References* - rd.springer.com978-1-4757-2175-1/1.pdf · References* Aidun, C. K. 1987 Stability of...

51
References* Aidun, C. K. 1987 Stability of convection rolls in porous media. ASME HTD 94, 31-36. [6.8] Aidun, C. K. and Steen, P. H. 1987 Transition of oscillatory convective heat transfer in a fluid-saturated porous medium. AIAA 1. Thermophys. Heat Transfer 1, 268-273. [6.8] Artem'eva, E. L. and Stroganova, E. V. 1987 Stability of a nonuniformly heated fluid in a porous horizontal layer. Fluid Dyn. 21, 845-848. [6.10] Azfal, N. 1985 Two-dimensional buoyant plume in porous media: higher-order effects. Int. 1. Heat Mass Transfer 28, 2029-2041. [5.10.1.1] Badr, H. M. and Pop, I. 1988 Combined convection from an isothermal horizontal rod buried in a porous medium. Int. 1. Heat Mass Transfer 31, 2527- 2541. [8.1.3] Bankvall, C. G. 1974 Natural convection in a vertical permeable space. Warme- Stoffubertrag. 7,22-30. [7.1.2] Barak, A. Z. 1987 Comments on "High velocity flow in porous media" by Hassanizadeh and Gray. Transport in Porous Media 2, 533-535. [1.5.2] Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, Cambridge University Press. [1.5.1] Bau, H. H. 1984a Low Rayleigh number thermal convection in a saturated porous medium bounded by two horizontal, eccentric cylinders. ASME 1. Heat Transfer 106, 166-175. [7.3.3] Bau, H. H. 1984b Convective heat losses from a pipe buried in a semi-infinite porous medium. Int. 1. Heat Mass Transfer 27, 2047-2056. [5.5.2] Bau, H. H. 1984c Thermal convection in a horizontal, eccentric annulus containing a saturated porous medium - an extended perturbation expansion. Int. 1. Heat Mass Transfer 27, 2277-2287. [7.3.3] Bau, H. H. and Torrance, K. E. 1981 Onset of convection in a permeable medium between vertical coaxial cylinders. Phys. Fluids 24, 382-385. [6.16.1] Bau, H. H. and Torrance, K. E. 1982a Boiling in low permeability porous materials. Int. 1. Heat Mass Transfer 25, 45-55. [10.3.1] Bau, H. H. and Torrance, K. E. 1982b Low Rayleigh number thermal convection in a vertical cylinder filled with porous materials and heated from below. ASME 1. Heat Transfer 104, 166-172. [6.16.1] Bau, H. H. and Torrance, K. E. 1982c Thermal convection and boiling in a porous medium. Lett. Heat Mass Transfer 9,431-333. [10.3.1] * The numbers in square brackets indicate the sections in which references were quoted in the text.

Transcript of References* - rd.springer.com978-1-4757-2175-1/1.pdf · References* Aidun, C. K. 1987 Stability of...

References*

Aidun, C. K. 1987 Stability of convection rolls in porous media. ASME HTD 94, 31-36. [6.8]

Aidun, C. K. and Steen, P. H. 1987 Transition of oscillatory convective heat transfer in a fluid-saturated porous medium. AIAA 1. Thermophys. Heat Transfer 1, 268-273. [6.8]

Artem'eva, E. L. and Stroganova, E. V. 1987 Stability of a nonuniformly heated fluid in a porous horizontal layer. Fluid Dyn. 21, 845-848. [6.10]

Azfal, N. 1985 Two-dimensional buoyant plume in porous media: higher-order effects. Int. 1. Heat Mass Transfer 28, 2029-2041. [5.10.1.1]

Badr, H. M. and Pop, I. 1988 Combined convection from an isothermal horizontal rod buried in a porous medium. Int. 1. Heat Mass Transfer 31, 2527-2541. [8.1.3]

Bankvall, C. G. 1974 Natural convection in a vertical permeable space. Warme­Stoffubertrag. 7,22-30. [7.1.2]

Barak, A. Z. 1987 Comments on "High velocity flow in porous media" by Hassanizadeh and Gray. Transport in Porous Media 2, 533-535. [1.5.2]

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, Cambridge University Press. [1.5.1]

Bau, H. H. 1984a Low Rayleigh number thermal convection in a saturated porous medium bounded by two horizontal, eccentric cylinders. ASME 1. Heat Transfer 106, 166-175. [7.3.3]

Bau, H. H. 1984b Convective heat losses from a pipe buried in a semi-infinite porous medium. Int. 1. Heat Mass Transfer 27, 2047-2056. [5.5.2]

Bau, H. H. 1984c Thermal convection in a horizontal, eccentric annulus containing a saturated porous medium - an extended perturbation expansion. Int. 1. Heat Mass Transfer 27, 2277-2287. [7.3.3]

Bau, H. H. and Torrance, K. E. 1981 Onset of convection in a permeable medium between vertical coaxial cylinders. Phys. Fluids 24, 382-385. [6.16.1]

Bau, H. H. and Torrance, K. E. 1982a Boiling in low permeability porous materials. Int. 1. Heat Mass Transfer 25, 45-55. [10.3.1]

Bau, H. H. and Torrance, K. E. 1982b Low Rayleigh number thermal convection in a vertical cylinder filled with porous materials and heated from below. ASME 1. Heat Transfer 104, 166-172. [6.16.1]

Bau, H. H. and Torrance, K. E. 1982c Thermal convection and boiling in a porous medium. Lett. Heat Mass Transfer 9,431-333. [10.3.1]

* The numbers in square brackets indicate the sections in which references were quoted in the text.

358 Convection in Porous Media

Bear, J. and Bachmat, Y. 1990 Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic, Dordrecht. [1.1, 1.5.3]

Beavers, G. S. and Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. 1. Fluid Mech. 30, 197-207. [1.6]

Beavers, G. S., Sparrow, E. M., and Magnuson, R. A. 1970 Experiments on coupled parallel flows in a channel and a bounding medium. ASME 1. Basic Engng. 92, 843-848. [1.6]

Beavers, G. S., Sparrow, E. M., and Masha, B. A. 1974 Boundary conditions at a porous surface which bounds a fluid flow. AIChE 1.20, 596-597. [1.6]

Beavers, G. S., Sparrow, E. M., and Rodenz, D. E. 1973 Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. 1. Appl. Mech. 40, 655-660. [1.5.2]

Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377-1383. [1.5.1, 6.15.1]

Beckermann, C. and Viskanta, R. 1987 Forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous medium. Int. 1. Heat Mass Transfer 30, 1547-1551. [4.8]

Beckermann, C. and Viskanta, R. 1988a Natural convection solid/liquid phase change in porous media. Int. 1. Heat Mass Transfer 31, 35-46. [10.1.6]

Beckermann, C. and Viskanta, R. 1988b Double-diffusive convection during dendritic solidification of a binary mixture. PhysicoChemical Hydrodyn. 10, 195-213. [10.2.2]

Beckermann, C., Viskanta, R., and Ramadhyani, S. 1986 A numerical study of non-Darcian natural convection in a vertical enclosure filled with a porous medium. Numer. Heat Transfer 10, 557-570. [7.6.2]

Beckermann, C., Viskanta, R., and Ramadhyani, S. 1988 Natural convection in vertical enclosures containing simultaneously fluid and porous layers. 1. Fluid Mech. 186, 257-284. [7.7]

Bejan, A. 1978 Natural convection in an infinite porous medium with a concentrated heat source. 1. Fluid Mech. 89, 97-107. [5.11.2]

Bejan, A. 1979 On the boundary layer regime in a vertical enclosure filled with a porous medium. Lett. Heat Mass Transfer 6, 93-102. [7.1.2, 7.2]

Bejan, A. 1980 A synthesis of analytical results for natural convection heat transfer across rectangular enclosures. Int. 1. Heat Mass Transfer 23, 723-726. [7.1.3, 7.4, 7.4.2]

Bejan, A. 1981 Lateral intrusion of natural convection into a horizontal porous structure. ASME 1. Heat Transfer 103, 237-241. [7.4, 7.4.1]

Bejan, A. 1983a Natural convection heat transfer in a porous layer with internal flow obstructions. Int. 1. Heat Mass Transfer 26, 815-822. [7.3.1]

Bejan, A. 1983b The boundary layer regime in a porous layer with uniform heat flux from the side. Int. 1. Heat Mass Transfer 26, 1339-1346. [7.2]

Bejan, A. 1984 Convection Heat Transfer, Wiley, New York. [1.1, 4.1, 4.2, 4.5, 5.1.4, 5.11.1, 6.9.2, 7.1.1, 7.1.2, 7.3.3, 7.4.2, 9.2.1, 10.1.2]

References 359

Bejan, A. 1985 The method of scale analysis: natural convection in porous media. Natural Convection: Fundamentals and Applications (ed. S. Kakar;, et al.), Hemisphere, Washington, DC, 548-572. [7.1.1]

Bejan, A. 1987 Convective heat transfer in porous media. Handbook of Single­Phase Convective Heat Transfer (eds. S. Kakar;, R. K. Shah, and W. Aung), Chapter 16, Wiley, New York. [6.20, 7.3.3, 7.3.4, 7.3.5]

Bejan, A. 1989 Theory of melting with natural convection in an enclosed porous medium. ASME J. Heat Transfer 111,407-415. [10.1.3, 10.1.5]

Bejan, A. 1990a Theory of heat transfer from a surface covered with hair. ASME J. Heat Transfer 112, 662-667. [4.10]

Bejan, A. 1990b Optimum hair strand diameter for minimum free-convection heat transfer from a surface covered with hair. Int. J. Heat Mass Transfer 33, 206-209. [5.13]

Bejan, A. and Anderson, R. 1981 Heat transfer across a vertical impermeable partition imbedded in a porous medium. Int. J. Heat Mass Transfer 24, 1237-1245. [5.1.5, 7.3.1]

Bejan, A. and Anderson, R. 1983 Natural convection at the interface between a vertical porous layer and an open space. ASME J. Heat Transfer 105, 124-129. [5.1.5]

Bejan, A. and Khair, K. R. 1985 Heat and mass transfer by natural convection in a porous medium. Int. J. Heat Mass Transfer 28, 909-918. [9.2.1]

Bejan, A. and Lage, J. L. 1991 Heat transfer from a surface covered with hair. Convective Heat and Mass Transfer in Porous Media (eds. S. Kakar;, B. Kilki§, F. A. Kulacki, and F. Arinc;) , Kluwer Academic, Dordrecht, 823-845. [1.2, 4.10]

Bejan, A. and Poulikakos, D. 1984 The non-Darcy regime for vertical boundary layer natural convection in a porous medium. Int. J. Heat Mass Transfer 27, 717-722. [5.1.7.2]

Bejan, A. and Tien, C. L. 1978 Natural convection in a horizontal porous medium subjected to an end-to-end temperature difference. ASME 1. Heat Transfer 100, 191-198; errata 105, 683-684. [7.1.3, 7.3.2, 7.3.3]

Bejan, A. and Tien, C. L. 1979 Natural convection in horizontal space bounded by two concentric cylinders with different end temperatures. Int. J. Heat Mass Transfer 22, 919-927. [7.3.3]

Bejan, A., Zhang, Z., and Jany, P. 1990 The horizontal intrusion layer of melt in a saturated porous medium. Int. J. Heat Fluid Flow 11, 284-289. [10.1.4]

Beukema, K. J. and Bruin, S. 1983 Three-dimensional natural convection in a confined porous medium with internal heat generation. Int. J. Heat Mass Transfer 26, 451-458. [6.15.3]

Bjornsson, S. and Stefansson, V. 1987 Heat and mass transport in geothermal reservoirs. Advances in Transport Phenomena in Porous Media (eds. J. Bear and M. Y. Corapcioglu), Martinus Nijhoff, The Netherlands, 145-153. [11]

Blake, K. R., Bejan, A., and Poulikakos, D. 1984 Natural convection near 4"C in a water saturated porous layer heated from below. Int. J. Heat Mass Transfer 27, 2355-2364. [6.20]

360 Convection in Porous Media

Blythe, P. A. and Simpkins, P. G. temperature dependent viscosity. [6.7]

1981 Convection in a porous layer for a Int. J. Heat Mass Transfer 24, 497-506.

Blythe, P. A, Daniels, P. G., and Simpkins, P. G. 1982 Thermally driven cavity flows in porous media. I. The vertical boundary layer structure near the corners. Proc. Roy. Soc. London Ser. A 380, 119-136. [7.1.2]

Blythe, P. A., Daniels, P. G., and Simpkins, P. G. 1985a Convection in a fluid saturated porous medium due to internal heat generation. Int. Comm. Heat Mass Transfer 12, 493-504. [6.17]

Blythe, P. A, Daniels, P. G., and Simpkins, P. G. 1985b Limiting behaviours in porous media cavity flows. Natural Convection: Fundamentals and Applications (eds. S. Kaka\=, W. Aung, and R. Viskanta), Hemisphere, Washington, DC, 600-611. [7.1.3]

Blythe, P. A., Simpkins, P. G., and Daniels, P. G. 1983 Thermal convection in a cavity filled with a porous medium: a classification of limiting behaviours. Int. J. Heat Mass Transfer 26, 701-708. [7.1.1]

Bodvarsson, G. S., Pruess, K., and Lippmann, M. J. 1986 Modeling of geothermal systems. J. Petrol. Tech. 38, 1007-1021. [11]

Bories, S. 1970a Sur les mechanismes fondamentaux de la convection naturelle en milieu poreux. Rev. Gen. Therm. 9, 1377-1401. [6.9.1]

Bories, S. 1970b Comparaison des previsions d'une theorie non lineaire et des resultats experimentaux en convection naturelle dans une couche poreuse saturee horizontale. C. R. Acad. Sci. Paris B 271, 269-272. [6.9.1]

Bories, S. A. 1987 Natural convection in porous media. Advances in Transport Phenomena in Porous Media (eds. J. Bear and M. Y. Corapcioglu), Martinus Nijhoff, The Netherlands, 77-141. [6.3, 6.5]

Bories, S. A. 1991 Fundamentals of drying of capillary-porous bodies. Convective Heat and Mass Transfer in Porous Media (eds. S. Kakag, B. Kilki§, F. A Kulacki, and F. Aring), Kluwer Academic, Dordrecht, 391-434. [3.6]

Bories, S. A. and Combarnous, M. A. 1973 Natural convection in a sloping porous layer. J. Fluid Mech. 57, 63-79. [7.8]

Bories, S. and Deltour, A. 1980 Influence des conditions aux limites sur la convection naturelle dans un volume poreux cylindrique. Int. J. Heat Mass Transfer 23, 765-771. [6.16.1]

Bories, S. and Thirriot, C. 1969 Echanges thermiques et tourbillons dans une couche poreuse horizontale. La Houille Blanche 24, 237-245. [6.9.1]

Borkowska-Pawlak, B. and Kordylewski, W. 1982 Stability of two-dimensional natural convection in a porous layer. Q. J. Mech. Appl. Math. 35, 279-290. [6.15.1]

Borkowska-Pawlak, B. and Kordylewski, W. 1985 Cell-pattern sensitivity to box configuration in a saturated porous medium. J. Fluid Mech. 150, 169-181. [6.15.1]

Boussinesq, J. 1903 Theorie Analytique de la Chaleur, Vol. 2, Gauthier-Villars, Paris. [2.3]

References 361

Brand, H. and Steinberg, V. 1983a Convective instabilities in binary mixtures in a porous medium. Physica A 119, 327-338. [9.1.3, 9.1.4]

Brand, H. and Steinberg, V. 1983b Nonlinear effects in the convective instability of a binary mixture in a porous medium near threshold. Phys. Lett. A 93, 333-336. [9.1.3, 9.1.4]

Brand, H. R., Hohenberg, P. C., and Steinberg, V. 1983 Amplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous medium. Phys. Rev. A 27, 591-594. [9.1.3]

Brinkman, H. C. 1947a A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27-34. [1.5.3]

Brinkman, H. C. 1947b On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. AI, 81-86. [1.5.3]

Buretta, R. J. and Berman, A. S. 1976 Convective heat transfer in a liquid saturated porous layer. ASME J. Appl. Mech. 43, 249-253. [6.3, 6.9.1, 6.9.2, 6.11.2]

Bums, P. J. and Tien, C. L. 1979 Natural convection in porous media bounded by concentric spheres and horizontal cylinders. Int. J. Heat Mass Transfer 22,

929-939. [7.3.3, 7.3.4] Busse, F. H. 1985 Transition to turbulence in Rayleigh-Benard convection.

