Reliable’Size’Measurement’of’Massive’Galaxies’at’ 0.53 ...MODS-CANDELS sample K...

1
2 4 6 8 10 12 SFR -1 -3 Age (Gyr) n 3 2 1.5 1 0.75 0.5 z Sérsic n >4 SF Quenching? AGN Feedback? Dry Merger Major/Minor Merger Wet Merger? Local Massive Elliptical Cold Gas Accretion for clumpy-galaxies? Ex#Situ 2 nd -phase 1 st -phase <2 0.1 1 10 0 0.5 1 1.5 2 2.5 3 r e (kpc) z 10 10 M )M * cor <10 10.5 M _ QGs =-0.09±0.43 (0.5)z)1.5) _ SFGs = 0.57±0.07 (0.5)z)2.5) 0.1 1 10 r e (kpc) M * cor *10 10.5 M _ QGs = 1.06±0.19 (0.5)z)2.5) _ SFGs = 0.56±0.09 (0.5)z)3.0) Reliable Size Measurement of Massive Galaxies at z~0.53.0 in the GOODSN region with HST/WFC3 Data Probing the EvoluCon of Sérsic Index Takahiro MORISHITA 1 Takashi ICHIKAWA 1 Masaru KAJISAWA 2 1.Astronomical Ins0tute, Tohoku University, Aramaki, Aoba, Sendai 9808578, Japan ; [email protected] 2.Research Center for Space and Cosmic Evolu0on, Ehime University, Bunkyocho, Matsuyama, Japan 1.Brief IntroducCon Morphological (Size) Evolu0on of galaxies at z~1-3 is one of the most interes0ng topics of the universe. Because the starforma0on ac0vity in the universe has peaked at the redshiS, the morphological proper0es of galaxies there are found, with improvement of instruments, to evolve drama0cally (Trujillo+07; van Dokkum+09; and many others). With accurate light profile of those galaxies, the evolu0on of the galaxies over the redshiS range has been ac0vely discussed ! Abstract : We analyze the recent released HST/WFC3 IR images in the GOODSN region to study the evolu0on of the size and Sérsic index of galaxies. We obtain the morphological parameters of 1,069 massive (10 10 M ) galaxies at z 0.5–3.0 with GALFIT aSer examining the reliability with ar0ficial galaxies. With a careful study of the bias and error in the effec0ve radius of GALFIT, r e , we derive the sizestellar mass rela0ons for 270 quiescent galaxies (QGs) and 799 starforming galaxies (SFGs). The median sizes of QGs and SFGs increase from z 3.0 to 0.5 by a factor 2.0–2.2, following r e (1 + z) −α with α = 0.81 ± 0.17 and α = 0.70 ± 0.07, respec0vely. The result of massive QGs is consistent with the general picture of the significant size growth, while the evolu0on is much slow at 2.0 < z < 3.0 (α 0.6). For the further understanding of the evolu0on scenario, we study the evolu0on of Sérsic index n, which is oSen referred to as a shape of galaxies, and find that of massive QGs to significantly evolve as n (1 + z) −α with α = 1.46 ± 0.18, while those of less massive QGs and SFGs are unchanged (n 1) over the redshiS range. We discuss the evolu0on in size and light profile of highz galaxies, combining both insitu and exsitu process. 2.Data (Fig.1) 2.1.HST/WFC3 IR From CANDELS imaging data, we use F160W(H) in GOODSN region. FWHM(F160W)~0.180.20. H AB <25 for reliable morphological fit (See §3). 2.2.MOIRCS/SUBARU MOIRCS Deep SurveyK AB ~25 mag; 5σfor phot-z, M * , SFR. By using RestUVJ, we extract Quiescent galaxies (QGs) from the whole sample, while the other galaxies are classified as Starforming galaxies (SFGs). 3.Analysis Size Measurement with GALFIT Sérsic Fit by GALFIT(Peng+02) package, Σ(r)=Σ 0 exp[-b(n)((r/r e ) 1/n -1)] (1) To study the possible bias depending on the apparent magnitude of galaxies, we test GALFIT using 1,000 mock galaxies buried in the F160W image, finding that GALFIT recovers the original profiles up to m H ~25. We also compare the results with two PSFs; median stacked star and DrizzledTiny Tim (Fig.3). We find significant differences in the derived parameters of galaxies with smaller r e and larger n. We conclude that this difference comes from a 0ny difference of the central few pixels of the PSF profiles (Fig.4), and adopt the median stacked star since it represents the stars in the mosaic image. 