Reflectance Modeling for Vision and Graphics

33
Reflectance Modeling for Vision and Graphics Todd Zickler Harvard School of Engineering and Applied Sciences Reflectance Modeling Acknowledgements Satya Mallick, UCSD Sebastian Enrique, EA Sports Ravi Ramamoorthi, Columbia University Peter Belhumeur, Columbia University David Kriegman, UCSD Jeffrey Ho, UFL Jean Ponce, UIUC, ENS Funding: NSF

Transcript of Reflectance Modeling for Vision and Graphics

1

Reflectance Modelingfor Vision and Graphics

Todd ZicklerHarvard School of Engineering and Applied Sciences

Reflectance Modeling

Acknowledgements

Satya Mallick, UCSD

Sebastian Enrique, EA Sports

Ravi Ramamoorthi, Columbia University

Peter Belhumeur, Columbia University

David Kriegman, UCSD

Jeffrey Ho, UFL

Jean Ponce, UIUC, ENS

Funding: NSF

2

Reflectance Modeling

Appearance

f -1( I ) = ?

I = f (shape, reflectance)illumination,

Reflectance Modeling

Reflectance: BRDF

n(θi,φi)

fr(θi,φi; θo,φo)

(θo,φo)

Bi-directional Reflectance Distribution Function

3

Reflectance Modeling

Typical Assumption: Lambertian Reflectance

LAMBERTIAN:IDEALLY DIFFUSE

Reflectance Modeling

Handling Complex Reflectance

1. Ignore (treat as noise)2. Detect and remove3. Model parametrically

Proposed Approach:

Exploit common reflectance phenomena (reciprocity, isotropy, separability,…)

4

Reflectance Modeling

♦ Reciprocity:Helmholtz stereopsis– reconstruction

Outline

u

v

θh

2φd

♦ Separability:Color subspaces– reconstruction, recognition, motion

estimation, segmentation

♦ Spatial coherence, compressibility:Reflectance sharing– modeling, appearance capture

Reflectance Modeling

i e

n

Helmholtz Reciprocity

ie

n

[Helmholtz 1925; Minnaert 1941; Nicodemus et al. 1977]

)i,e()e,i( rr ff =

5

Reflectance Modeling

Stereo vs. Helmholtz Stereo

STEREO HELMHOLTZ STEREO

Reflectance Modeling

Stereo vs. Helmholtz Stereo

STEREO HELMHOLTZ STEREO

6

Reflectance Modeling

In Practice

HELMHOLTZ STEREO

Reflectance Modeling

Reciprocal Images

Specularities “fixed” to surface

el er

Relation between el and er independent of BRDF

7

Reflectance Modeling

Reciprocity Constraint

n

vl^ vr

^

x

ol or

=

vl^ vr

^

x

ol or

n

er(x) = fr(vl(x), vr(x))slvl(x) · n(x)|ol − x|2el(x) = fr(vr(x), vl(x))

srvr(x) · n(x)|or − x|2

sr sl

Reflectance Modeling

Reciprocity Constraint

n

vl^ vr

^

x

ol or

vl^ vr

^

x

ol or

n

sr sl

µel(x)

slvl(x)

|ol − x|2 − er(x)srvr(x)

|or − x|2¶· n(x) = 0.

8

Reflectance Modeling

Reciprocity Constraint

µel(x)

slvl(x)

|ol − x|2 − er(x)srvr(x)

|or − x|2¶· n(x) = 0.

Near-field reciprocity constraint:

Far-field reciprocity constraint:

(el(x)slvl − er(x)srvr) · n(x) = 0

[Zickler et al., ECCV 2002]

Reflectance Modeling

Example

[Zickler et al., ECCV 2002]

9

Reflectance Modeling

Reciprocal Images: Typical Dataset

SOURCEVIEW

Reflectance Modeling

Reciprocal Images: Typical Dataset

SOURCE

VIEW

Conventional Stereo• Constant brightness (Lambertian)• No structure in textureless regions

10

Reflectance Modeling

Reciprocal Images: Typical Dataset

SOURCEVIEW

Conventional Stereo• Constant brightness (Lambertian)• No structure in textureless regions