Hydrodynamic Instabilities and the Transition to Turbulence (eds. H. L. Swinney and J. Gollub), 2nd ed., Springer, Berlin, 97-137. [6.4]

Busse, F. H. and Joseph, D. D. 1972 Bounds for heat transport in a porous layer. J. Fluid Mech. 54, 521-543. [6.3]

Caltagirone, J. P. 1975 Thermoconvective instabilities in a horizontal porous layer. J. Fluid Mech. 72, 269-287. [6.8]

Caltagirone, J. P. 1976a Stabilite d'une couche poreuse horizontale soumise a des conditions aux limites periodiques. Int. J. Heat Mass Transfer 19, 815-820. [6.11.3 ]

Caltagirone, J. P. 1976b Thermoconvective instabilities in a porous medium bounded by two concentric horizontal cylinders. J. Fluid Mech. 76, 337-362. [7.3.3]

Caltagirone, J. P. 1980 Stability of a saturated porous layer subject to a sudden rise in surface temperature: comparison between the linear and energy methods. Q. J. Mech. Appl. Math. 33, 47-58. [6.11.3]

Caltagirone, J. P. and Bories, S. 1985 Solutions and stability criteria of natural convective flow in an inclined porous layer. J. Fluid Mech. 155, 267-287. [7.8]

Caltagirone, J. P. and Fabrie, P. 1989 Natural convection in a porous medium at high Rayleigh numbers. Part 1 - Darcy's model. Eur. J. Mech. B 8, 207-227. [6.8]

Caltagirone, J. P., Cloupeau, M., and Combamous, M. 1971 Convection naturelle fluctuante dans une couche poreuse horizontale. C. R. Acad. Sci. Paris

B 273, 833-836. [6.9.1]

362 Convection in Porous Media

Caltagirone, J. P., Fabrie, P., and Combarnous, M. 1987 De la convection naturelle oscillante en milieu poreux au chaos temporel? C. R. Acad. Sci. Paris II 305, 549-553. [6.8]

Caltagirone, J. P., Meyer, G., and Mojtabi, A. 1981 Structurations thermoconvectives tridimensionnelles dans une couche poreuse horizontale. 1. Mecanique 20, 219-232. [6.8, 6.15.1]

Cao, W. Z. and Poulikakos, D. 1991 Solidification of a binary mixture saturating a bed of glass spheres. Convective Heat and Mass Transfer in Porous Media (eds. S. Kaka~, B. Kilki§, F. A. Kulacki, and F. Arinr;), Kluwer Academic, Dordrecht, 725-772. [10.2.2]

Castinel, G. and Combarnous, M. 1975 Natural convection in an anisotropic porous layer. Rev. Gen. Therm.168, 937-947. English translation, Int. Chern. Eng. 17, 605-614 (1977). [6.12]

Catton, I. 1985 Natural convection heat transfer in porous media. Natural

Convection: Fundamentals and Applications (eds. S. Kaka~, W. Aung, and R. Viskanta), Hemisphere, Washington, DC, 514-547. [6.9.2, 6.19.2]

Catton, I., Georgiadis, J. G., and Adnani, P. 1988 The impact of nonlinear convective processes in transport phenomena in porous media. ASME HTD 96, Vol. 1, 767-777. [2.2.3]

Chan, Y. T. and Banerjee, S. 1981 Analysis of transient three-dimensional natural convection in porous media. ASME 1. Heat Transfer 103, 242-248. [6.9.2]

Chandrasekhara, B. C. 1985 Mixed convection in the presence of horizontal impermeable surfaces in saturated porous media with variable permeability. Wiirme-Stoffiibertrag.19, 195-201. [8.1.2]

Chandrasekhara, B. C. and Nagaraju, P. 1988 Composite heat transfer in the case of a steady laminar flow of a gray fluid with small optical density past a horizontal plate embedded in a saturated porous medium. Wiirme-StofJiibertrag. 23, 343-352. [8.1.2]

Chandrasekhara, B. C. and Namboodiri, P. M. S. 1985 Influence of variable permeability on combined free and forced convection about inclined surfaces in porous media. Int. 1. Heat Mass Transfer 28, 199-206. [8.1.1]

Chang, I. D. and Cheng, P. 1983 Matched asymptotic expansions for free convection about an impermeable horizontal surface in a porous medium. Int. 1. Heat Mass Transfer 26, 163-173. [5.1.6]

Chang, W. J. and Jang, J. Y. 1989a Non-Darcian effects on vortex instability of a horizontal natural convection flow in a porous medium. Int. 1. Heat Mass Transfer 32, 529-539. [5.4]

Chang, W. J. and Jang, J. Y. 1989b Inertia effects on vortex instability of a horizontal natural convection flow in a saturated porous medium. Int. 1. Heat Mass Transfer 32, 541-550. [5.4]

Chelghoum, D. E., Weidman, P. D., and Kassoy, D. R. 1987 Effect of slab width on the stability of natural convection in confined saturated porous media. Phys. Fluids 30, 1941-1947. [6.15.1]

References 363

Chellaiah, S. and Viskanta, R. 1987 Freezing of water and water-salt solutions around aluminum spheres. Int. Comm. Heat Mass Transfer 14, 437-446. [ 10.2.2]

Chellaiah, S. and Viskanta, R. 1989a On the supercooling during freezing of water saturated porous media. Int. Comm. Heat Mass Transfer 16, 163-172. [10.2.2]

Chellaiah, S. and Viskanta, R. 1989b Freezing of water-saturated porous media in the presence of natural convection: experiments and analysis. ASME J. Heat Transfer 111, 424-432; errata 648. [10.2.2]

Chellaiah, S. and Viskanta, R. 1990 Natural convection melting of a frozen porous medium. Int. J. Heat Mass Transfer 33, 887-899. [10.2.2]

Chen, C. H. and Chen, C. K. 1990a Non-Darcian mixed convection along a vertical plate embedded in a porous medium. Appl. Math. Modelling 14, 482-488. [8.1.1]

Chen, C. K. and Chen, C. H. 1990b Nonuniform porosity and non-Darcian effects on conjugate mixed convection heat transfer from a plate fin in porous media. Int. J. Heat Fluid Flow 11, 65-71. [8.1.4]

Chen, C. K., Hung, C. I., and Homg, H. C. 1987 Transient natural convection on a vertical flat plate embedded in a high-porosity medium. ASME J. Energy

Res. Tech. 109, 112-118. [5.1.3] Chen, F. 1990 On the stability of salt-finger convection in superposed fluid and

porous layers. ASME J. Heat Transfer 112, 1088-1092. [9.4] Chen, F. and Chen, C. F. 1988 Onset of finger convection in a horizontal

porous layer underlying a fluid layer. ASME J. Heat Transfer 110, 403-409. [6.19.1.2, 9.4]

Chen, F. and Chen, C. F. 1989 Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below. J. Fluid Mech. 207, 311-321. [6.19.1.2]

Chen, H. T. and Chen, C. K. 1987 Natural convection of non-Newtonian fluids about a horizontal surface in a porous medium. ASME J. Energy Res. Tech. 109, 119-123. [5.2]

Chen, H. T. and Chen, C. K. 1988a Free convection flows of non-Newtonian fluids along a vertical plate embedded in a porous medium. ASME J. Heat

Transfer 110, 257-259. [5.1.9] Chen, H. T. and Chen, C. K. 1988b Natural convection of a non-Newtonian fluid

about a horizontal cylinder and a sphere in a porous medium. Int. Comm. Heat

Mass Transfer 15, 605-614. [5.5.1, 5.6.1]. Chen, K. S. and Ho, J. R. 1986 Effects of flow inertia on vertical natural

convection in saturated porous media. Int. J. Heat Mass Transfer 29, 753-759. [5.1. 7 .2]

Cheng, P. 1977a Constant surface heat flux solutions for porous layer flows. Lett. Heat Mass Transfer 4, 119-128. [5.1.2]

Cheng, P. 1977b The influence of lateral mass flux on free convection boundary layers in a saturated porous medium. Int. J. Heat Mass Transfer 20, 201-206. [5.1.2]

364 Convection in Porous Media

Cheng, P. 1977c Combined free and forced boundary layer flows about inclined surfaces in a porous medium. Int. 1. Heat Mass Transfer 20, 807-814. [4.1, 8.1.4]

Cheng, P. 1977d Similarity solutions for mixed convection from horizontal impermeable surfaces in saturated porous media. Int. 1. Heat Mass Transfer 20, 893-898. [8.1.2]

Cheng, P. 1978 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1-105. [3.5, 6.9.1, 11, 11.7]

Cheng, P. 1981 a Thermal dispersion effects in non-Darcian convective flows in a saturated porous medium. Lett. Heat Mass Transfer 8, 267-270. [5.1.7.3, 5.1.8]

Cheng, P. 1981b Film condensation along an inclined surface in a porous medium. Int. 1. Heat Mass Transfer 24, 983-990. [lOA]

Cheng, P. 1982 Mixed convection about a horizontal cylinder and a sphere in a fluid saturated porous medium. Int. 1. Heat Mass Transfer 25, 1245-1247. [4.3, 8.1.3]

Cheng, P. 1985a Natural convection in a porous medium: external flows. Natural Convection: Fundamentals and Applications (eds. S. Kaka~, W. Aung, and R. Viskanta), Hemisphere, Washington, DC, 475-513. [5, 5.1.7.3, 5.1.8, 5.3, 5.5.2, 5.6.1, 5.7, 5.10.1.2]

Cheng, P. 1985b Geothermal heat transfer. Handbook of Heat Transfer Applications (eds. W. M. Rohsenow et al.), 2nd edition, McGraw-Hill, New York, Chapter 11. [11, 11.7]

Cheng, P. 1987 Wall effects on fluid flow and heat transfer in porous media. Proc. 1987 ASME JSME Thermal Engineering Joint Con/. 2, 297-303. [4.8]

Cheng, P. and Ali, C. L. 1981 An experimental investigation of free convection about an inclined surface in a porous medium. AS ME 20th National Heat Transfer Conference, Paper No. 81-HT-85. [5.3]

Cheng, P. and Chang, I. D. 1976 On buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces. Int. 1. Heat Mass Transfer 19, 1267-1272. [5.2]

Cheng, P. and Chang, I. D. 1979 Convection in a porous medium as a singular perturbation problem. Lett. Heat Mass Transfer 6, 253-258. [5.1.6]

Cheng, P. and Chui, D. K. 1984 Transient film condensation on a vertical surface in a porous medium. Int. 1. Heat Mass Transfer 27, 795-798. [lOA]

Cheng, P. and Hsu, C. T. 1984 Higher-order approximations for Darcian free convective flow about a semi-infinite vertical flat plate. ASME 1. Heat Transfer 106, 143-151. [5.1.6]

Cheng, P. and Hsu, C. T. 1986a Fully developed, forced convective flow through an annular packed-sphere bed with wall effects. Int. 1. Heat Mass Transfer 29, 1843-1853. [4.9]

Cheng, P. and Hsu, C. T. 1986b Applications of Van Driest's mixing length theory to transverse thermal dispersion in forced convective flow through a packed bed. Int. Comm. Heat Mass Transfer 13, 613-626. [4.9]

References 365

Cheng, P. and Minkowycz, W. J. 1977 Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. 1. Geophys. Res. 82, 2040-2044. [5.1.1, 10.1.5]

Cheng, P. and Pop, I. 1984 Transient free convection about a vertical flat plate imbedded in a porous medium. Int. 1. Engng. Sci. 22, 253-264. [5.1.3]

Cheng, P. and Teckchandani, L. 1977 Numerical solutions for transient heating and fluid withdrawal in a liquid-dominated geothermal reservoir. The Earth's Crust (ed. J. G. Heacock), Amer. Geophys. Union, Washington, DC, 705-721. [11. 7]

Cheng, P. and Verma, A. K. 1981 The effect of subcooled liquid on film boiling about a vertical heated surface in a porous medium. Int. 1. Heat Mass Transfer 24, 1151-1160. [10.3.2]

Cheng, P. and Vortmeyer, D. 1988 Transverse thermal dispersion and wall channelling in a packed bed with forced convective flow. Chern. Engng. Sci. 43, 2523-2532. [4.9]

Cheng, P. and Zheng, T. M. 1986 Mixed convection in the thermal plume above a horizontal line source of heat in a porous medium of infinite extent. Heat Transfer 1986, Hemisphere, Washington, DC,S, 2671-2675. [8.1.4]

Cheng, P. and Zhu, H. 1987 Effects of radial dispersion on fully-developed forced convection in cylindrical packed tubes. Int. 1. Heat Mass Transfer 30, 2373-2383. [4.9]

Cheng, P., Ali, C. L., and Verma, A. K. 1981 An experimental study of non­Darcian effects in free convection in a saturated porous medium. Lett. Heat Mass Transfer 8, 261-265. [5.1.8]

Cheng, P., Chowdhury, A., and Hsu, C. T. 1991 Forced convection in packed tubes and channels with variable porosity and thermal dispersion effects. Convective Heat and Mass Transfer in Porous Media, (eds. S. Kaka~, B. Kilki§, F. A. Kulacki, and F. Arinc;), Kluwer Academic, Dordrecht, 625-653. [1.7, 4.9]

Cheng, P., Chui, D. K., and Kwok, L. P. 1982 Film boiling about two­dimensional and axisymmetric isothermal bodies of arbitrary shape in a porous medium. Int. 1. Heat Mass Transfer 25, 1247-1249. [10.3.2]

Cheng, P., Hsu, C. T., and Chowdhury, A. 1988 Forced convection in the entrance region of a packed channel with asymmetric heating. ASME 1. Heat Transfer 110, 946-954. [4.9]

Cheng, P., Le, T. T., and Pop, I. 1985 Natural convection of a Darcian fluid about a cone. Int. Cornrn. Heat Mass Transfer 12, 705-717. [5.8]

Chhuon, B. and Caltagirone, J. P. 1979 Stability of a horizontal porous layer with timewise periodic boundary conditions. ASME 1. Heat Transfer 101, 244-248. [6.11.3]

Choi, C. Y. and Kulacki, F. A. 1990 Non-Darcian effects on mixed convection in a vertical porous annulus. Heat Transfer 1990, Hemisphere, New York,S, 271-276. [8.3.4]

Choi, C. Y., Lai, F. C., and Kulacki, F. A. 1989 Mixed convection in vertical porous annuli. AIChE Syrnpos. Ser.269, 356-361. [8.3.4]

366 Convection in Porous Media

Clarksean, R., Kwendakwema, N., and Boehm, R. 1988 A study of mixed convection in a porous medium between vertical concentric cylinders. ASME HTD 96, Vol. 2, 339-344. [8.3.3]

Close, D. J. 1986 A general correlation for natural convection in liquid-saturated beds of spheres. ASME J. Heat Transfer 108, 983-985. [6.9.2]

Close, D. J., Symons, J. G., and White, R. F. 1985 Convective heat transfer in shallow gas-filled porous media: experimental investigation. Int. J. Heat Mass Transfer 28, 2371-2378. [6.9.1]

Collins, R. E. 1961 Flow of Fluids through Porous Materials, Reinhold, New York. [1.1]