4.Results and Discussion – How did the local Red EllipCcal Galaxies evolve with redshi^ ? (See Fig.7 ) ASer deriving Sérsic parameters for the sample, we see the evolu0on in r e and n over the redshiS range for QGs and SFGs in Figs.5 and 6. Best fit slopes are derived with r e ,n(1+z) -α , where α for each slope is shown at the leS bopom in the panel. We find size evolu0on in massive QGs with α~1.06,a factor of 2.5 from z~2.5 to 0.5, while no or weak size evolu0on in Less Massive QGs and SFGs. The evolu0on in n also shows similar trend; evolu0on in Massive QGs (α~0.74) but weak in Less Massive QGs and SFGs. From the two results, we propose 2phase evoluCon for the galaxies from z~3 to 0.5, in the view of the forma0on of QGs (though large error dominates QGs at z>2.0). In the 1 st phase (1.5z3) , SFGs transi0on into QGs (quenching) mainly by InSitu process such as starforma0on or AGN feedback. Gasrich (wet) mergers are also favorable because they hardly enlarge the Sérsic n. ASer that, the 2 nd phase (z1.5) , where gaspoor (dry) merger of QGs dominates (ExSitu), contributes an important role for the forma0on of the ellip0cal galaxies with larger (e.g., Naab +09). The schema0c view for the whole scenario is shown in Fig.7. The above, however, dips only one possible scenario out of the hundreds of complicated forma0on models. For a further understanding, we need to carefully stydy each “piece of the puzzle of the GALAXY EVOLUTION”. Fig.1(le^)Sample from MODS catalog and CANDELS. The black cross represents the sample with K<25 but fail to be detect or H>25 by SExtractor. The lower panel shows the fac0on of the sample with M * >10 10 M (MODS limit) and H<25 (CANDELS limit) over the whole sample. Fig.2(right)QGs selec0on following restframe UVJ color of Williams+09. The value denoted in each panel is median specific starforma0on rate (sSFR) for the sample there. The lower panels show the two popula0ons with sSFR as xaxis, to show clear bimodality. Fig.3Comparison of the results of real galaxies with two PSFs; median stacked star and DrizzledTiny Tim. Fig.4Comparison of the radial light profiles of the PSFs. 0 0.1 0.2 0.3 -2 -1 0 1 q log sSFR (yr -1 ) 0.5)z)1.0 -2 -1 0 1 1.0<z)2.0 -2 -1 0 1 2.0<z)3.0 0.5)z)1.0 -0.5 0 0.5 1 1.5 2 V-J (AB mag) 0.5 1 1.5 2 U-V (AB mag) 1.0<z)2.0 0 0.5 1 1.5 2 2.0<z)3.0 0 0.5 1 1.5 2 0.03±0.02 0.08±0.08 0.16±0.16 0.57±0.26 1.88±1.41 2.72±2.74 0.1 1 10 18 20 22 24 26 #n m MedianStar1 (mag) 0.1 1 10 #r e -2 -1 0 1 2 6m (mag) 6 > TinyTimDri - MedianStar1, # > TinyTimDri / MedianStar1 1 10 r e, MedianStar1 (pixel) 1 10 n MedianStar1 2 4 6 8 10 0.5 1 1.5 2 2.5 3 n z 10 10 M )M * cor <10 10.5 M _ QGs = 0.17±0.21 (0.5)z)1.5) _ SFGs =-0.04±0.09 (0.5)z)2.5) 2 4 6 8 10 n M * cor *10 10.5 M _ QGs = 0.74±0.23 (0.5)z)2.5) _ SFGs = 0.10±0.13 (0.5)z)3.0) SFGs QGs SFGs Fit QGs Fit 7 8 9 10 11 12 logM * (M ) MODS-CANDELS sample K AUTO,MODS )25 H AUTO,CAND )25 40 60 80 100 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Completeness (%) z 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 0.1 1 Surface brightness r (arcsec) TinyTim TinyTimDri No envelope Envelope 1 1E-04 2E-04 Fig.5(le^)/Fig.6(right)Evolu0on of r e (leS) and n (right) with redshiS. The regressions with r e (n) (1+z) -α are shown with thick curves. Fig.7Schema0c view for the evolu0on of galaxies with redshiS as xaxis. The ver0cal align and sizes for objects roughly represent Sérsic n and r e derived in the present study, respec0vely. In the present study, we mainly refer to the evolu0on of Red QGs, and there s0ll remain many to be studied to understand the evolu0on of Blue SFGs.