Photometric Stereo• Needs reflectance model• No direct depth estimates

Reflectance Modeling

Reciprocal Images: Typical Dataset

SOURCE

VIEW

Conventional Stereo• Constant brightness (Lambertian)• No structure in textureless regions

Photometric Stereo• Needs reflectance model• No direct depth estimates

Helmholtz Stereo• No assumed reflectance• Gives depth and surface normals

11

Reflectance Modeling

Auto-calibration

1. Cameras 2. Source strengths3. Surface shape

Reflectance Modeling

Auto-calibration

x0 = Ax; n0 =A−>n|A−>n| ;

s0i = si|Avi|; P0i = PiA−1;

f 0r(u, v; θ) = fr(u, v; θ)|A−>n(u, v)|

12

Reflectance Modeling

Auto-calibration Strategy

INPUT SPARSE FEATURES

EPIPOLAR GEOMETRY/SPARSE RECONSTRUCTION

DENSE, METRICRECONSTRUCTION

[Zickler, CVPR 2006]

Reflectance Modeling

Specular Highlights as Features

INPUT

13

Reflectance Modeling

Auto-calibration Example

♦ Five ‘far-field’ cameras/sources♦ Dense reconstruction: [Zickler et al., 2002]

{si} = {0.74, 0.89, 0.89, 0.92, 1}

{si} = {1, 1, 1, 1, 1}

[Zickler, CVPR 2006]

Reflectance Modeling

♦ Reciprocity (& isotropy):Helmholtz stereopsis– reconstruction

Outline

u

v

θh

2φd

♦ Separability:Color subspaces– reconstruction, recognition, motion

estimation, segmentation

♦ Spatial coherence, compressibility:Reflectance sharing– modeling, appearance capture

14

Reflectance Modeling

Separability

DIFFUSE

= +

SPECULAR

[Shafer, 1985]

Reflectance Modeling[Shafer, 1985]

λ

E

λ

R

λ

kCDk =

ZE(λ)R(λ)Ck(λ)dλ

IRGB = (n · i)D+ fs(i, e)(n · i)S

Separability: Dichromatic Model

15

Reflectance Modeling[Shafer, 1985]

λ

E

λ

R

λ

kCDk =

ZE(λ)R(λ)Ck(λ)dλ

IRGB = (n · i)D+ fs(i, e)(n · i)S

Separability: Dichromatic Model

Reflectance Modeling

Separability: Dichromatic Model

[Shafer, 1985]

λ

E

λ

R

λ

kC

Sk =

ZE(λ)Ck(λ)dλ

Dk =

ZE(λ)R(λ)Ck(λ)dλ

IRGB = (n · i)D+ fs(i, e)(n · i)S

16

Reflectance Modeling

Dichromatic Materials

[Tominga and Wandell, 1989; Healey, 1989; Lee et al., 1990]

Reflectance Modeling

Explicit Separation

DIFFUSE

= +

SPECULAR

= +σd(u)D(u) σs(u)SIRGB(u)

17

Reflectance Modeling

Explicit Separation

DIFFUSE

= +

SPECULAR

[Klinker et al., 1988; Bajscy et al., 1996; Criminisi et al., 2005; Lee and Bajscy, 1992; Lin et al., 2002; Lin and Shum, 2001; Miyazaki et al., 2003; Nayar et al., 1997; Ragheb and Hancock, 2001; Sato and Ikeutchi, 1994; Tan and Ikeutchi, 2005; Wolfe and Boult, 1991;…]

= +σd(u)D(u) σs(u)SIRGB(u)

Reflectance Modeling

Observation:Explicit Separation not Required

Gr2r1

S

IRGB

B

R J

IRGB = σdD+ σsS

Jl =< IRGB , rl >= σdr>l D

1. INVARIANT TOSPECULAR REFLECTIONS

2. BEHAVES ‘LAMBERTIAN’

18

Reflectance Modeling

Observation:Explicit Decomposition not Required

Gr2r1

S

IRGB

B

RJ

IRGB = σdD+ σsS

Jl =< IRGB , rl >= σdr>l D

IRGB || J ||

[Mallick, Zickler et al., CVPR 2005; Zickler et al., CVPR 2006]