Combarnous, M. 1970 Convection naturelle et convection mixte dans une couche poreuse horizontale. Rev. Gen. Therm.9, 1355-1375. [6.9.1]

Combarnous, M. 1972 Description du transfert de chaleur par convection naturelle dans une couche poreuse horizontale it l'aide d'un coefficient de transfert solide-fluide. C. R. Acad. Sci. Paris A 275, 1375-1378. [6.5, 6.9.2]

Combarnous, M. and Bia, P. 1971 Combined free and forced convection in porous media. Soc. Petrol. Eng. J. 11, 399-405. [6.9.1, 8.2.1]

Combarnous, M. and Bories, S. 1974 M6delization de la convection naturelle au sein d'une couche poreuse horizontale it l'aide d'un coefficient de transfert solide­fluide. Int. J. Heat Mass Transfer 17, 505-515. [6.9.2]

Combarnous, M. A. and Bories, S. A. 1975 Hydrothermal convection in saturated porous media. Adv. Hydroscience 10, 231-307. [6.9.1,6.9.2]

Combarnous, M. and Le Fur, B. 1969 Transfert de chaleur par convection naturelle dans une couche poreuse horizontale. C. R. Acad. Sci. Paris B 269, 1009-1012. [6.3, 6.9.1]

Combarnous, M. and Le Fur, B. 1970 Convection mixte dans une couche poreuse horizontale, Proc. 4th Int. Heat Transfer Conf., Versailles, Com. CT 3.3. [6.9.1]

Corey, A. T., Rathjens, C. H., Henderson, J. H., and Wyllie, M. R. J. 1956 Three-phase relative permeability. Trans. Am. Inst. Min. Metall. Pet. Eng. 207, 349-351. [3.5.4]

Coulaud, 0., Morel, P., and Caltagirone, J. P. 1988 Numerical modelling of nonlinear effects in laminar flow through a porous medium. J. Fluid Mech. 190, 393-407. [1.5.2]

Cox, B. L. and Pruess, K. 1990 Numerical experiments on convective heat transfer in water-saturated porous media at near-critical conditions. Transport in Porous Media 5, 299-323. [11.8]

Daniels, P. G. and Simpkins, P. G. 1984 The flow induced by a heated vertical wall in a porous medium. Q. J. Mech. Appl. Math. 37, 339-354. [5.12.2]

Daniels, P. G., Blythe, P. A., and Simpkins, P. G. 1982 Thermally driven cavity flows in porous media. II. The horizontal boundary layer structure. Proc. Roy. Soc. London Ser. A 382, 135-154. [7.1.1]

Daniels, P. G., Blythe, P. A. and Simpkins, P. G. 1986 Thermally driven shallow cavity flows in porous media: the intermediate regime. Proc. Roy. Soc. London Ser. A 406, 263-285. [7.1.3]

References 367

Daniels, P. G., Simpkins, P. G., and Blythe, P. A. 1989 Thermally driven shallow cavity flows in porous media: the merged layer regime. Proc. Roy. Soc. London Ser. A 426, 107-124. [7.1.3]

David, E., Lauriat, G., and Cheng, P. 1988 Natural convection in rectangular cavities filled with variable porosity media. ASME HTD 96, Vol. 1, 605-612. [7.6.2]

David, E., Lauriat, G., and Cheng, P. 1991 A numerical solution of variable porosity effects on natural convection in a packed-sphere cavity. ASME J. Heat Transfer, in press. [4.9]

David, E., Lauriat, G., and Prasad, V. 1989 Non-Darcy natural convection in packed-sphere beds between concentric vertical cylinders. AIChE Sympos. Ser. 269, 90-95. [7.6.2]

Davis, S. H., Rosenblat, S., Wood, J. R., and Hewitt, T. A. 1985 Convective fluid flow and diagenetic patterns in domed sheets. Amer. J. Sci. 285, 207-223. [11.5]

Dona, C. L. G. and Stewart, W. E. 1989 Variable property effects on convection in a heat generating porous medium. ASME J. Heat Transfer 111, 1100-1102. [6.17]

Donaldson, I. G. 1962 Temperature gradients in the upper layers of the Earth's crust due to convective water flows. 1. Geophys. Res. 67, 3449-3459. [6.13.1]

Donaldson, I. G. 1982 Heat and mass circulation in geothermal systems. Ann. Rev. Earth Planet Sci. 10, 377-395. [11]

Du, Z. G. and Bilgen, E. 1990 Natural convection in vertical cavities with partially filled heat-generating porous media. Numer. Heat Transfer A 18, 371-386. [7.7]

Dullien, F. A. L. 1979 Porous Media: Fluid Transport and Pore Structure,

Academic, New York. [1.4.2] Dunn, I. C. and Hardee, H. C. 1981 Superconvecting geothermal zones. J.

Volcanol. Geotherm. Res. 11, 189-201. [11.8] Durlofsky, L. and Brady, J. F. 1987 Analysis of the Brinkman equation as a

model for flow in porous media. Phys. Fluids 30, 3329-3341. [1.5.3] Dybbs, A. and Edwards, R. V. 1984 A new look at porous media fluid mechanics

- Darcy to turbulent. Fundamentals of Transport Phenomena in Porous Media (eds. J. Bear and V. Carapcioglu), Martinus Nijhoff, The Netherlands, 199-256. [7.6.1]

Ebinuma, C. D. and Nakayama, A. 1990a Non-Darcy transient and steady film condensation in a porous medium. Int. Comm. Heat Mass Transfer 17, 49-58. [10.4]

Ebinuma, C. D. and Nakayama, A. 1990b An exact solution for transient film condensation in a porous medium along a vertical surface with lateral mass flux. Int. Comm. Heat Mass Transfer 17, 105-111. [4.6.2, 10.4]

Ekholm, T. C. 1983 Studies of convection using a Hele-Shaw cell. Project Report, School of Engineering, University of Auckland. [6.13.2]

368 Convection in Porous Media

El-Khatib, G. and Prasad, V. 1987 Effects of stratification on thermal convection in horizontal porous layers with localized heating from below. ASME J. Heat Transfer 109, 683-687. [6.18]

Elder, J. W. 1967a Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 29-48. [2.5, 6.9.1, 6.18]

Elder, J. W. 1967b Transient convection in a porous medium. J. Fluid Mech. 27, 609-623. [6.9.1, 6.18]

Ene, H. I. and Polisevski, D. 1987 Thermal Flow in Porous Media, Reidel, Dordrecht. [1.4.3, 5.6.2, 5.11.2]

Epherre, J. F. 1975 Criterion for the appearance of natural convection in an anisotropic porous layer. Rev. Gen. Therm.168, 949-950. English translation, Int. Chern. Engng. 17, 615-616, 1977. [6.12]

Evans, D. G. and Nunn, J. A. 1989 Free thermohaline convection in sediments surrounding a salt column. J. Geophys. Res. 94, 12413-12422. [11.8]

Evans, G. H. and Plumb, O. A. 1978 Natural convection from a vertical isothermal surface imbedded in a saturated porous medium. AIAA-ASME Thermophysics and Heat Transfer Conf, Paper 78-HT -55, Palo Alto, California. [5.1.7.1, 5.1.8]

Facas, G. N. and Farouk, B. 1983 Transient and steady-state natural convection in a porous medium between two concentric cylinders. ASME J. Heat Transfer 105, 660-663. [7.3.3]

Fand, R. M. and Phan, R. T. 1987 Combined forced and natural convection heat transfer from a horizontal cylinder embedded in a porous medium. Int. J. Heat

Mass Transfer 30, 1351-1358. [8.1.3] Fand, R. M. and Yamamoto, L. H. 1990 Heat transfer by natural convection from

a horizontal cylinder embedded in a porous medium: the wall effect. Heat Transfer 1990, Hemisphere, New York,S, 183-188. [5.5.2]

Fand, R. M., Steinberger, T. E., and Cheng, P. 1986 Natural convection heat transfer from a horizontal cylinder embedded in a porous medium. Int. J. Heat Mass Transfer 29, 119-133. [5.5.2]

Farouk, B. and Shayer, H. 1988 Natural convection around a heated cylinder in a saturated porous medium. ASME J. Heat Transfer 110, 642-648. [5.5.2]

Fernandez, R. T. and Schrock, V. E. 1982 Natural convection from cylinders embedded in a liquid-saturated porous medium. Heat Transfer 1982, Elsevier, Amsterdam, 2, 335-340. [5.5.2].

Galdi, G. P., Payne, L. E., Proctor, M. R. E., and Straughan, B. 1987 Convection in thawing subsea permafrost. Proc. Roy. Soc. London Ser. A 414, 83-102. [11.3]

Ganapathy, R. and Purushothaman, R. 1990 Thermal convection from an instantaneous point heat source in a porous medium. Int. J. Engng. Sci. 28, 907-918. [5.11.2]

Gartling, D. K. and Hickox, C. E. 1985 Numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous medium. Int. J. Numer. Methods Fluids 5, 995-1013. [6.7]

References 369

Gasser, R. D. and Kazimi, M. S. 1976 Onset of convection in a porous medium with internal heat generation. ASME J. Heat Transfer 98, 49-54. [6.11.2]

Gatica, I. E., Viljoen, H. I., and Hlavacek, V. 1989 Interaction between chemical reaction and natural convection in porous media. Chern. Eng. Sci. 44, 1853-1870. [3.4]

George, 1. H., Gunn, R. D., and Straughan, B. 1989 Patterned ground formation and penetrative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46, 135-158. [11.2]

Georgiadis, I. G. 1991 Effect of randomness on heat and mass transfer in porous media. Convective Heat and Mass Transfer in Porous Media (eds. S. Kaka~, B. Kilki§, F. A. Kulacki, and F. Arin«), Kluwer Academic, Dordrecht, 499-524. [1.1]

Georgiadis, I. G. and Catton, I. 1985 Free convective motion in an infinite vertical porous slot: the non-Darcian regime. Int. J. Heat Mass Transfer 28, 2389-2392. [7.1.4]

Georgiadis, I. G. and Catton, I. 1986 Prandtl number effect on Benard convection in porous media. ASME J. Heat Transfer 108, 284-290. [6.9.2]

Georgiadis, I. G. and Catton, I. 1987 Stochastic modeling of unidirectional fluid transport in uniform and random packed beds. Phys. Fluids 30, 1017-1022. [1.1, 1.7]

Georgiadis, I. G. and Catton, I. 1988 Dispersion in cellular thermal convection in porous media. Int. J. Heat Mass Transfer 31, 1081-1091. [1.1, 6.6]

Gershuni, G. Z., Zhukhovitskii, E. M., and Lyubimov, D. V. 1980 Stability of stationary convective flow of a mixture in a vertical porous layer. Fluid Dynamics 15, 122-127. [9.2.4]

Gill, A. E. 1969 A proof that convection in a porous vertical slab is stable. J. Fluid Mech.35, 545-547. [7.1.4]

Gill, U. S. and Minkowycz, W. I. 1988 Boundary and inertia effects on conjugate mixed convection heat transfer from a vertical plate fin in a high­porosity porous medium. Int. J. Heat Mass Transfer 31, 419-427. [5.12.l]

Gjerde, K. M. and Tyvand, P. A. 1984 Thermal convection in a porous medium with continuous periodic stratification. Int. J. Heat Mass Transfer 27, 2289-2295. [6.13.2]

Gleason, K. I., Krantz, W. B., Caine, N., George, I. H., and Gunn, R. D. 1986 Geometrical aspects of sorted patterned ground in recurrently frozen soil. Science 232, 216-220. [11.2]

Gorla, R. S. R. and Tornabene, R. 1988 Free convection from a vertical plate with nonuniform surface heat flux and embedded in a porous medium. Transport in Porous Media 3, 95-105. [5.1.9]

Gorla, R. S. R. and Zinalabedini, A. H. 1987 Free convection from a vertical plate with nonuniform surface temperature and embedded in a porous medium. ASME J. Energy Res. Tech. 109, 27-30. [5.1.9]

Gosink, 1. P. and Baker, G. C. 1990 Salt fingering in subsea permafrost: some stability and energy considerations. J. Geophys. Res. 95, 9575-9583. [11.3]

370 Convection in Porous Media

Gounot, J. and Caltagirone, J. P. 1989 Stabilite et convection naturelle au sein d'une couche poreuse non homogene. Int. J. Heat Mass Transfer 32, 1131-1140. [6.13.4]

Grant, M. A. 1983 Geothermal reservoir modeling. Geothermies 12, 251-263. [11]

Gray, W. C. and O'Neill, K. 1976 On the general equations for flow in porous media and their reduction to Darcy's law. Water Resouees Res. 12, 148-154. [3.5.2]

Green, T. 1984 Scales for double-diffusive fingering in porous media. Water Resources Res. 20, 1225-1229. [9.1.3]

Green, T. and Freehill, R. L. 1969 Marginal stability in inhomogeneous porous media. J. Appl. Phys.40, 1759-1762. [6.13.1]

Greenkom, R. A. 1983 Flow Phenomena in Porous Media, Marcel Dekker, New York. [2.2.3]

Griffiths, R. W. 1981 Layered double-diffusive convection in porous media. J. Fluid Meeh. 102, 221-248. [9.1.3]

Gupta, V. P. and Joseph, D. D. 1973 Bounds for heat transport in a porous layer. J. Fluid Meeh. 57,491-514. [6.3, 6.9.1]

Haajizadeh, M. and Tien, C. L. 1983 Natural convection in a rectangular porous cavity with one permeable endwall. ASME J. Heat Transfer 105, 803-808. [7.3.2]

Haajizadeh, M. and Tien, C. L. 1984 Combined natural and forced convection in a horizontal porous channel. Int. J. Heat Mass Transfer 27, 799-813. [8.2.4]

Haajizadeh, M., Ozguc, A. F., and Tien, C. L. 1984 Natural convection in a vertical porous enclosure with internal heat generation. Int. J. Heat Mass Transfer 27, 1893-1902. [6.17]

Haber, S. and Mauri, R. 1983 Boundary conditions for Darcy's flow through porous media. Int. J. Multiphase Flow 9, 561-574. [1.6]

Hadim, A. and Burmeister, L. C. 1988 Onset of convection in a porous medium with internal heat generation and downward flow. AIAA J. Thermophys. Heat Transfer 2, 343-351. [6.11.2]

Hadim, A. and Govindarajan, S. 1988 Development of laminar mixed convection in a vertical porous channel. ASME HTD 105, 145-153. [8.3.1]

Haq, S. and Mulligan, J. C. 1990 Transient free convection about a vertical flat plate embedded in a saturated porous medium. Numer. Heat Transfer A 18, 227-242. [5.1.3]

Hardee, H. C. and Nilson, R. H. 1977 Natural convection in porous media with heat generation. Nucl. Sci. Engng.63, 119-132. [6.11.2]

Hartline, B. K. and Lister, C. R. B. 1977 Thermal convection in a Hele-Shaw cell. J. Fluid Meeh. 79, 379-389. [2.5]

Hartline, B. K. and Lister, C. R. B. 1981 Topographic forcing of supercritical convection in a porous medium such as the oceanic crust. Earth Planet. Sci. Lett. 55, 75-86. [11.6.2]

References 371

Hassan, M. and Mujumdar, A. S. 1985 Transpiration-induced buoyancy effect around a horizontal cylinder embedded in a porous medium. Int. J. Energy Res. 9, 151-163. [9.4]

Hassanizadeh, S. M. and Gray, W. G. 1988 Reply to comments by Barak on "High velocity flow in porous media" by Hassanizadeh and Gray. Transport in Porous Media 3, 319-321. [1.5.2]

Havstad, M. A. and Burns, P. J. 1982 Convective heat transfer in vertical cylindrical annuli filled with a porous medium. Int. J. Heat Mass Transfer 25, 1755-1766. [7.3.3]

He, X. S. and Georgiadis, J. G. 1990 Natural convection in porous media: effect of weak dispersion on bifurcation. J. Fluid Mech. 216,285-298. [6.11.2]

Hickox, C. E. 1981 Thermal convection at low Rayleigh number from concentrated sources in porous media. ASME J. Heat Transfer 103, 232-236. [5.11.2]

Hickox, C. E. and Gartling, D. K. 1981 A numerical study of natural convection in a horizontal porous layer subjected to an end-to-end temperature difference. ASME J. Heat Transfer 103, 797-802. [7.1.3]

Hickox, C. E. and Gartling, D. K. 1985 A numerical study of natural convection

in a vertical annular porous layer. Int. J. Heat Mass Transfer 28, 720-723. [7.3.3]

Hickox, C. E. and Watts, H. A. 1980 Steady thermal convection from a concentrated source in a porous medium. ASME J. Heat Transfer 102, 248-253.