Transcript of Reliable’Size’Measurement’of’Massive’Galaxies’at’ 0.53 ...MODS-CANDELS sample K...

Page 1: Reliable’Size’Measurement’of’Massive’Galaxies’at’ 0.53 ...MODS-CANDELS sample K AUTO,MODS)25 H AUTO,CAND)25 40 60 80 100 Completeness (%) 0.5 1 1.5 2 2.5 3 3.5 4 4.5

1

10

2 4 6 8 10 12SFR

(M⊙

yr-1

Gpc

-3)

Age (Gyr)

-1

0

1

q (/G

pc3 )

0.1

1

10

n

10

11

12

321.510.750.5

M*co

r (M⊙

)

z

QGsSFGs

Sérsic n

>4

SF Quenching? AGN Feedback?

Dry Merger

Major/Minor Merger

Wet Merger?

Local Massive Elliptical

Cold Gas Accretion for clumpy-galaxies?

Ex#Situ(

2nd-phase

1st-phase

<2

0.1

1

10

0 0.5 1 1.5 2 2.5 3

r e (

kpc)

z

1010M⊙)M*cor<1010.5M⊙

_QGs =-0.09±0.43 (0.5)z)1.5)_SFGs= 0.57±0.07 (0.5)z)2.5)

SFGsQGs

SFGs FitQGs Fit

<G09,E><G09,L>

0.1

1

10

r e (

kpc)

M*cor*1010.5M⊙

_QGs = 1.06±0.19 (0.5)z)2.5)_SFGs= 0.56±0.09 (0.5)z)3.0)

Reliable  Size  Measurement  of  Massive  Galaxies  at  z~0.5-­‐3.0  in  the  GOODS-­‐N  region  with  HST/WFC3  Data    

-­‐  Probing  the  EvoluCon  of  Sérsic  Index  -­‐  Takahiro  MORISHITA1、Takashi  ICHIKAWA1、Masaru  KAJISAWA2  

1.Astronomical  Ins0tute,  Tohoku  University,  Aramaki,  Aoba,  Sendai  980-­‐8578,  Japan  ;  [email protected]  2.Research  Center  for  Space  and  Cosmic  Evolu0on,  Ehime  University,  Bunkyo-­‐cho,  Matsuyama,  Japan    

1.Brief  IntroducCon  Morphological  (Size)  Evolu0on  of  galaxies  at  z~1-3  is  one  of  the  most  interes0ng  topics  of  the  universe.  Because  the  star-­‐forma0on  ac0vity  in  the  universe  has  peaked  at  the  redshiS,  the  morphological  proper0es  of  galaxies  there  are  found,  with  improvement  of  instruments,  to  evolve  drama0cally  (Trujillo+07;  van  Dokkum+09;  and  many  others).  With  accurate  light  profile  of  those  galaxies,    the  evolu0on  of  the  galaxies  over  the  redshiS  range  has  been  ac0vely  discussed  !  