Reflectance Modeling

Generalization: Mixed Illumination

Gr2r1

S

IRGB

B

R Jr1

S1

IRGB

B

G

R

S2

J

SINGLE ILLUMINANT MIXED ILLUMINATION

[Mallick, Zickler et al., CVPR 2005; Zickler et al., CVPR 2006]

19

Reflectance Modeling

Generalization: Mixed Illumination

Reflectance Modeling

Example: Optical Flow

[Algorithm: Black and Anandan, 1993]

Conv

entio

nal

Gra

ysca

le(R

-+G

+B)/3

Spec

ular

In

varia

nt,

||J||

(blu

e ill

umin

ant)

Spec

ular

Inv

aria

nt,

||J||

(blu

e &

yel

low

ill

umin

ants

)

Ground truth flow

20

Reflectance Modeling

Example: Binocular Stereo

[Algorithm: Boykov, Veksler and Zabih, CVPR 1998]

Conventional Grayscale(R+G+B)/3

Specular Invariant, ||J||(blue illuminant)

Specular Invariant, ||J||(blue & yellow illuminants)

One image from input stereo pair

Reco

vere

d de

pth

Reflectance Modeling

Generalized Hue

Gr2r1

S

IRGB

B

R Jψ

ψ = tan−1(J1/J2) = tan−1(r>1 D/r>2 D)

Jl =< IRGB , rl >= σdr>l D

[Zickler et al., CVPR 2006]

21

Reflectance Modeling

Example: Material-based Segmentation

Input image

Conventional Grayscale Specular Invariant ||J||

Conventional Hue Generalized Hue ψ

[Zickler et al., CVPR 2006]

Reflectance Modeling

Example: Photometric Stereo

[Mallick, Zickler et al., CVPR 2005]

J behaves ‘Lambertian’→ Linear function of surface normal

Jl =< IRGB , rl >= σdr>l D = (n · i)r>l D

22

Reflectance Modeling

Example: Photometric Stereo

J behaves ‘Lambertian’→ Linear function of surface normal

[Mallick, Zickler et al., CVPR 2005]

Jl =< IRGB , rl >= σdr>l D = (n · i)r>l D

Reflectance Modeling

Example: Photometric Stereo

J behaves ‘Lambertian’→ Linear function of surface normal

[Mallick, Zickler et al., CVPR 2005]

Jl =< IRGB , rl >= σdr>l D = (n · i)r>l D

23

Reflectance Modeling

Example: Photometric Stereo

[Mallick, Zickler et al., CVPR 2005]

Reflectance Modeling

♦ Reciprocity (& isotropy):Helmholtz stereopsis– reconstruction

Outline

u

v

θh

2φd

♦ Separability:Color subspaces– reconstruction, recognition, motion

estimation, segmentation

♦ Spatial coherence, compressibility:Reflectance sharing– modeling, appearance capture

24

Reflectance Modeling

Modeling; Appearance Capture

1. SHAPE

+

2. REFLECTANCE

Reflectance Modeling

5º sampling: 1,000,000 images >106 MB1º sampling: 625,000,000 images >109 MB

n

ˆ ˆ( , )xf i er

Spatially-varying BRDF (SBRDF)From Images and Shape

~x

25

Reflectance Modeling

ˆ ˆ( ; , )x xf i eαr rr

ˆ ˆ( , )xf i er

1. Parametric BRDF models[Sato, Wheeler, Ikeuchi, 1997][Yu et al., 1999][Boivin, Gagalowicz, 2001][Lensch, et al., 2001] [McAllister, Lastra, Heidrich, 2002][Georghiades, 2003]…

Existing Approaches

Reflectance Modeling

ˆ ˆ( , )xf i er

1. Parametric BRDF models[Sato, Wheeler, Ikeuchi, 1997][Yu et al., 1999][Boivin, Gagalowicz, 2001][Lensch, et al., 2001] [McAllister, Lastra, Heidrich, 2002][Georghiades, 2003]…

2. Data-Driven (Non-parametric)[Debevec et al., 2000][Wood et al., 2000][Matusik et al., 2002]

Existing Approaches

26

Reflectance Modeling

1. Parametric BRDF models[Sato, Wheeler, Ikeuchi, 1997][Yu et al., 1999][Boivin, Gagalowicz, 2001][Lensch, et al., 2001] [McAllister, Lastra, Heidrich, 2002][Georghiades, 2003]…

2. Data-Driven (Non-parametric)[Debevec et al., 2000][Wood et al., 2000][Matusik et al., 2002]

ˆ ˆ( , )xf i er

Subset of reflectance

12,0002000 600# IMAGES:

Existing Approaches

Reflectance Modeling

1. Parametric BRDF models[Sato, Wheeler, Ikeuchi, 1997][Yu et al., 1999][Boivin, Gagalowicz, 2001][Lensch, et al., 2001] [McAllister, Lastra, Heidrich, 2002][Georghiades, 2003]…

2. Data-Driven (Non-parametric)[Debevec et al., 2000][Wood et al., 2000][Matusik et al., 2002]

PRO: Sparse Images

Efficient Rendering

CON: Limited Generality

PRO: General BRDFs

CON: Expensive ( , $ )

Cumbersome

Existing Approaches

27

Reflectance Modeling

1. Parametric BRDF models[Sato, Wheeler, Ikeuchi, 1997][Yu et al., 1999][Boivin, Gagalowicz, 2001][Lensch, et al., 2001] [McAllister, Lastra, Heidrich, 2002][Georghiades, 2003]…

2. Data-Driven (Non-parametric)[Debevec et al., 2000][Wood et al., 2000][Matusik et al., 2002]

PRO: Sparse ImagesEfficient Rendering

CON: Limited Generality

PRO: General BRDFs

CON: Expensive

Cumbersome

Existing Approaches

Reflectance Modeling

Reflectance Sharing: Three BRDF properties

n(θi,φi)

(θo,φo)

fr(θi,φi; θo,φo) −→ fr(θi, θo,φi − φo)

ISOTROPY

28

Reflectance Modeling

Spatial coherence Compressibility

Reflectance Sharing: Three BRDF properties

[Zickler et al., T-PAMI 2006]

fr(x, y, θi, θo,φi − φo)

Reflectance Modeling

Evaluation: No spatial variation

uv

w

SLO

W

RAPID

(θi, θo,φi − φo) −→ (u, v, w) = ~q

29

Reflectance Modeling

Evaluation: No spatial variation

uv

w

( )1

( ) ( ) -N

i ii

f q p q q qλψ=

= +∑r r r r%

(θi, θo,φi − φo) −→ (u, v, w) = ~q

Reflectance Modeling

uv

w

( )1

( ) ( ) -N

i ii

f q p q q qλψ=

= +∑r r r r%

LAFORTUNE LAMBERTIAN LAFORTUNE WARDRBFACTUAL RBFACTUAL

[Oren, Nayar 2001] [Matusik et al., 2003]

Evaluation: No spatial variation

30

Reflectance Modeling

Example: Human Face

DIFFUSE SPECULAR

θr

xr

( , , , , )q x y u v w=r

aRGB(x, y)

Reflectance Modeling

2 dφ

Example: Human Face

31

Reflectance Modeling

Results: Lighting

Reflectance Modeling

Results: Viewpoint

32

Reflectance Modeling

Results

Reflectance Modeling

♦ Reciprocity (& isotropy):Helmholtz stereopsis– reconstruction

Summary

u

v

θh

2φd

♦ Separability:Color subspaces– reconstruction, recognition, motion

estimation, segmentation

♦ Spatial coherence, compressibility:Reflectance sharing– modeling, appearance capture

33

Reflectance Modeling

Some Future Work

♦Ubiquitous appearance capture– Spatial reflectance discontinuities– Interreflections; sub-surface scattering

[Nayar et al., 2004]

www.eecs.harvard.edu/[email protected]