[5.11.3] Himasekhar, K. and Bau, H. H. 1986 Large Rayleigh number convection in a

horizontal, eccentric annulus containing saturated porous media. Int. J. Heat Mass Transfer 29, 703-712. [7.3.3]

Himasekhar, K. and Bau, H. H. 1987 Thermal convection associated with

hot/cold pipes buried in a semi-infinite, saturated porous medium. Int. J. Heat Mass Transfer 30, 263-273. [5.12.3]

Himasekhar, K. and Bau, H. H. 1988 Thermal convection around a heat source embedded in a box containing a saturated porous medium. ASME J. Heat Transfer 110, 649-654. [5.12.3]

Hong, J. T. and Tien, C. L. 1987 Analysis of thermal dispersion effect on vertical-plate natural convection in porous media. Int. J. Heat Mass Transfer 30, 143-150. [5.1.7.3]

Hong, J. T., Tien, C. L., and Kaviany, M. 1985 Non-Darcian effects on vertical­

plate natural convection in porous media with high porosities. Int. J. Heat

Mass Transfer 28, 2149-2157. [5.1.7.2] Hong, J. T., Yamada, Y., and Tien, C. L. 1987 Effects of non-Darcian and

nonuniform porosity on vertical-plate natural convection in porous media. ASME J. Heat Transfer 109, 356-362. [5.1.7.1, 5.1.7.2]

Horne, R. N. 1979 Three-dimensional natural convection in a confined porous medium heated from below. J. Fluid Mech. 92, 751-766. [6.15.1]

372 Convection in Porous Media

Horne, R. N. and Caltagirone, J. P. 1980 On the evaluation of thermal disturbances during natural convection in a porous medium. J. Fluid Mech. 100, 385-395. [6.8, 6.15.1]

Horne, R. N. and O'Sullivan, M. J. 1974a Oscillatory convection in a porous medium heated from below. J. Fluid Mech. 66, 339-352. [6.8, 6.9.1, 6.18]

Horne, R. N. and O'Sullivan, M. J. 1974b Oscillatory convection in a porous medium: the effect of through flow. Proc. 5th Australasian Con/. Hydraulics Fluid Mech., Univ. Canterbury, Christchurch, New Zealand, 2, 234-237. [11.7]

Horne, R. N. and O'Sullivan, M. J. 1978a Origin of oscillatory convection in a porous medium heated from below. Phys. Fluids 21, 1260-1264. [6.8, 6.15.1]

Horne, R. N. and O'Sullivan, M. J. 1978b Convection in a porous medium heated from below: the effect of temperature dependent viscosity and thermal expansion coefficient. ASME J. Heat Transfer 100, 448-452. [6.18]

Horton, C. W. and Rogers, F. T. 1945 Convection currents in a porous medium. J. Appl. Phys. 16, 367-370. [6.1]

Hsu, C. T. and Cheng, P. 1979 Vortex instability in buoyancy-induced flow over inclined heated surfaces in porous media. ASME J. Heat Transfer 101, 660-665. [5.4]

Hsu, C. T. and Cheng, P. 1980a Vortex instability of mixed convection flow in a semi-infinite porous medium bounded by a horizontal surface. Int. J. Heat Mass Transfer 23, 789-798. [8.1.2]

Hsu, C. T. and Cheng, P. 1980b The onset of longitudinal vortices in mixed convective flow over an inclined surface in a porous medium. ASME J. Heat Transfer 102, 544-549. [8.1.2]

Hsu, C. T. and Cheng, P. 1985a Effects of upstream geometry on natural convection of a Darcian fluid about a semi-infinite inclined heated surface. ASME J. Heat Transfer 107, 283-292. [5.12.2]

Hsu, C. T. and Cheng, P. 1985b The Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous medium. Int. J. Heat Mass Transfer 28, 683-697. [5.1.7.1]

Hsu, C. T. and Cheng, P. 1988 Closure schemes of the macroscopic energy equation for convective heat transfer in porous media. Int. Comm. Heat Mass Transfer 15, 689-703. [4.9]

Hsu, C. T. and Cheng, P. 1990 Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33, 1587-1597. [2.2.3, 4.9]

Hsu, C. T., Cheng, P., and Homsy, G. M. 1978 Instability of free convective flow over a horizontal impermeable surface in a porous medium. Int. J. Heat Mass Transfer 21, 1221-1228. [5.4]

Huang, M. J. and Chen, C. K. 1985 Effects of surface mass transfer on free convection flow over vertical cylinder imbedded in a saturated porous medium. ASME J. Energy Resources Tech. 107, 394-396. [5.7]

Huang, M. J., Yih, K. A., Chou, Y. L., and Chen, C. K. 1986 Mixed convection over a horizontal cylinder or a sphere embedded in a saturated porous medium. ASME J. Heat Transfer 108, 469-471. [8.1.3]

References 373

Huenefeld, J. S. and Plumb, O. A. 1981 A study of non-Darcy natural convection from a vertical heated surface in a saturated porous medium. ASME 20th National Heat Transfer Conf. Paper 81-HT-45. [5.1.8]

Hung, C. I., Chen, C. K., and Cheng, P. 1989 Transient conjugate natural convection heat transfer along a vertical plate fin in a high-porosity medium. Numer. Heat Transfer 15, 133-148. [5.12.1]

Hunt, M. L. and Tien, C. L. 1988a Effects of thermal dispersion on forced convection in fibrous media. Int. 1. Heat Mass Transfer 31, 301-309. [4.9]

Hunt, M. L. and Tien, C. L. 1988b Non-Darcian convection in cylindrical packed beds. ASME 1. Heat Transfer 110, 378-384. [4.9]

Hunt, M. L. and Tien, C. L. 1990 Non-Darcian flow, heat and mass transfer in catalytic packed-bed reactors. Chem. Engng. Sci. 45, 55-63. [6.19.2]

Imhoff, P. T. and Green, T. 1988 Experimental investigation of double-diffusive groundwater fingers. 1. Fluid Mech. 188, 363-382. [9.1.3]

Impey, M. D. 1988 Bifurcation in Lapwood convection. Ph.D. Thesis, Univ. of Bristol. [6.15.1]

Impey, M. D., Riley, D. S., and Winters, K. H. 1990 The effect of sidewall imperfections on pattern formation in Lapwood convection. Nonlinearity 3, 197-230. [6.15.1]

Inaba, H., Sugawara, M., and Blumenberg, J. 1988 Natural convection heat transfer in an inclined porous layer. Int. 1. Heat Mass Transfer 31, 1365-1372. [7.8]

Ingham, D. B. 1986 The non-Darcy free convection boundary layer on axi­symmetric and two-dimensional bodies of arbitrary shape. Int. 1. Heat Mass Transfer 29, 1759-1760. [5.9]

Ingham, D. B. 1988 An exact solution for non-Darcy free convection from a horizontal line source. Warme-Stoffiibertrag.22, 125-127. [5.10.1.1, 5.10.1.2]

Ingham, D. B. and Brown, S. N. 1986 Flow past a suddenly heated vertical plate in a porous medium. Proc. Roy. Soc. London Ser. A 403, 51-80. [5.1.3]

Ingham, D. B. and Pop, I. 1986a Free-forced convection from a heated longitudinal horizontal cylinder embedded in a porous medium. Warme­Stoffiibertrag. 20, 283-289. [8.1.3]

Ingham, D. B. and Pop, I. 1986b A horizontal flow past a partially heated infinite vertical cylinder embedded in a porous medium. Int. 1. Engng. Sci. 24, 1351-1363. [8.1.3]

Ingham, D. B. and Pop, I. 1987a Darcian free convective flow about an impermeable horizontal surface bounded by a vertical wall. Int. 1. Engng. Sci. 25, 373-383. [5.12.2]

Ingham, D. B. and Pop, I. 1987b Free convection from a semi-infinite vertical surface bounded by a horizontal wall in a porous medium. Int. 1. Heat Mass Transfer 30, 1615-1622. [5.12.2]

Ingham, D. B. and Pop, I. 1987c Natural convection about a heated horizontal cylinder in a porous medium. 1. Fluid Mech. 184, 157-181. [5.5.2]

374 Convection in Porous Media

Ingham, D. B. and Pop, I. 1988 Higher-order effects in natural convection flow over uniform flux inclined flat plates in porous media. W iirme-Stoffubertrag. 22, 239-242. [5.3]

Ingham, D. B., Merkin, J. H., and Pop, I. 1985a Flow past a suddenly cooled horizontal flat surface in a saturated porous medium. Acta Mech.56, 205-217. [5.2]

Ingham, D. B., Merkin, J. H., and Pop, I. 1985b Natural convection from a semi-infinite flat plate inclined at a small angle to the horizontal in a saturated porous medium. Acta Mech.57, 183-202. [5.3]

Irmay, S. 1958 On the theoretical derivation of Darcy and Forchheimer formulas. Eos, Trans. AGU 39, 702-707. [1.5.2]

Islam, M. R. and Nandakumar, K. 1990 Transient convection in saturated porous layers. Int. 1. Heat Mass Transfer 33, 151-161. [6.17]

Islam, R. M. and Nandakumar, K. 1986 Multiple solutions for buoyancy-induced flow in saturated porous media for large Peclet numbers. ASME 1. Heat Transfer 108, 866-871. [8.2.1]

Islam, R. M. and Nandakumar, K. 1988 Mixed convection heat transfer in porous media in the non-Darcy regime. Canad. 1. Chem. Engng. 66, 68-74. [8.2.1]

Jaffrenou, J. Y., Bories, S. A., and Combarnous, M. A. 1974 Natural convective flows and mean heat transfer in a sloping porous layer. Heat Transfer 1974, Japan Soc. Mech. Engs. and Soc. Chern. Engs. Japan, Tokyo. 5, 83-87. [7.8]

Jang, 1. Y. and Chang, W. J. 1987 Vortex instability of inclined buoyant layer in porous media saturated with cold water. Int. Comm. Heat Mass Transfer 14, 405-416. [5.4]

Jang, J. Y. and Chang, W. J. 1988a Vortex instability of buoyancy-induced inclined boundary layer flow in a saturated porous medium. Int. 1. Heat Mass Transfer 31,759-767. [5.4]

Jang, J. Y. and Chang, W. J. 1988b. The flow and vortex instability of horizontal natural convection in a porous medium resulting from combined heat and mass buoyancy effects. Int. 1. Heat Mass Transfer 31, 769-777. [9.2.1]

Jang, J. Y. and Chang, W. 1. 1988c Buoyancy-induced inclined boundary layer flow in a porous medium resulting from combined heat and mass buoyancy effects. Int. Comm. Heat Mass Transfer 15, 17-30. [9.2.1]

Jang, J. Y. and Chang, W. 1. 1988d Buoyancy-induced inclined boundary layer flow in a saturated porous medium. Comput. Methods Appl. Mech. 68, 333-344. [5.3]

Jang, J. Y. and Chang, W. J. 1989 Maximum density effects on vortex instability of horizontal and inclined buoyancy-induced flows in porous media. ASME 1. Heat Transfer 111, 572-574. [5.3]

Jang, 1. Y. and Ni, 1. R. 1989 Transient free convection with mass transfer from an isothermal vertical flat plate embedded in a porous medium. Int. 1. Heat Fluid Flow 10, 59-65. [9.2.1]

Jany, P. and Bejan, A. 1987 Scaling theory of melting with natural convection in an enclosure. Report DU-AB-6, Dept. Mech. Engng. and Materials Sci., Duke University, Durham, NC. [10.1.1]

References 375

Jany, P. and Bejan, A. 1988 Scales of melting in the presence of natural convection in a rectangular cavity filled with porous medium. ASME J. Heat Transfer 110, 526-529. [10.1.1, 10.1.2]

Jones, I. P. 1973 Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231-238. [1.6]

Jones, M. C. and Persichetti, J. M. 1986 Convective instability in packed beds with throughflow. AIChE J.32, 1555-1557. [6.10]

Jonsson, T. and Catton, I. 1987 Prandtl number dependence of natural convection in porous media. ASME J. Heat Transfer 109, 371-377. [6.9.2]

Joseph, D. D. 1976 Stability of Fluid Motions 1/, Springer, Berlin. [2.3, 6.3, 6.4]

Joseph, D. D., Nield, D. A., and Papanicolaou, G. 1982 Nonlinear equation governing flow in a saturated porous medium. Water Resources Res. 18, 1049-1052 and 19, 591. [1.5.2]

Joshi, V. and Gebhart, B. 1984 Vertical natural convection flows in porous media: calculations of improved accuracy. Int. J. Heat Mass Transfer 27, 69-75. [5.1.6]

Joshi, Y. and Gebhart, B. 1985 Mixed convection in porous media adjacent to a vertical uniform heat flux surface. Int. J. Heat Mass Transfer 28, 1783-1786. [8.1.1 ]

Kaneko, T., Mohtadi, M. F., and Aziz, K. 1974 An experimental study of natural convection in inclined porous media. Int. J. Heat Mass Transfer 17, 485-496. [6.9.1, 7.8]

Kassoy, D. R. and Cotte, B. 1985 The effects of sidewall heat loss on convection in a saturated porous vertical slab. J. Fluid Mech. 152, 361-378. [6.15.2]

Kassoy, D. R. and Zebib, A. 1978 Convection fluid dynamics in a model of a fault zone in the earth's crust. J. Fluid Mech. 88, 769-792. [6.15.2]

Katto, Y. and Masuoka, T. 1967 Criterion for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transfer 10, 297-309. [6.9.1]

Kaviany, M. 1984a Thermal convective instabilities in a porous medium. ASME J. Heat Transfer 106, 137-142. [6.11.2,6.11.3]

Kaviany, M. 1984b Onset of thermal convection in a saturated porous medium: experiment and analysis. Int. J. Heat Mass Transfer 27, 2101-2110. [6.11.3]

Kaviany, M. 1985 Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transfer 28, 851-858. [4.9]

Kaviany, M. 1986 Non-Darcian effects on natural convection in porous media confined between horizontal cylinders. Int. J. Heat Mass Transfer 29, 1513-1519. [7.6.2]

Kaviany, M. 1987 Boundary-layer treatment of forced convection heat transfer from a semi-infinite flat plate embedded in porous media. ASME J. Heat Transfer 109, 345-349. [4.8]

Kaviany, M. and Mittal, M. 1987 Natural convection heat transfer from a vertical plate to high permeability porous media: an experiment and an

376 Convection in Porous Media

approximate solution. Int. J. Heat Mass Transfer 30, 967-978. [5.1.7.2, 5.1.8]

Kazmierczak, M. and Poulikakos, D. 1988 Melting of an ice surface in a porous medium. AIAA J. Thermophys. Heat Transfer 2, 352-358. [10.1.7]

Kazmierczak, M. and Poulikakos, D. 1989 Numerical simulation of transient double diffusion in a composite porous!fluid layer heated from below. AIChE Sympos. Ser.269, 108-114. [9.4]

Kazmierczak, M. and Poulikakos, D. 1991 Transient double diffusive convection in a horizontal fluid layer situated on top of a porous substrate. Convective Heat and Mass Transfer in Porous Media (eds. S. Kaka~, B. Kilki§, F. A. Kulacki, and F. Arinc;), Kluwer Academic, Dordrecht, 655-672. [9.4]

Kazmierczak, M., Poulikakos, D., and Pop, I. 1986 Melting from a flat plate embedded in a porous medium in the presence of steady natural convection. Numer. Heat Transfer 10, 571-582. [10.1.1, 10.1.5]

Kazmierczak, M., Poulikakos, D., and Sadowski, D. 1987 Melting of a vertical plate in porous medium controlled by forced convection of a dissimilar fluid. Int. Comm. Heat Mass Transfer 14, 507-517. [10.1.7]

Kazmierczak, M., Sadowski, D., and Poulikakos, D. 1988 Melting of a solid in a porous medium induced by free convection of a warm dissimilar fluid. ASME J. Heat Transfer 110, 520-523. [10.1.7]

Khan, A. A. and Zebib, Z. 1981 Double diffusive instability in a vertical layer of porous medium. ASME J. Heat Transfer 103, 179-181. [9.2.4]

Kim, S. J. and Vafai, K. 1989 Analysis of natural convection about a vertical plate embedded in a porous medium. Int. J. Heat Mass Transfer 32, 665-677. [5.1.7.1]

Kimura, S. 1988a Forced convection heat transfer about an elliptic cylinder in a saturated porous medium. Int. J. Heat Mass Transfer 31, 197-199. [4.3]

Kimura, S. 1988b Forced convection heat transfer about a cylinder placed in porous media with longitudinal flows. Int. J. Heat Fluid Flow 9, 83-86. [4.3]

Kimura, S. 1988c Transient heat transfer from a circular cylinder with constant heat flux in a saturated porous layer; application to underground water velocimetry. Int. Symp. Geothermal Energy, Kumamoto and Beppu, Japan, November 10-14. [4.6]

Kimura, S. 1989a Transient forced convection heat transfer from a circular cylinder in a saturated porous medium. Int. J. Heat Mass Transfer 32, 192-195. [4.6]

Kimura, S. 1989b Transient forced and natural convection heat transfer about a vertical cylinder in a porous medium. Int. J. Heat Mass Transfer 32, 617-620. [4.6.4, 5.7]

Kimura, S. and Bejan, A. 1985 Natural convection in a stably heated comer filled with porous medium. ASME J. Heat Transfer 107, 293-298. [5.12.2]

Kimura, S., Bejan, A., and Pop, I. 1985 Natural convection near a cold plate facing upward in a porous medium. ASME J. Heat Transfer 107, 819-825. [5.2]

References 377

Kimura, S., Schubert, G., and Straus, J. M. 1986 Route to chaos in porous­medium thermal convection. J. Fluid Mech. 166, 305-324. [6.8]

Kimura, S., Schubert, G., and Straus, J. M. 1987 Instabilities of steady, periodic and quasi-periodic modes of convection in porous media. ASME J. Heat Transfer 109, 350-355. [6.8]

Kladias, N. and Prasad, V. 1989a Convective instabilities in horizontal porous layers heated from below: effects of grain size and its properties. ASME HTD 107, 369-379. [6.9.2]

Kladias, N. and Prasad, V. 1989b Natural convection in horizontal porous layers: effects of Darcy and Prandtl numbers. ASME J. Heat Transfer 111, 926-935. [6.8, 6.9.2]

Kladias, N. and Prasad, V. 1990 Flow transitions in buoyancy-induced non-Darcy convection in a porous medium heated from below. ASME J. Heat Transfer 112, 675-684. [6.8, 6.9.2]

Klarsfeld, S. 1970 Champs de temperature associes aux movements de convection naturelle dans un milieu poreux limite. Rev. Gen. Therm.9, 1403-1424. [7.1.2]

Kolesnikov, A. K. 1979 Concentration-dependent convection in a horizontal porous bed containing a chemically active liquid. J. Engng. Phys. 36, 97-101. [3.4]

Kordylewski, W. and Borkowska-Pawlak, B. 1983 Stability of nonlinear thermal convection in a porous medium. Arch. Mech. 35, 95-106. [6.15.1]

Kordylewski, W., Borkowska-Pawlak, B., and Slany, 1. 1987 Stability of three­dimensional natural convection in a porous layer. Arch. Mech. 38, 383-394. [6.15.1]

Krantz, W. B., Gleason, K. J., and Caine, N. 1988 Patterned ground. Sci. Amer. 159, 44-50. [11.2]

Kulacki, F. A. and Freeman, R. G. 1979 A note on thermal convection in a saturated, heat generating porous layer. ASME J. Heat Transfer 101, 169-171. [6.11.2]

Kulacki, F. A. and Ramchandani, R. 1975 Hydrodynamic instability in porous layer saturated with heat generating fluid. Wiirme-Stoffiibertrag.8, 179-185. [6.11.2]

Kumari, M. and Nath, G. 1989a Non-Darcy mixed convection boundary layer flow on a vertical cylinder in a saturated porous medium. Int. J. Heat Mass Transfer 32, 183-187. [8.1.3]

Kumari, M. and Nath, G. 1989b Unsteady mixed convection with double diffusion over a horizontal cylinder and a sphere within a porous medium. Wiirme-Stoffiibertrag.24, 103-109. [8.1.3]

Kumari, M. and Nath, G. 1989c Double diffusive unsteady free convection on two-dimensional and axisymmetric bodies in a porous medium. Int. J. Energy Res. 13, 379-391. [9.4]

Kumari, M. and Nath, G. 1989d Double diffusive unsteady mixed convection flow over a vertical plate embedded in a porous medium. Int. J. Energy Res. 13, 419-430. [9.4]

378 Convection in Porous Media

Kumari, M. and Nath, G. 1990 Non-Darcy mixed convection flow over a nonisothermal cylinder and sphere embedded in a saturated porous medium. ASME J. Heat Transfer 112, 518-523. [8.1.3]

Kumari, M., Pop, I., and Nath, G. 1985 Non-Darcy natural convection from a heated vertical plate in saturated porous media with mass transfer. Int. Comm. Heat Mass Transfer 12, 337-346. [5.1.7.2]

Kumari, M., Pop, I., and Nath, G. 1987 Mixed convection boundary layer over a sphere in a saturated porous medium. Z. Ang. Math. Mech.67, 569-571. [8.1.3]

Kumari, M., Pop, I., and Nath, G. 1990 Nonsimilar boundary layers for non­Darcy mixed convection flow about a horizontal surface in a saturated porous medium. Int. J. Engng. Sci. 28, 253-263. [8.1.2]

Kumari, M., Takhar, H. S., and Nath, G. 1988a Non-Darcy double-diffusive mixed convection from heated vertical and horizontal plates in saturated porous media. Warme-StofJubertrag. 23, 267-273. [9.4]

Kumari, M., Takhar, H. S., and Nath, G. 1988b Double-diffusive non-Darcy free convection from two-dimensional and axisymmetric bodies of arbitrary shape in a saturated porous medium. Indian J. Tech. 26, 324-328. [9.4]

Kvemvold, O. 1979 On the stability of nonlinear convection in a Hele-Shaw cell. Int. J. Heat Mass Transfer 22, 395-400. [2.5]

Kvemvold, O. and Tyvand, P. A. 1979 Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech. 90, 609-624. [6.12]

Kvemvold, O. and Tyvand, P. A. 1980 Dispersion effects on thermal convection in porous media. J. Fluid Mech. 99, 673-686. [6.6]

Kvernvold, O. and Tyvand, P. A. 1981 Dispersion effects on thermal convection in a Hele-Shaw cell. Int. J. Heat Mass Transfer 24, 887-990. [2.5]

Kwok, L. P. and Chen, C. F. 1987 Stability of thermal convection in a vertical porous layer. ASME J. Heat Transfer 109, 889-893. [7.1.4]

Lage, J. L. and Bejan, A. 1990 Numerical study of forced convection near a surface covered with hair. Int. J. Heat Fluid Flow 11, 242-248. [4.10]

Lage, J. L. and Bejan, A. 1991 Natural convection from a vertical surface covered with hair. Int. J. Heat Fluid Flow 12, in press. [5.13]

Lai, F. C. 1990 Coupled heat and mass transfer by natural convection from a horizontal line source in saturated porous medium. Int. Comm. Heat Mass Transfer 17, 489-499. [9.3.2]

Lai, F. C. 1991 Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium. Int. Comm. Heat Mass Transfer 18, 93-106. [9.2.1]

Lai, F. C. and Kulacki, F. A. 1987 Non-Darcy convection from horizontal impermeable surfaces in saturated porous media. Int. J. Heat Mass Transfer 30, 2189-2192. [4.7, 8.1.2]

Lai, F. C. and Kulacki, F. A. 1988a Effects of flow inertia on mixed convection along a vertical surface in a saturated porous medium. ASME HTD 96, Vol. 1, 643-652. [8.1.1]

References 379

Lai, F. C. and Kulacki, F. A. 1988b Transient mixed convection in horizontal porous layer locally heated from below. ASME HTD 96, Vol. 2, 353-364. [8.2.2]

Lai, F. C. and Kulacki, F. A. 1988c Natural convection across a vertical layered porous cavity. Int. J. Heat Mass Transfer 31, 1247-1260. [7.3.2]

Lai, F. C. and Kulacki, F. A. 1989a Thermal dispersion effects on non-Darcy convection over horizontal surfaces in saturated porous media. Int. J. Heat Mass Transfer 32, 971-976. [4.7, 8.1.2]

Lai, F. C. and Kulacki, F. A. 1989b Effects of variable fluid viscosity on film condensation along an inclined surface in saturated porous medium. ASME HTD 127, 7-12. [10.4]

Lai, F. C. and Kulacki, F. A. 1990a Coupled heat and mass transfer from a sphere buried in an infinite porous medium. Int. J. Heat Mass Transfer 33, 209-215. [9.4]

Lai, F. C. and Kulacki, F. A. 1990b The influence of surface mass flux on mixed convection over horizontal plates in saturated porous media. Int. J. Heat Mass Transfer 33, 576-579. [8.1.2]

Lai, F. C. and Kulacki, F. A. 1990c The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium. Int. J. Heat Mass Transfer 33, 1028-1031. [8.1.1]

Lai, F. C. and Kulacki, F. A. 1990d The influence of lateral mass flux on mixed convection over inclined surfaces in saturated porous media. ASME J. Heat Transfer 112, 515-518. [8.1.1]

Lai, F. C. and Kulacki, F. A. 1991 Experimental study of free and mixed convection in porous media. Int. J. Heat Mass Transfer, in press. [8.2.2]

Lai, F. C., Choi, C. Y., and Kulacki, F. A. 1990a Free and mixed convection in horizontal porous layers with multiple heat sources. AIAA J. Thermophys. Heat

Transfer 4, 221-227. [8.2.2] Lai, F. C., Choi, C. Y., and Kulacki, F. A. 1990b Coupled heat and mass transfer

by natural convection from slender bodies of revolution in porous media. Int. Comm. Heat Mass Transfer 17,609-620. [9.4]

Lai, F. C., Kulacki, F. A., and Prasad, V. 1987 Mixed convection in horizontal porous layers: effects of thermal boundary conditions. ASME HTD 84, 91-96. [8.2.2]

Lai, F. C., Pop, I., and Kulacki, F. A. 1990 Free and mixed convection from slender bodies of revolution in porous media. Int. J. Heat Mass Transfer 33,

1767-1769. [5.9, 8.1.4] Lai, F. C., Prasad, V., and Kulacki, F. A. 1987 Effects of the size of heat source

on mixed convection in horizontal porous layers heated from below. Proc. ASME JSME Thermal Engineering Joint Conference 2, 413-419. [8.2.2]

Lai, F. C., Prasad, V., and Kulacki, F. A. 1988 Aiding and opposing mixed convection in a vertical porous layer with a finite wall heat source. Int. J. Heat Mass Transfer 31, 1049-1061. [8.3.2]

Lai, F. C., Prasad, V., and Kulacki, F. A. 1991 Mixed convection in saturated porous media. Convective Heat and Mass Transfer in Porous Media (eds. S.

380 Convection in Porous Media

Kakac;, B. Kilki§, F. A. Kulacki, and F. Arin«), Kluwer Academic, Dordrecht, 225-287. [8.1.1]

Lapwood, E. R. 1948 Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508-521. [6.1]

Larson, S. E. and Poulikakos, D. 1986 Double diffusion from a horizontal line source in an infinite porous medium. Int. J. Heat Mass Transfer 29, 492-495. [9.3.2]

Lauriat, G. and Prasad, V. 1987 Natural convection in a vertical porous cavity: a numerical study for Brinkman-extended Darcy formulation. ASME J. Heat Transfer 109, 688-696. [7.6.2]

Lauriat, G. and Prasad, V. 1989 Non-Darcian effects on natural convection in a vertical porous layer. Int. J. Heat Mass Transfer 32, 2135-2148. [7.6.2]

Lauriat, G. and Prasad, V. 1991 Natural convection in a vertical porous annulus. Convective Heat and Mass Transfer in Porous Media (eds. S. Kakac;, B. Kilki§, F. A. Kulacki, and F. Arin«), Kluwer Academic, Dordrecht, 143-172. [7.6.2]

Lauriat, G. and Vafai, K. 1991 Forced convection flow and heat transfer through a porous medium exposed to a flat plate or a channel. Convective Heat and Mass Transfer in Porous Media (eds. S. Kakac;, B. Kilki§, F. A. Kulacki, and F. Arin«), Kluwer Academic, Dordrecht, 289-327. [4.8, 4.9]

Lawson, M. L. and Yang, W. J. 1975 Thermal instability of binary gas mixtures in a porous medium. ASME J. Heat Transfer 97, 378-381. [9.1.4]

Lawson, M. L., Yang, W. J., and Bunditkul, S. 1976 Theory of thermal stability of binary gas mixtures in porous media. ASME J. Heat Transfer 98, 35-41. [9.1.4]

Lebon, G. and Cloot, A. 1986 A thermodynamical modelling of fluid flows through porous media: application to natural convection. Int. J. Heat Mass Transfer 29, 381-390. [6.6]

Lee, H. M. 1983 An experimental study of natural convection about an isothermal downward-facing inclined surface in a porous medium. M.S. Thesis, University of Hawaii. [5.3]

Levy, T. 1981 Loi de Darcy ou loi de Brinkman? C. R. Acad. Sci. Paris Serie II 292, 872-874. [1.5.3]

Lienhard, J. H. 1973 On the commonality of equations for natural convection from immersed bodies. Int. J. Heat Mass Transfer 16, 2121-2123. [4.3]

Lin, D. S. and Gebhart, B. 1986 Buoyancy induced flow adjacent to a horizontal surface submerged in porous medium saturated with cold water. Int. J. Heat Mass Transfer 29, 611-623. [5.2]

Lister, C. R. B. 1990 An explanation for the multivalued heat transport found experimentally for convection in a porous medium. J. Fluid Mech. 214, 287-320. [6.4, 6.9.3]

Liu, C. Y. and Guerra, A. C. 1985 Free convection in a porous medium near the corner of arbitrary angle formed by two vertical plates. Int. Comm. Heat Mass Transfer 12, 431-440. [5.12.2]

References 381

Liu, C. Y. and Ismail, K. A. R. 1980 Asymptotic solution of free convection near a comer of two vertical porous plates embedded in a porous medium. Lett. Heat Mass Transfer 7, 457-463. [5.12.2]

Liu, C. Y., Ismail, K. A. R., and Ibinuma, C. D. 1984 Film condensation with lateral mass flux about a body of arbitrary shape in a porous medium. Int. Comm. Heat Mass Transfer 11, 377-384. [lOA]

Liu, C. Y., Lam, C. Y., and Guerra, A. C. 1987 Free convection near a comer formed by two vertical plates embedded in a porous medium. Int. Comm. Heat Mass Transfer 14, 125-136. [5.12.2]

Liu, J. Y. and Minkowycz, W. J. 1986 The effect of Prandtl number on conjugate heat transfer in porous media. Int. Comm. Heat Mass Transfer 13, 439-448. [5.12.1]

Liu, J. Y., Shih, S. D., and Minkowycz, W. J. 1987 Conjugate natural convection about a vertical cylindrical fin with lateral mass flux in a saturated porous medium. Int. J. Heat Mass Transfer 30, 623-630. [5.12.1]

Lowell, R. P. 1980 Topographically driven subcritical hydrothermal convection in the oceanic crust. Earth Planet. Sci. Lett. 49, 21-28. [11.4, 11.6.2]

Lowell, R. P. 1985 Double-diffusive convection in partially molten silicate systems: its role during magma production and in magma chambers. J. Volcanol. Geotherm. Res. 26, 1-24. [11.4]

Lowell, R. P. and Hernandez, H. 1982 Finite amplitude convection in a porous container with fault-like geometry: effect of initial and boundary conditions. Int. J. Heat Mass Transfer 25, 631-641. [6.15.2]

Lowell, R. P. and Shyu, C. T. 1978 On the onset of convection in a water­saturated porous box: effect of conducting walls. Lett. Heat Mass Transfer 5, 371-378. [6.15.2]

Lundgren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273-299. [1.5.3]

Macdonald, I. F., E1-Sayed, M. S., Mow, K., and Dullien, F. A. L. 1979 Flow through porous media: The Ergun equation revisited. Ind. Chem. Fundam.18, 199-208. [1.5.2]

Majumdar, A. and Tien, C. L. 1988 Effects of surface tension on film condensation in a porous medium. ASME HTD 96, Vol. 2, 371-378. [lOA]

Marpu, D. R. and Satyamurty, V. V. 1989 Influence of variable fluid density on free convection in rectangular porous media. ASME J. Energy Res. Tech. 111, 214-220. [6.15.3]

McKibbin, R. 1983 Convection in an aquifer above a layer of heated impermeable rock. N. Z. J. Sci. 26, 49-64. [6.13.1]

McKibbin, R. 1985 Thermal convection in layered and anisotropic porous media: a review. Convective Flows in Porous Media (eds. R. A. Wooding and I. White), Dept. Sci. Indust. Res., Wellington, New Zealand, 113-127. [6.12]

McKibbin, R. 1986a Thermal convection in a porous layer: effects of anisotropy and surface boundary conditions. Transport in Porous Media 1, 271-292. [6.12]

382 Convection in Porous Media

McKibbin. R. 1986b Heat transfer in a vertically-layered porous medium heated from below. Transport in Porous Media 1. 361-370. [6.13.4]

McKibbin. R. and O'Sullivan. M. J. 1980 Onset of convection in a layered porous medium heated from below. J. Fluid Mech. 96. 375-393. [6.13.2]

McKibbin. R. and O'Sullivan. M. J. 1981 Heat transfer in a layered porous medium heated from below. J. Fluid Mech.ll1. 141-173. [6.13.2]

McKibbin. R. and Tyvand. P. A. 1982 Anisotropic modelling of thermal convection in multilayered porous media. J. Fluid Mech.118. 315-319. [6.13.3]

McKibbin. R. and Tyvand. P. A. 1983 Thermal convection in a porous medium composed of alternating thick and thin layers. Int. J. Heat Mass Transfer 26. 761-780. [6.13.3]

McKibbin. R. and Tyvand. P. A. 1984 Thermal convection in a porous medium with horizontal cracks. Int. J. Heat Mass Transfer 27. 1007-1023. [6.13.3. 6.13.4]

McKibbin. R.. Tyvand. P. A .• and Palm. E. 1984 On the recirculation of fluid in a porous layer heated from below. N. Z. J. Sci. 27. 1-13. [6.12]

McNabb. A. 1965 On convection in a porous medium. Proc. 2nd Australasian Con! Hydraulics and Fluid Mech .• University of Auckland. C161-171. [5.12.3]

Mehta. K. N. and Nandakumar. K. 1987 Natural convection with combined heat and mass transfer buoyancy effects in non-homogeneous porous medium. Int. J.

Heat Mass Transfer 30. 2651-2656. [9.2.2] Merkin. J. H. 1978 Free convection boundary layers in a saturated porous

medium with lateral mass flux. Int. J. Heat Mass Transfer 21. 1499-1504. [5.1.2. 5.5.1]

Merkin. J. H. 1979 Free convection boundary layers on axisymmetric and two­dimensional bodies of arbitrary shape in a saturated porous medium. Int. J. Heat Mass Transfer 22. 1461-1462. [5.5.1. 5.6.1. 5.9]

Merkin. J. H. 1980 Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. J. Engng. Math. 14. 301-313. [8.1.1]

Merkin. J. H. and Needham. D. J. 1987 The natural convection flow above a heated wall in a saturated porous medium. Q. J. Mech. Appl. Math. 40. 559-574. [5.1.9]

Merkin. J. H. and Pop. I. 1987 Mixed convection boundary layer on a vertical cylinder embedded in a porous medium. Acta Mech. 66. 251-262. [8.1.3]

Merkin. J. H. and Pop. I. 1989 Free convection above a horizontal circular disk in a saturated porous medium. Wiirme-StofJiibertrag. 24. 53-60. [5.12.3]

Minkowycz. W. J. and Cheng. P. 1976 Free convection about a vertical cylinder embedded in a porous medium. Int. J. Heat Mass Transfer 19. 805-813. [5.7]

Minkowycz. W. J. and Cheng. P. 1982 Local non-similar solutions for free convective flow with uniform lateral mass flux in a porous medium. Lett. Heat Mass Transfer 9. 159-168. [5.1.2]

Minkowycz. W. J .• Cheng. P .• and Chang. C. H. 1985 Mixed convection about non-isothermal cylinders and spheres in a porous medium. Numer. Heat Transfer 8. 349-359. [8.1.3]

References 383

Minkowycz, W. J., Cheng, P., and Hirschberg, R. N. 1984 Non-similar boundary layer analysis of mixed convection about a horizontal heated surface in a fluid­saturated porous medium. Int. Comm. Heat Mass Transfer 11, 127-141. [8.1.2]

Minkowycz, W. J., Cheng, P., and Moalem, F. 1985 Effect of surface mass transfer on buoyancy-induced Darcian flow adjacent to a horizontal heated surface. Int. Comm. Heat Mass Transfer 12, 55-65. [5.2]

Morland, L. W., Zebib, A., and Kassoy, D. R. 1977 Variable property effects on the onset of convection in an elastic porous matrix. Phys. Fluids 20, 1255-1259. [6.7]

Moya, S. L., Ramos, E., and Sen, M. 1987 Numerical study of natural convection in a tilted rectangular porous material. Int. 1. Heat Mass Transfer 30, 741-756. [7.8]

Muralidhar, K. 1989 Mixed convection flow in a saturated porous annulus. Int.

1. Heat Mass Transfer 32, 881-888. [8.2.3, 8.3.3] Murphy, H. D. 1979 Convective instabilities in vertical fractures and faults. 1.

Geophys. Res. 84, 6234-6245. [6.15.2] Murray, B. T. and Chen, C. F. 1989 Double-diffusive convection in a porous

medium. 1. Fluid Mech. 201, 147-166. [9.1.3] Murty, V. D., Camden, M. P., Clay, C. L., and Paul, D. B. 1989 Natural

convection in porous media between concentric and eccentric cylinders. AIChE Sympos. Ser.269, 96-101. [7.6.2]

Murty, V. D., Camden, M. P., Clay, C. L., and Paul, D. B. 1990 A study of non­Darcian effects on forced convection heat transfer over a cylinder embedded in a porous medium. Heat Transfer 1990, Hemisphere, Washington, DC, 5, 201-206. [4.3]

Nakayama, A. and Ebinuma, C.D. 1990 Transient non-Darcy forced convective heat transfer from a flat plate embedded in a fluid-saturated porous medium. Int. 1. Heat Fluid Flow 11, 249-263. [4.6, 4.7]

Nakayama, A. and Koyama, H. 1987a Free convective heat transfer over a nonisothermal body of arbitrary shape embedded in a fluid-saturated porous medium. ASME 1. Heat Transfer 109, 125-130. [5.9]

Nakayama, A. and Koyama, H. 1987b A general similarity transformation for combined free and forced-convection flows within a fluid-saturated porous medium. ASME 1. Heat Transfer 109, 1041-1045. [8.1.4]

Nakayama, A. and Koyama, H. 1988 Subcooled forced convection film boiling over a vertical flat plate embedded in a fluid-saturated porous medium. W iirme­Stoffubertrag.22, 269-273. [10.3.2]

Nakayama, A. and Koyama, H. 1989 Similarity solutions for buoyancy induced flows over a non-isothermal curved surface in a thermally stratified porous medium. Appl. Sci. Res. 46, 309-323. [5.9]

Nakayama, A. and Pop, I. 1989 Free convection over a non-isothermal body in a porous medium with viscous dissipation. Int. Comm. Heat Mass Transfer 16, 173-180. [5.9]

384 Convection in Porous Media

Nakayama, A., Kokudai, T., and Koyama, H. 1988 Integral method for non-Darcy free convection over a vertical flat plate and cone embedded in a fluid-saturated porous medium. Wiirrne-Stoffilbertrag. 23, 337-341. [5.8]

Nakayama, A., Kokudai, T., and Koyama, H. 1990 Forchheimer free convection over a nonisothermal body of arbitrary shape in a saturated porous medium. ASME J. Heat Transfer 112, 511-515. [5.9]

Nakayama, A., Koyama, H., and Kuwahara, F. 1987 Two-phase boundary layer treatment for subcooled free-convection film boiling around a body of arbitrary shape in a porous medium. ASME J. Heat Transfer 109, 997-1002. [10.3.2]

Nakayama, A., Koyama, H., and Kuwahara, F. 1989 Similarity solution for non­Darcy free convection from a non-isothermal curved surface in a fluid-saturated porous medium. ASME J. Heat Transfer 111, 807-811. [5.9]

Nandakumar, K., Weinitschke, H. J., and Sankar, S. R. 1987 The calculation of singularities in steady mixed convection flow through porous media. AS M E HTD 84, 67-73. [8.2.1]

Neale, G. and Nader, W. 1974 Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium. Canad. J. Chern. Engng. 52, 475-478. [1.6]

Neel, M. C. 1990a Convection in a horizontal porous layer of infinite extent. Eur. J. Mech.·B 9, 155-176. [6.15.1]

Neel, M. C. 1990b Convection naturelle dans une couche poreuse horizontale d'extension infinie: chauffage inhomogene. C. R. A cad. Sci. Paris Serie II 309, 1863-1868. [6.15.1]

Ni, J. and Beckermann, C. 1989 Natural convection in a vertical enclosure filled with anisotropic porous media. ASME HTD 115, 15-21. [7.3.2]

Nield, D. A. 1968 Onset of thermohaline convection in a porous medium. Water Resources Res. 11, 553-560. [6.2, 9.1.1, 11.4]

Nield, D. A. 1975 The onset of transient convective instability. J. Fluid Mech. 71, 441-454. [6.11.1]

Nield, D. A. 1977 Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 81, 513-522. [6.19.1.2]

Nield, D. A. 1982 Onset of convection in a porous layer saturated by an ideal gas. Int. J. Heat Mass Transfer 25, 1605-1606. [6.7]

Nield, D. A. 1983 The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37-46. Corrigendum 150, 503. [1.6, 6.19.1.2]

Nield, D. A. 1987a Convective instability in porous media with throughflow. AlChE J.33, 1222-1224. [6.10]

Nield, D. A. 1987b Convective heat transfer in porous media with columnar structure. Transport in Porous Media 2, 177-185. [6.3, 6.13.4]

Nield, D. A. 1990 Convection in a porous medium with inclined temperature gradient and horizontal mass flow. Heat Transfer 1990, Hemisphere, New York,S, 153-158. [7.9]

Nield, D. A. 1991a Convection in a porous medium with inclined temperature gradient. Int. J. Heat Mass Transfer 34, 87-92. [7.9]

References 385

Nield, D. A. 1991b Estimation of the stagnant thermal conductivity of saturated porous media. Int. J. Heat Mass Transfer 34, 1575-1576. [2.2.1]

Nield, D. A. and Joseph, D. D. 1985 Effects of quadratic drag on convection in a saturated porous medium. Phys. Fluids 28, 995-997. [6.6]

Nield, D. A. and White, S. P. 1982 Natural convection in an infinite porous medium produced by a line heat source. Mathematics and Models in Engineering Science (ed. A. McNabb et al.) Dept. Sci. Indust. Res., Wellington, New Zealand, 121-128. [5.10.2]

Nilsen, T. and Storesletten, L. 1990 An analytical study on natural convection in isotropic and anisotropic porous channels. ASME J. Heat Transfer 112, 396-401. [6.15.3]

Nilson, R. H. 1981 Natural convective boundary layer on two-dimensional and axisymmetric surfaces in high-Pr fluids or in fluid saturated porous media. ASME J. Heat Transfer 103, 803-807. [5.6.1]

Nishimura, T., Takumi, T., Shiraishi, M., Kawamura, Y., and Ozoe, H. 1986 Numerical analysis of natural convection in a rectangular enclosure horizontally divided into fluid and porous regions. Int. J. Heat Mass Transfer 29, 889-898. [7.7]

Oberbeck, A. 1879 Ueber die Warmeleitung der Fliissigkeiten bei Beriicksichtigung der Stromungen infolge von Temperaturdifferenzen. Ann. Phys. Chern. 7, 271-292. [2.3]

Oosthuizen, P. H. 1987 Mixed convection heat transfer from a cylinder in a porous medium near an impermeable surface. ASME HTD 84, 75-82. [8.1.3]

Oosthuizen, P. H. 1988 The effects of free convection on steady-state freezing in a porous medium-filled cavity. ASME HTD 96, Vol. 1,321-327. [10.2.1]

Or, A. C. 1989 The effects of temperature-dependent viscosity and the instabilities in convection rolls of a layer of fluid-saturated porous medium. J. Fluid Mech. 206, 497-515. [6.8]

O'Sullivan, M. J. 1985a Geothermal reservoir simulation. Int. J. Energy Res. 9, 319-332. An edited version was reprinted in Applied Geothermics (eds. M. Economides and P. Ungemash), Wiley, New York, 1987. [11]

O'Sullivan, M. J. 1985b Convection with boiling in a porous layer. Convective Flows in Porous Media (eds. R. A. Wooding and I. White), Dept. Sci. Indust. Res., Wellington, N.Z., 141-155. [10.3.1]

O'Sullivan, M. J. and McKibbin, R. 1986 Heat transfer in an unevenly heated porous layer. Transport in Porous Media 1, 293-312. [6.14]

Palm, E. 1990 Rayleigh convection, mass transport, and change in porosity in layers of sandstone. J. Geophys. Res. 95, 8675-8679. [11.5]

Palm, E. and Tveitereid, M. 1979 On heat and mass flux through dry snow. J. Geophys. Res. 84, 745-749. [11.1, 11.5]

Palm, E., Weber, J. E., and Kvemvold, O. 1972 On steady convection in a porous medium. J. Fluid Mech. 54, 153-161. [6.3, 6.6]

Parang, M. and Keyhani, M. 1987 Boundary effects in laminar mixed convection flow through an annular porous medium. ASME J. Heat Transfer 109, 1039-1041. [8.3.3]

386 Convection in Porous Media

Parmentier, E. M. 1979 Two-phase natural convection adjacent to a vertical heated surface in a permeable medium. Int. 1. Heat Mass Transfer 22, 849-855. [10.3.2]

Patil, P. R. 1982 Soret driven instability of a reacting fluid in a porous medium. Israel 1. Tech. 19, 193-196. [9.1.6.4]

Patil, P. R. and Rudraiah, N. 1980 Linear convective stability and thermal diffusion of a horizontal quiescent layer of a two-component fluid in a porous medium. Int. 1. Engng. Sci. 18, 1055-1059. [9.1.4]

Patil, P. R. and Vaidyanathan, G. 1981 Effect of variable viscosity on the setting up of convection currents in a porous medium. Int. 1. Engng. Sci. 19, 421-426. [6.7]

Patil, P. R. and Vaidyanathan, G. 1982 Effect of variable viscosity on thermohaline convection in a porous medium. 1. Hydrol. 57, 147-161. [9.1.6.2]

Payne, L. E., Song, J. C., and Straughan, B. 1988 Double-diffusive porous penetrative convection - thawing subsea permafrost. Int. 1. Engng. Sci. 26,

797-809. [11.3] Peirotti, M. B., Giavedoni, M. D., and Deiber, J. A. 1987 Natural convective

heat transfer in a rectangular porous cavity with variable fluid properties -validity of the Boussinesq approximation. Int. 1. Heat Mass Transfer 30, 2571-2581. [7.3.2]

Philip, J. R. 1982a Free convection at small Rayleigh number in porous cavities of rectangular, elliptical, triangular and other cross sections. Int. 1. Heat Mass Transfer 25, 1503-1510. [7.3.7]

Philip, J. R. 1982b Axisymmetric free convection at small Rayleigh number in porous cavities. Int. 1. Heat Mass Transfer 25, 1689-1699. [7.3.7]

Philip, J. R. 1988 Free convection in porous cavities near the temperature of maximum density. Phys. Chern. Hydrodyn. 10, 283-294. [7.3.7]

Pien, S. J. and Sen, M. 1989 Hysteresis effects in three-dimensional natural convection in a porous medium. ASME HTD 107, 343-348. [7.8]

Pillatsis, G., Taslim, M. E., and Narusawa, U. 1987 Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers. ASME 1. Heat Transfer 109, 677-682. [6.19.1.2]

Plumb, O. A. 1983 The effect of thermal dispersion of heat transfer in packed bed boundary layers. Proc. ASME ISME Thermal Engineering loint Conference 2, 17-22. [5.1.7.3]

Plumb, O. A. 1991a Heat transfer during unsaturated flow in porous media. Convective Heat and Mass Transfer in Porous Media (eds. S. Kaka~, B. Kilki§, F. A. Kulacki, and F. Arin,,), Kluwer Academic, Dordrecht, 435-464. [3.6]

Plumb, O. A. 1991b Drying complex porous materials - modelling and experiments. Convective Heat and Mass Transfer in Porous Media (eds. S. Kaka~, B. Kilki§, F. A. Kulacki, and F. Arin,,), Kluwer Academic, Dordrecht, 963-984. [3.6]

References 387

Plumb, O. A. and Huenefeld, J. C. 1981 Non-Darcy natural convection from heated surfaces in saturated porous media. Int. J. Heat Mass Transfer 24, 765-768. [5.1.7.2, 5.1.8]

Pop, I. and Cheng, P. 1986 An integral solution for free convection of a Darcian fluid about a cone with curvature effects. Int. Comm. Heat Mass Transfer 13, 433-438. [5.8]

Pop, I. and Ingham, D. B. 1990 Natural convection about a heated sphere in a porous medium. Heat Transfer 1990, Hemisphere, New York, 2, 567-572. [5.6.2, 5.6.3]

Pop, I., Cheng, P., and Le, T. 1989 Leading edge effects on free convection of a Darcian fluid about a semi-infinite vertical plate with uniform heat flux. Int. J. Heat Mass Transfer 32, 493-501. [5.1.6]

Pop, I., Ingham, D. B., Heggs, P. J., and Gardner, D. 1986 Conjugate heat transfer from a downward projecting fin immersed in a porous medium. Heat Transfer 1986, Hemisphere, Washington, DC,S, 2635-2640. [5.12.1]

Pop, I., Sunada, J. K., Cheng, P., and Minkowycz, W. J. 1985 Conjugate free convection from long vertical plate fins embedded in a porous medium at high Rayleigh numbers. Int. J. Heat Mass Transfer 28, 1629-1636. [5.12.1]

Poulikakos, D. 1984 Maximum density effects on natural convection in a porous layer differentially heated in the horizontal direction. Int. J. Heat Mass Transfer 27, 2067-2075. [7.3.5]

Poulikakos, D. 1985a On buoyancy induced heat and mass transfer from a concentrated source in an infinite porous medium. Int. J. Heat Mass Transfer

28, 621-629. [9.3.1] Poulikakos, D. 1985b Onset of convection in a horizontal porous layer saturated

with cold water. Int. J. Heat Mass Transfer 28, 1899-1905. [6.20] Poulikakos, D. 1985c The effect of a third diffusing component on the onset of

convection in a horizontal porous layer. Phys. Fluids 28, 3172-3174. [9.1.6.4]

Poulikakos, D. 1986 Double diffusive convection in a horizontally sparsely packed porous layer. Int. Comm. Heat Mass Transfer 13, 587-598. [9.1.6.3]

Poulikakos, D. 1987a Buoyancy driven convection in a horizontal fluid layer extending over a porous substrate. Phys. Fluids 29, 3949-3957. [6.19.2]

Poulikakos, D. 1987b Thermal instability in a horizontal fluid layer superposed on a heat-generating porous bed. Numer. Heat Transfer 12, 83-100. [6.19.2]

Poulikakos, D. and Bejan, A. 1983a Natural convection in vertically and horizontally layered porous media heated from the side. Int. J. Heat Mass Transfer 26, 1805-1814. [7.3.2]

Poulikakos, D. and Bejan, A. 1983b Numerical study of transient high Rayleigh number convection in an attic-shaped porous layer. ASME J. Heat Transfer

105, 476-484. [7.3.6] Poulikakos, D. and Bejan, A. 1983c Unsteady natural convection in a porous

layer. Phys. Fluids 26, 1183-1191. [7.5]

388 Convection in Porous Media

Poulikakos, D. and Bejan, A. 1984a Natural convection in a porous layer heated and cooled along one vertical side. Int. I. Heat Mass Transfer 27, 1879-1891. [7.4.3]

Poulikakos, D. and Bejan, A. 1984b Penetrative convection in porous medium bounded by a horizontal wall with hot and cold spots. Int. I. Heat Mass Transfer 27, 1749-1757. [7.4.3]

Poulikakos, D. and Bejan, A. 1985 The departure from Darcy flow in natural convection in a vertical porous layer. Phys. Fluids 28, 3477-3484. [7.6.1]

Poulikakos, D. and Kazmierczak, M. 1987 Forced convection in a duct partially filled with a porous material. ASME I. Heat Transfer 109, 653-662. [4.9]

Poulikakos, D. and Renken, K. 1987 Forced convection in a channel filled with porous medium, including the effects of flow inertia, variable porosity, and Brinkman friction. ASME I. Heat Transfer 109, 880-888. [4.9]

Poulikakos, D., Bejan, A., Selimos, B., and Blake, K. R. 1986 High Rayleigh number convection in a fluid overlying a porous bed. Int. I. Heat Fluid Flow 7, 109-116. [6.19.2]

Powers, D., O'Neill, K., and Colbeck, S. C. 1985 Theory of natural convection in snow. I. Geophys. Res. 90, 10641-10649. [11.1]

Prasad, V. 1986 Numerical study of natural convection in a vertical porous annulus with constant heat flux on the inner wall. Int. I. Heat Mass Transfer 29, 841-853. [7.2]

Prasad, V. 1987 Thermal convection in a rectangular cavity filled with a heat­generating, Darcy porous medium. ASME I. Heat Transfer 109, 697-703. [6.17]

Prasad, V. 1991 Convective flow interaction and heat transfer between fluid and porous layers. Convective Heat and Mass Transfer in Porous Media (eds. S. Kaka¥, B. Kilki§, F. A. Kulacki, and F. Arinc;), Kluwer Academic, Dordrecht, 563-615. [6.19.2]

Prasad, V. and Chui, A. 1989 Natural convection in a cylindrical porous enclosure with internal heat generation. ASME I. Heat Transfer 111, 916-925. [6.17]

Prasad, V. and Kladias, N. 1991 Non-Darcy natural convection in saturated porous media. Convective Heat and Mass Transfer in Porous Media (eds. S. Kaka¥, B. Kilki§, F. A. Kulacki, and F. Arinc;), Kluwer Academic, Dordrecht, 173-224. [7.6.2]

Prasad, V. and Kulacki, F. A. 1984a Natural convection in a rectangular porous cavity with constant heat flux on one vertical wall. ASME I. Heat Transfer 106, 152-157. [7.2]

Prasad, V. and Kulacki, F. A. 1984b Convective heat transfer in a rectangular porous cavity. Effect of aspect ratio on flow structure and heat transfer. ASME I. Heat Transfer 106, 158-165. [7.1.3]

Prasad, V. and Kulacki, F. A. 1984c Natural convection in a vertical porous annulus. Int. I. Heat Mass Transfer 27, 207-219. [7.3.3]

References 389

Prasad, V. and Kulacki, F. A. 1985 Natural convection in porous media bounded by short concentric vertical cylinders. ASME 1. Heat Transfer 107, 147-154. [7.3.3]

Prasad, V. and Kulacki, F. A. 1986 Effects of size of heat source on natural convection in horizontal porous layers heated from below. Heat Transfer 1986, Hemisphere, Washington, DC,S, 2677-2682. [6.18]

Prasad, V. and Kulacki, F. A. 1987 Natural convection in horizontal fluid layers with localized heating from below. ASME 1. Heat Transfer 109, 795-796. [6.18]

Prasad, V. and Tian, Q. 1990 An experimental study of thermal convection in fluid-superposed porous layers heated from below. Heat Transfer 1990, Hemisphere, Washington, DC,S, 207-212. [6.19.2]

Prasad, V. and Tuntomo, A. 1987 Inertial effects on natural convection in a vertical porous cavity. Numer. Heat Transfer 11, 295-320. [7.6.1]

Prasad, V., Brown, K., and Tian, G. 1989 Flow visualization and heat transfer experiments in fluid-superposed porous layers heated from below. ASME HTD 117, 75-83. [6.19.2]

Prasad, V., Kladias, N., Bandyopadhaya, A., and Tian, Q. 1989 Evaluation of correlations for stagnant thermal conductivity of liquid-saturated porous beds of spheres. Int. 1. Heat Mass Transfer 32, 1793-1796. [2.2.1]

Prasad, V., Kulacki, F. A., and Keyhani, M. 1985 Natural convection in porous media. 1. Fluid Mech. 150, 89-119. [6.9.2, 7.3.3, 7.6.2]

Prasad, V., Kulacki, F. A., and Kulkarni, A. V. 1986 Free convection in a vertical, porous annulus with constant heat flux on the inner wall -experimental results. Int. 1. Heat Mass Transfer 29, 713-723. [7.2]

Prasad, V., Lai, F. C., and Kulacki, F. A. 1988 Mixed convection in horizontal porous layers heated from below. ASME 1. Heat Transfer 110, 395-402. [8.2.2]

Quintard, M. and Prouvost, L. 1982 Instabilites de zones de diffusion thermique instationnaires en milieu poreux. Int. 1. Heat Mass Transfer 25, 37-44. [6.10]

Rajen, G. and Kulacki, F. A. 1987 Natural convection in a porous layer locally heated from below - a regional laboratory model for a nuclear waste repository. ASME HTD 67, 19-26. [6.18]

Ramaniah, G. and Malarvizhi, G. 1990 Non-Darcy regime mixed convection on vertical plates in saturated porous media with lateral mass flux. Acta Mech. 81, 191-200. [8.1.1]

Ramesh, P. S. and Torrance, K. E. 1990 Stability of boiling in porous media. Int. 1. Heat Mass Transfer 33, 1895-1908. [10.3.1]

Ranganathan, R. and Viskanta, R. 1984 Mixed convection boundary-layer flow along a vertical surface in a porous medium. Numer. Heat Transfer 7, 305-317. [8.1.1]

Rao, Y. F., Fukuda, K., and Hasegawa, S. 1987 Steady-and transient analyses of natural convection in a horizontal porous annulus with the Galerkin method. ASME 1. Heat Transfer 109, 919-927. [7.3.3]

390 Convection in Porous Media

Rao, Y. F., Fukuda, K., and Hasegawa, S. 1988 Numerical study of three dimensional natural convection in a horizontal porous annulus with Galerkin method. Int. J. Heat Mass Transfer 31, 695-707. [7.3.3]

Raptis, A. and Tzivanidis, G. 1984 Unsteady flow through a porous medium with the presence of mass transfer. Int. Comm. Heat Mass Transfer 11, 97-102. [9.2.1]

Raptis, A., Tzivanidis, G., and Kafousias, N. 1981 Free convection and mass transfer flow through a porous medium bounded by an infinite vertical limiting surface with constant suction. Lett. Heat Mass Transfer 8, 417-424. [9.2.1]

Ray, R. J., Krantz, W. B., Caine, T. N., and Gunn, R. D. 1983 A model for sorted ground regUlarity. J. Glaciology 29, 317-337. [11.2]

Reda, D. C. 1983 Natural convection experiments in a liquid-saturated porous medium bounded by vertical coaxial cylinders. ASME J. Heat Transfer 105, 795-802. [6.16.1]

Reda, D. C. 1986 Natural convection experiments in a stratified liquid-saturated porous medium. ASME J. Heat Transfer 108, 660-666. [7.3.3]

Reda, D. C. 1988 Mixed convection in a liquid-saturated porous medium. ASME J. Heat Transfer 110, 147-154. [8.1.3, 8.3.4]

Rees, D. A. S. 1988 The stability of Prandtl-Darcy convection in a vertical porous layer. Int. J. Heat Mass Transfer 31, 1529-1534. [7.1.4]

Rees, D. A. S. 1990 The effect of long-wavelength thermal modulations on the onset of convection in an infinite porous layer heated from below. Q. J. Mech. Appl. Math. 43, 189-214. [6.14]

Rees, D. A. S. and Riley, D. S. 1985 Free convection above a near horizontal semi-infinite heated surface embedded in a saturated porous medium. Int. J. Heat Mass Transfer 28, 183-190. [5.3]

Rees, D. A. S. and Riley, D. S. 1989a The effects of boundary imperfections on convection in a saturated porous layer: near-resonant wavelength excitation. J. Fluid Mech. 199, 133-154. [6.14]

Rees, D. A. S. and Riley, D. S. 1989b The effects of boundary imperfections on convection in a saturated porous layer: non-resonant wavelength excitation. Proc. Roy. Soc. London Ser. A 421, 303-339. [6.14]

Renken, K. J. and Poulikakos, D. 1988 Experiment and analysis of forced convective heat transport in a packed bed of spheres. Int. J. Heat Mass Transfer 31, 1399-1408. [4.9]

Renken, K. J. and Poulikakos, D. 1989 Experiments on forced convection from a horizontal heated plate in a packed bed of glass spheres. ASME J. Heat Transfer 111, 59-65. [4.8]

Renken, K. J. and Poulikakos, D. 1990 Mixed convection experiments about a horizontal isothermal surface embedded in a water-saturated packed bed of spheres. Int. J. Heat Mass Transfer 33, 1370-1373. [8.1.2]

Rhee, S. 1., Dhir, V. K., and Catton, I. 1978 Natural convection heat transfer in beds of inductively heated particles. ASME J. Heat Transfer 100, 78-85. [6.11.2]

References 391

Riahi, D. N. 1989 Nonlinear convection in a porous layer with permeable boundaries. Int. f. Non-Linear Mech. 24, 459-463. [6.10]

Riahi, N. 1983 Nonlinear convection in a porous layer with finite conducting boundaries. f. Fluid Mech. 129, 153-171. [6.4]

Ribando, R. J. and Torrance, K. E. 1976 Natural convection in a porous medium: effects of confinement, variable permeability, and thermal boundary conditions. ASME f. Heat Transfer 98, 42-48. [6.13.1]

Ribando, R. J., Torrance, K. E., and Turcotte, D. L. 1976 Numerical models for hydrothermal circulation in the oceanic crust. f. Geophys. Res. 81, 3007-3012. [11.6.1]

Richardson, S. 1971 A model for the boundary condition of a porous material. Part 2. f. Fluid Mech. 49, 327-336. [1.6]

Riley, D. S. 1988 Steady two-dimensional thermal convection in a vertical porous slot with spatially periodic boundary imperfections. Int. f. Heat Mass Transfer 31, 2365-2380. [7.1.4]

Riley, D. S. and Rees, D. A. S. 1985 Non-Darcy natural convection from arbitrarily inclined heated surfaces in saturated porous media. Q. f. Mech. Appl. Math. 38, 277-295. [5.12.2]

Riley, D. S. and Winters, K. H. 1989 Modal exchange mechanisms in Lapwood convection. f. Fluid Mech. 204, 325-358. [6.15.1]

Riley, D. S. and Winters, K. H. 1990 A numerical bifurcation study of natural convection in a tilted two-dimensional porous cavity. f. Fluid Mech.215, 309-329. [7.8]

Riley, D. S. and Winters, K. H. 1991 Time-periodic convection in porous media: the evolution of Hopf bifurcations with aspect ratio. f. Fluid Mech. 223, 457-474. [6.15.1]

Robillard, L., Wang, C. H., and Vasseur, P. 1988 Multiple steady states in a confined porous medium with localized heating from below. Numer. Heat Transfer 13, 91-110. [6.18]

Rohsenow, W. M. and Choi, H. Y. 1961 Heat, Mass and Momentum Transfer. Prentice-Hall, Englewood Cliffs, NJ. [4.5]

Rohsenow, W. M. and Hartnett, J. P. 1973 Handbook of Heat Transfer. McGraw­Hill, New York. [4.5]

Rubin, H. 1974 Heat dispersion effect on thermal convection in a porous medium layer. f. Hydrol. 21, 173-184. [2.2.3]

Rubin, H. 1975 Effect of solute dispersion on thermal convection in a porous medium layer. 2. Water Resources Res. 11, 154-158. [9.1.6.1]

Rubin, H. 1976 Onset of thermohaline convection in a cavernous aquifer. Water Resources Res. 12, 141-147. [9.1.6.1]

Rubin, H. 1981 Onset of thermohaline convection in heterogeneous porous media. Israel f. Tech. 19, 110-117. [6.13.1, 9.1.6.2]

Rubin, H. 1982a Thermohaline convection in a nonhomogeneous aquifer. f. Hydrol. 57, 307-320. [9.1.6.2]

392 Convection in Porous Media

Rubin, H. 1982b Application of the aquifer's average characteristics for determining the onset of thermohaline convection in a heterogeneous aquifer. f. Hydrol.57, 321-336. [9.1.6.2]

Rubin, H. and Roth, C. 1978 Instability of horizontal thermohaline flow in a porous medium layer. Israel f. Tech. 16, 216-223. [9.1.6.1]

Rubin, H. and Roth, C. 1983 Thermohaline convection in flowing groundwater. Adv. Water Resources 6, 146-156. [9.1.6.1]

Rubinstein, J. 1986 Effective equations for flow in random porous media with a large number of scales. f. Fluid Mech. 170, 379-383. [1.5.3]

Rudraiah, N. 1988 Turbulent convection in porous media with non-Darcy effects. ASME HTD 96, Vol. 1,747-754. [1.5.1]

Rudraiah, N. and Srimani, P. K. 1980 Finite-amplitude cellular convection in a fluid-saturated porous layer. Proc. Roy. Soc. London Ser. A 373, 199-222. [6.3]

Rudraiah, N. and Vortmeyer, D. 1982 The influence of permeability and of a third diffusing component upon the onset of convection in a porous medium. Int. f. Heat Mass Transfer 25, 457-464. [9.1.6.4]

Rudraiah, N., Sheela, R., and Srimani, P. K. 1987 Mixed thermohaline convection in an inclined porous layer. ASME HTD 84, 97-101. [9.4]

Rudraiah, N., Srimani, P. K., and Friedrich, R. 1982 Finite amplitude convection in a two-component fluid saturated porous layer. Int. f. Heat Mass Transfer 25,

715-722. [9.1.3] Rudraiah, N., Veerappa, B., and Balachandra Rao, S. 1980 Effects of nonuniform

thermal gradient and adiabatic boundaries on convection in porous media. ASME f. Heat Transfer 102, 254-260. [6.11.2]

Rudraiah, N., Veerappa, B., and Balachandra Rao, S. 1982 Convection in a fluid­saturated porous layer with non-uniform temperature gradient. Int. f. Heat Mass Transfer 25, 1147-1156. [6.11.2]

Saffman, P. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93-101. [1.6]

Salt, H. 1988 Heat transfer across a convecting porous layer with flux boundaries. Transport in Porous Media 3, 325-341. [6.3]

Sandner, H. 1986 Double diffusion effects in a cylindrical porous bed filled with salt water. Heat Transfer 1986, Hemisphere, Washington, DC, 5, 2623-2627. [9.4]

Sasaki, A., Aiba, S., and Fukusako, S. 1990 Numerical study on freezing heat transfer in water-saturated porous media. Numer. Heat Transfer A 18, 17-32. [10.2.2]

Sathe, S. B. and Tong, T. W. 1988 Measurements of natural convection in partially porous rectangular enclosures of aspect ratio 5. Int. Comm. Heat Mass Transfer 15, 203-212. [7.7]

Sathe, S. B. and Tong, T. W. 1989 Comparison of four insulation schemes for reduction of natural convective heat transfer in rectangular enclosures. Int. Comm. Heat Mass Transfer 16, 795-802. [7.7]

References 393

Sathe, S. B., Lin, W. Q., and Tong, T. W. 1988 Natural convection in enclosures containing an insulation with a permeable-fluid-porous interface. Int. J. Heat Fluid Flow 9, 389-395. [7.7]

Sathe, S. B., Tong, T. W., and Faruque, M. A. 1987 Experimental study of natural convection in a partially porous enclosure. AIAA J. Thermophys. Heat Transfer 1, 260-267. [7.7]

Scheidegger, A. E. 1974 The Physics of Flow through Porous Media, University of Toronto Press, Toronto. [1.2]

Schneider, K. J. 1963 Investigation on the influence of free thermal convection on heat transfer through granular material. Proc. lIth Int. Congo of Refrigeration, Pergamon Press, Oxford, Paper 11-4, 247-253. [6.9.1, 6.9.2, 7.1.2]

Schubert, G. and Straus, J. M. 1977 Two-phase convection in a porous medium. J. Geophys. Res. 82, 3411-3421. [10.3.1]

Schubert, G. and Straus, 1. M. 1979 Three-dimensional and multicellular steady and unsteady convection in fluid-saturated porous media at high Rayleigh numbers. J. Fluid Mech. 94, 25-38. [6.8, 6.15.1]

Schubert, G. and Straus, 1. M. 1980 Gravitational stability of water over steam in vapor-dominated geothermal systems. J. Geophys. Res. 85, 6505-6512. [10.3.1]

Schubert, G. and Straus, J. M. 1982 Transitions in time-dependent thermal convection in fluid-saturated porous media. J. Fluid Mech. 121, 301-303. [6.15.1]

Schulenberg, T. and Milller, U. 1984 Natural convection in saturated porous layers with internal heat sources. Int. J. Heat Mass Transfer 27, 677-685. [6.19.2]

Selimos, B. and Poulikakos, D. 1985 On double diffusion in a Brinkman heat generating porous layer. Int. Comm. Heat Mass Transfer 12, 149-158. [9.1.6.4]

Sen, A. K. 1987 Natural convection in a shallow porous cavity - the Brinkman model. Int. J. Heat Mass Transfer 30, 855-868. [7.6.2]

Sen, M., Vasseur, P., and Robillard, L. 1987 Multiple steady states for unicellular natural convection in an inclined porous layer. Int. J. Heat Mass Transfer 30, 2097-2113. [7.8]

Sen, M., Vasseur, P., and Robillard, L. 1988 Parallel flow convection in a tilted two-dimensional porous layer heated from all sides. Phys. Fluids 31, 3480-3487. [7.8]

Simpkins, P. G. and Blythe, P. A. 1980 Convection in a porous layer. Int. J. Heat Mass Transfer 23, 881-887. [7.1.2]

Singh, P., Misra, J. K., and Narayan, K. A. 1988 Three-dimensional convective flow and heat transfer in a porous medium. Indian J. Pure Appl. Math. 19,

1130-1135. [5.1.9] Sokolov, V. E. 1982 Mammal Skin, University of California Press, Berkeley,

CA. [4.10]

394 Convection in Porous Media

Somerton, C. W. 1983 The Prandtl number effect in porous layer convection. Appl. Sci. Res. 40, 333-344. [6.9.2]

Somerton, C. W. and Catton, I. 1982 On the thermal instability of superimposed porous and fluid layers. ASME J. Heat Transfer 104, 160-165. [1.6, 6.19.1.2, 6.19.2]

Somerton, C. W., McDonough, J. M., and Catton, I. 1984 Natural convection in a volumetrically heated porous layer. ASME J. Heat Transfer 106, 241-244. [6.11.2]

Sondergeld, C. H. and Turcotte, D. L. 1977 An experimental study of two-phase convection in a porous medium with applications to geological problems. J. Geophys. Res. 82, 2045-2053. [10.3.1]

Sondergeld, C. H. and Turcotte, D. L. 1978 Flow visualization studies of two­phase thermal convection in a porous layer. Pure Appl. Geophys. 117, 321-330. [10.3.1]

Sozen, M. and Vafai, K. 1990 Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed. Int. J. Heat Mass Transfer 33, 1247-1261. [10.4]

Steen, P. H. 1983 Pattern selection for finite-amplitude convection states in boxes of porous media. J. Fluid Mech. 136, 219-241. [6.15.1]

Steen, P. H. 1986 Container geometry and the transition to unsteady Benard convection in porous media. Phys. Fluids 29, 925-933. [6.15.1]

Steen, P. H. and Aidun, C. K. 1988 Time-periodic convection in porous media: transition mechanism. J. Fluid Mech. 196, 263-290. [6.8]

Steinberg, V. and Brand, H. 1983 Convective instabilities of binary mixtures with fast chemical reaction in a porous medium. J. Chern. Phys. 78, 2655-2660. [9.1.6.4]

Stewart, W. E. and Dona, C. L. G. 1988 Free convection in a heat-generating porous medium in a finite vertical cylinder. ASME J. Heat Transfer 110, 517-520. [6.17]

Storesletten, L. and Tveitereid, M. 1987 Thermal convection in a porous medium confined by a horizontal cylinder. ASME HTD 92, 223-230. [6.16.2]

Straughan, B. 1988 A nonlinear analysis of convection in a porous vertical slab. Geophys. Astrophys. Fluid Dyn.42, 269-276. [7.1.4]

Straus, J. M. 1974 Large amplitude convection in porous media. J. Fluid Mech. 64, 51-63. [6.4, 6.6, 6.8, 6.9.1]

Straus, J. M. and Schubert, G. 1977 Thermal convection of water in a porous medium: effects of temperature- and pressure-dependent thermodynamic and transport processes. J. Geophys. Res. 82, 325-333. [6.7]

Straus, J. M. and Schubert, G. 1979 Three-dimensional convection in a cubic box of fluid-saturated porous material. J. Fluid Mech. 91, 155-165. [6.15.1]

Straus, J. M. and Schubert, G. 1981 Modes of finite-amplitude three-dimensional convection in rectangular boxes of fluid-saturated porous material. J. Fluid Mech. 103, 23-32. [6.15.1]

References 395

Sugawara, M., Inaba, H., and Seki, N. 1988 Effect of maximum density of water on freezing of a water-saturaterl horizontal porous layer. ASME 1. Heat Transfer 110, 155-159. [10.2.2]

Sun, Z. S., Tien, C., and Yen, Y. C. 1970 Onset of convection in a porous medium containing liquid with a density maximum. Heat Transfer 1970, Elsevier, Amsterdam, 4, paper NC 2.11. [6.20]

Swift, D. W. and Harrison, W. D. 1984 Convective transport of brine and thaw of subsea permafrost: result of numerical simulations. 1. Geophys. Res. 89, 2080-2086. [11.3]

Takata, Y., Fukuda, K., Hasegawa, S., Iwashige, K., Shimomura, H., and Sanokawa, K. 1982 Three-dimensional natural convection in a porous medium enclosed with concentric inclined cylinders. Heat Transfer 1982, Hemisphere, Washington, DC, 2, 351-356. [7.8]

Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. 1. Fluid Mech. 38, 537-546. [1.5.3]

Taslim, M. E. and Narusawa, U. 1986 Binary fluid convection and double­diffusive convection. ASME 1. Heat Transfer 108, 221-224. [9.1.4]

Taslim, M. E. and Narusawa, U. 1989 Thermal instability of horizontally superposed porous and fluid layers. ASME 1. Heat Transfer 111, 357-362. [6.19.1.2]

Taylor, G. I. 1971 A model for the boundary condition of a porous material, Part 1. 1. Fluid Mech.49, 319-326. [1.6]

Tewari, P. K. and Torrance, K. E. 1981 Onset of convection in a box of fluid­saturated porous material with a permeable top. Phys. Fluids 24, 981-983. [6.15.1]

Tien, C. L. and Vafai, K. 1990 Convective and radiative heat transfer in porous media. Adv. Appl. Mech. 27, 225-281. [3.6]

Tong, T. W. and Orangi, S. 1986 A numerical analysis for high modified Rayleigh number natural convection in enclosures containing a porous medium. Heat Transfer 1986, Hemisphere, Washington, DC, 5, 2647-2652. [7.6.2]

Tong, T. W. and Subramanian, E. 1985 A boundary-layer analysis for natural convection in vertical porous enclosures - use of the Brinkman-extended Darcy model. Int. 1. Heat Mass Transfer 28, 563-571. [7.6.2]

Tong, T. W. and Subramanian, E. 1986 Natural convection in rectangular enclosures partially filled with a porous medium. Int. 1. Heat Fluid Flow 7, 3-10. [7.7]

Trevisan, O. V. and Bejan, A. 1985 Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. 1. Heat Mass Transfer

28, 1597-1611. [9.2.2] Trevisan, O. V. and Bejan, A. 1986 Mass and heat transfer by natural convection

in a vertical slot filled with porous medium. Int. 1. Heat Mass Transfer 29,

403-415. [9.2.2] Trevisan, O. V. and Bejan, A. 1987 Mass and heat transfer by high Rayleigh

number convection in a porous medium heated from below. Int. 1. Heat Mass Transfer 30, 2341-2356. [9.1.5]

396 Convection in Porous Media

Trevisan, O. V. and Bejan, A. 1989 Mass and heat transfer by natural convection above a concentrated source buried at the base of a shallow porous layer. ASME HTD 127, 47-54. [904]

Trevisan, o. V. and Bejan, A. 1990 Combined heat and mass transfer by natural convection in a porous medium. Adv. Heat Transfer 20, 315-352. [9]

Turcotte, D. L., Ribando, R. J., and Torrance, K. E. 1977 Numerical calculation of two-temperature thermal convection in a permeable layer with application to the Steamboat Springs thermal system, Nevada. The Earth's Crust (ed. J. G. Heacock), Amer. Geophys. Union, Washington, DC, 722-736. [11. 7]

Tveitereid, M. 1977 Thermal convection in a horizontal porous layer with

internal heat sources. