr6 t, 2ring t3r2ine

    t, *3++ st,p.

  • 8/12/2019 Report Experiment Design Final


    (.T, re13/e n,ise.


  • 8/12/2019 Report Experiment Design Final


    TH& H&'(HT

    T)e pprt3s m3st 2e p+/e1 t /ertin 5+3e ,* )eig)t s, st, re/ei5e en,3g) -in1 spee1 s, *,r t)e 2+1es t, /)ie5e res,n2+e r,tti,n+ *re:3en/6 n1 t)e -in1 energ6 /n 2e/,n5erte1 t, e+e/tri/it6.

  • 8/12/2019 Report Experiment Design Final


    T)e 15ntge ,* E5ns m,1e+ )eig)t is t)t it 1,es n,t nee1 +,ngp,+es *,r t)e t3r2ine t, 2e p+/e1 t 5er6 )ig) 1istn/es *,r t)epr,13/ti,n ,* e+e/tri/it6.

    Inste1 its )eig)t 5ries *r,m !"m t, $0m *,r t)e pr,13/ti,n ,* ".%4-

    t, $04- ,* energ6 respe/ti5e+6. T)e er,*,i+ )eig)t n1 t)e 1imeter ,* t)e ,* t)e t3r2ine xis t,, is

    t4en int, //,3nt.


    It is p,-ere1 26 t)e p)en,men,n ,* +i*t. T)is +i*t is /rete1 2e/3se ,* t)e

    ir*,i+ s)pe ,* t)e t3r2ines 2+1es. T)ese 2+1es /3t t)r,3g) t)e ir -it)n ng+e ,* tt/4 t, t)e -in1 /3sing press3re 1i**erenti+. T)e res3+tingpress3re 1i**erenti+s /3se *,r/e /++e1 +i*t -)i/) pr,pe+s t)e 2+1e*,r-r1. In ,r1er t, pr,pe+ t)e t3r2ine t)e net t,r:3e /3se1 26 +i*t *,r/esm3st 2e greter t)n t)e net t,r:3e /3se1 26 1rg *,r/es.

    %ector re&resentation of rele'ant Darrieus 'elocities and forces

  • 8/12/2019 Report Experiment Design Final


    /+* 8*39O:22I **;/.

    T)e Bern,3++i e**e/t ,r t)e Bern,3++i prin/ip+e ,r Bern,3++i7s +- is sttement ,*re+ti,ns)ip 2et-een *+,- spee1 n1 press3re in *+3i1 s6stem= in essen/e -)en t)espee1 ,* ),ri9,nt+ *+,- t)r,3g) *+3i1 in/reses t)e press3re 1e/reses.

    A /,mm,n exmp+e 3se1 t, exp+in t)e Bern,3++i e**e/t is t)e *+,- ,* *+3i1 t)r,3g)

    pipe. I* t)e *+3i1 is m,5ing 3ni*,rm+6 t)r,3g) t)e pipe t)en t)e ,n+6 *,r/es /ting ,n t)e*+3i1 re its ,-n -eig)t n1 t)e press3re ,* t)e *+3i1 itse+*. N,- i* t)e pipe nrr,-s t)e*+3i1 m3st spee1 3p 2e/3se t)e sme m,3nt ,* *+3i1 is tr5e+ing t)r,3g) sm++ersp/e.

  • 8/12/2019 Report Experiment Design Final


    Sin/e ir /n 2e /,nsi1ere1 *+3i1 >in p)6si/s n6t)ing t)t *+,-s is /,nsi1ere1 *+3i1?t)e Bern,3++i e**e/t is *re:3ent+6 3se1 in m,1e+ing er,16nmi/ s6stems. R/e /rs 3set)e Bern,3++i e**e/t t, )e+p 4eep t)em ,n t)e r,1 t )ig) spee1s= 26 3sing ti+ *inng+e1 s, t)t t)e ir press3re2,5e t)e *in is )ig)er t)n 2e+,- t)e /r is essenti++6)e+1 1,-n 26 tm,sp)eri/ press3re. T)is 4eeps t)e /r ,n t)e r,1 26 negting @1ri*t@n1 ++,-s t)e 1ri5er greter /,ntr,+ n1 s*et6.

    /+* #O/IO9 O /+* 82Acenter

    see4ing> force. /he force has the magnitude

    Swinging a mss ,n stringreuires string tension, and the mass will travel off in a tangentialstraight line if the string 'rea4s.

    /he /entripet+ //e+erti,ncan 'e derived for the case of /ir/3+r m,ti,nsince the curved path

    at any point can 'e etended to a circle.
  • 8/12/2019 Report Experiment Design Final


    9ote that the centripetal force isproportional to the suare of the velocity,

    implying that a dou'ling of speed will

    reuire four timesthe centripetal force to4eep the motion in a circle. If the

    centripetal force must 'e provided 'y

    friction alone on a curve, an increase inspeed could lead to an unepected s4id if

    friction is insufficient.


    -Effect of swept area, A

    Effect of wind speed, V

    Effect of air density,

    S-ept Are; A R"Are ,* t)e /ir/+e s-ept 26

    t)e r,t,r >m"?.

    ,-er in t)e Win1 AV$

  • 8/12/2019 Report Experiment Design Final


  • 8/12/2019 Report Experiment Design Final



    Tip8spee1 rti, is t)e rti, ,* t)e spee1 ,* t)e r,tting 2+1e tip t,t)e spee1 ,* t)e *ree strem -in1.

    T)ere is n ,ptim3m ng+e ,* tt/4 -)i/) /retes t)e )ig)est +i*tt, 1rg rti,.

    Be/3se ng+e ,* tt/4 is 1epen1nt ,n -in1 spee1 t)ere is n,ptim3m tip8spee1 rti,.

    TSR =RV


    = rotational speed in radians /secR= Rotor Radius

    V= Wind Free Stream Velocity

  • 8/12/2019 Report Experiment Design Final


    Res,n *,r /),,sing ' BLADED EVANS

    !. T)e -in1 t3r2ine presents /ertinsolidity t, t)eirstrem. T)is is t)e rti, ,* t)e t,t+ re ,* t)e 2+1es tn6 ,ne m,ment in t)e 1ire/ti,n ,* t)e irstrem t, t)es-ept re /r,ss t)e irstrem. T)3s -it) i1enti/+2+1es *,3r82+1e1 t3r2ine presents t-i/e t)e s,+i1it6 ,* t-,82+1e1 t3r2ine.

    ". In 3riti3s -e 1, n,t )5e E5ns 2+1e ex/ept ,ne-)i/) is *,3n1 t t)e C62er /it6 !. O3r experiment 1esignis 2se1 3p,n t)is m,1e+ itse+*

  • 8/12/2019 Report Experiment Design Final


    $+A/ IS SO2I

  • 8/12/2019 Report Experiment Design Final


    (OO" )

    Wind 'elocity*m+s,-./.)

    Time for 0. oscillations*seconds, -./.)

    Time &eriod *T,*s,-./.)

    )/12 )2/34 ./251

    0/)5 )5/63 ./141

    0/03 )5/50 ./114

    0/01 )5/20 ./124

    0/67 )4/67 ./1)5

    (OO" 0

    Wind 'elocity*m+s,


    Time for 0. oscillations

    *seconds, -./.)

    Time &eriod *T,*s,-./.)

    0/40 )2/46 ./210

    6/.0 )2/4. ./21.

    6/65 )1/1) ./27)

    6/1. )4/40 ./16)

    6/15 )4/65 ./1)2

    7/34 )3/)4 ./531

  • 8/12/2019 Report Experiment Design Final


    (OO" 6

    Wind 'elocity*m+s,


    Time for 0. oscillations

    *seconds, -./.)

    Time &eriod *T,*s,-./.)

    7/3) )1/.. ./2..7/14 )1/.4 ./2.6

    3/)3 )5/01 ./147

    3/4) )4/50 ./164

    4/.7 )4/44 ./166

    (OO" 7

    Wind 'elocity*m+s,


    Time for 0. oscillations

    *seconds, -./.)

    Time &eriod *T,*s,-./.)

    0/40 0)/43 )/.1.6/76 )5/25 ./122

    6/32 )4/33 ./102

    7/.3 )4/71 ./107

    7/07 )3/27 ./525

    7/04 )3/00 ./54)

    4/)7 )7/53 ./561

  • 8/12/2019 Report Experiment Design Final


    (OO" 3

    Wind 'elocity*m+s,


    Time for 0. oscillations

    *seconds, -./.)

    Time &eriod *T,*s,-./.)

    0/41 )4/06 ./1)06/.) )3/42 ./513

    6/)4 )3/3. ./553

    6/21 )7/1) ./57)

    7/72 )7/50 ./564

    7/36 )6/51 ./412

    7/21 )0/25 ./422