Abstract  :  We  analyze  the  recent  released  HST/WFC3  IR  images  in  the  GOODS-­‐N  region  to  study  the  evolu0on  of  the  size  and  Sérsic  index  of  galaxies.  We  obtain  the  morphological  parameters  of  1,069  massive  (≥ 1010M⊙)  galaxies  at  z ∼ 0.5–3.0  with  GALFIT  aSer  examining  the  reliability  with  ar0ficial  galaxies.  With  a  careful  study  of  the  bias  and  error  in  the  effec0ve  radius  of  GALFIT,  re,  we  derive  the  size-­‐stellar  mass  rela0ons  for  270  quiescent  galaxies  (QGs)  and  799  star-­‐forming  galaxies  (SFGs).  The  median  sizes  of  QGs  and  SFGs  increase  from z ∼ 3.0  to  ∼ 0.5  by  a  factor  ∼ 2.0–2.2,  following re ∝ (1 + z)−α  with  α = 0.81 ± 0.17  and  α = 0.70 ± 0.07,  respec0vely.  The  result  of  massive  QGs  is  consistent  with  the  general  picture  of  the  significant  size  growth,  while  the  evolu0on  is  much  slow  at 2.0 < z < 3.0  (α ∼ 0.6).  For  the  further  understanding  of  the  evolu0on  scenario,  we  study  the  evolu0on  of  Sérsic  index  n,  which  is  oSen  referred  to  as  a  shape  of  galaxies,  and  find  that  of  massive  QGs  to  significantly  evolve  as  n ∝ (1 + z)−α  with  α = 1.46 ± 0.18,  while  those  of  less  massive  QGs  and  SFGs  are  unchanged  (n ∼ 1)  over  the  redshiS  range.  We  discuss  the  evolu0on  in  size  and  light  profile  of  high-­‐z  galaxies,  combining  both  in-­‐situ  and  ex-­‐situ  process.  

2.Data  (Fig.1)  2.1.HST/WFC3  IR  From  CANDELS  imaging  data,  we  use  F160W(H)  in  GOODS-­‐N  region.  FWHM(F160W)~0″₺.18-­‐0″₺.20.  HAB<25  for  reliable  morphological  fit  (See  §3).  2.2.MOIRCS/SUBARU  MOIRCS  Deep  Survey(KAB~25  mag;  5σ) for  phot-z, M*, SFR.  By  using  Rest-­‐UVJ,  we  extract  Quiescent  galaxies  (QGs)  from  the  whole  sample,  while  the  other  galaxies  are  classified  as  Star-­‐forming  galaxies  (SFGs).  

3.Analysis  -­‐  Size  Measurement  with  GALFIT    Sérsic  Fit  by  GALFIT(Peng+02)  package,  

Σ(r)=Σ0exp[-b(n)((r/re)1/n-1)]  (1)    

To  study  the  possible  bias  depending  on  the  apparent  magnitude  of  galaxies,  we  test  GALFIT  using  1,000  mock  galaxies  buried  in  the  F160W  image,  finding  that  GALFIT  recovers  the  original  profiles  up  to  mH~25.  We  also  compare  the  results  with  two  PSFs;  median  stacked  star  and  Drizzled-­‐Tiny  Tim  (Fig.3).  We  find  significant  differences  in  the  derived  parameters  of  galaxies  with  smaller  re  and  larger  n.  We  conclude  that  this  difference  comes  from  a  0ny  difference  of  the  central  few  pixels  of  the  PSF  profiles  (Fig.4),  and  adopt  the  median  stacked  star  since  it  represents  the  stars  in  the  mosaic  image.  

4.Results  and  Discussion  –  How  did  the  local  Red  EllipCcal  Galaxies  evolve  with  redshi^  ?  (See  Fig.7)   ASer  deriving  Sérsic  parameters  for  the  sample,  we  see  the  evolu0on  in  re  and  n  over  the  redshiS  range  for  QGs  and  SFGs  in  Figs.5  and  6.  Best  fit  slopes  are  derived  with  re,n∝(1+z)-α,  where  α  for  each  slope  is  shown  at  the  leS  bopom  in  the  panel.  We  find  size  evolu0on  in  massive  QGs  with  α~1.06,  a  factor  of  2.5  from  z~2.5 to  0.5,  while  no  or  weak  size  evolu0on  in  Less  Massive  QGs  and  SFGs.  The  evolu0on  in  n  also  shows  similar  trend;  evolu0on  in  Massive  QGs  (α~0.74)  but  weak  in  Less  Massive  QGs  and  SFGs.  From  the  two  results,  we  propose  2-­‐phase  evoluCon  for  the  galaxies  from  z~3 to  0.5,  in  the  view  of  the  forma0on  of  QGs  (though  large  error  dominates  QGs  at  z>2.0).  In  the  1st  phase  (1.5≦z≦3),  SFGs  transi0on  into  QGs  (quenching)  mainly  by  In-­‐Situ  process  such  as  star-­‐forma0on  or  AGN  feedback.  Gas-­‐rich  (wet)  mergers  are  also  favorable  because  they  hardly  enlarge  the  Sérsic  n.  ASer  that,  the  2nd  phase  (z≦1.5),  where  gas-­‐poor  (dry)  merger  of  QGs  dominates  (Ex-­‐Situ),  contributes  an  important  role  for  the  forma0on  of  the  ellip0cal  galaxies  with  larger  (e.g., Naab+09).  The  schema0c  view  for  the  whole  scenario  is  shown  in  Fig.7.  The  above,  however,  dips  only  one  possible  scenario  out  of  the  hundreds  of  complicated  forma0on  models.  For  a  further  understanding,  we  need  to  carefully  stydy  each  “piece  of  the    puzzle  of  the  GALAXY  EVOLUTION”.  

Fig.1(le^):Sample  from  MODS  catalog  and  CANDELS.  The  black  cross  represents  the  sample  with  K<25  but  fail  to  be  detect  or  H>25  by  SExtractor.  The  lower  panel  shows  the  fac0on  of  the  sample  with  M*>1010 M⊙  (MODS  limit)  and  H<25  (CANDELS  limit)  over  the  whole  sample.  Fig.2(right):QGs  selec0on  following  rest-­‐frame UVJ  color  of  Williams+09.  The  value  denoted  in  each  panel  is  median  specific  star-­‐forma0on  rate  (sSFR)  for  the  sample  there.  The  lower  panels  show  the  two  popula0ons  with  sSFR  as  x-­‐axis,  to  show  clear  bimodality.  

Fig.3:Comparison  of  the  results  of  real  galaxies  with  two  PSFs;  median  stacked  star  and  Drizzled-­‐Tiny  Tim.  Fig.4:Comparison  of  the  radial  light  profiles  of  the  PSFs.  

0

0.1

0.2

0.3

-2 -1 0 1

q

log sSFR (yr-1)

0.5)z)1.0

-2 -1 0 1

1.0<z)2.0

-2 -1 0 1

2.0<z)3.0

0.5)z)1.0

-0.5 0 0.5 1 1.5 2

V-J (AB mag)

0.5

1

1.5

2

U-V

(AB

mag

)

1.0<z)2.0

0 0.5 1 1.5 2

2.0<z)3.0

0 0.5 1 1.5 2

0.03±0.02 0.08±0.08 0.16±0.16

0.57±0.26 1.88±1.41 2.72±2.74

0.1

1

10

18 20 22 24 26

#n

mMedianStar1 (mag)

0.1

1

10

#re

-2-1 0 1 2

6m

(mag

)

6 > TinyTimDri - MedianStar1, # > TinyTimDri / MedianStar1

1 10re, MedianStar1 (pixel)

1 10nMedianStar1

2468

10

0.5 1 1.5 2 2.5 3

n

z

1010M⊙)M*cor<1010.5M⊙_QGs = 0.17±0.21 (0.5)z)1.5)

_SFGs=-0.04±0.09 (0.5)z)2.5)

2468

10

n

M*cor*1010.5M⊙_QGs = 0.74±0.23 (0.5)z)2.5)

_SFGs= 0.10±0.13 (0.5)z)3.0)

SFGsQGs

SFGs FitQGs Fit

7

8

9

10

11

12

logM

* (M

⊙)

MODS-CANDELS sample

KAUTO,MODS)25HAUTO,CAND)25

40 60 80

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Com

plet

enes

s (%

)

z

10-7

10-6

10-5

10-4

10-3

10-2

10-1

0.1 1

Surfa

ce br

ightne

ss

r (arcsec)

TinyTimTinyTimDriNo envelope

Envelope

1

1E-04

2E-04

Fig.5(le^)/Fig.6(right):Evolu0on  of  re  (leS)  and  n  (right)  with  redshiS.  The  regressions  with  re (n) ∝ (1+z)-α  are  shown  with  thick  curves.  

Fig.7:Schema0c  view  for  the  evolu0on  of  galaxies  with  redshiS  as  x-­‐axis.  The  ver0cal  align  and  sizes  for  objects  roughly  represent  Sérsic  n  and  re  derived  in  the  present  study,  respec0vely.  In  the  present  study,  we  mainly  refer  to  the  evolu0on  of  Red  QGs,  and  there  s0ll  remain  many  to  be  studied  to  understand  the  evolu0on  of  Blue  SFGs.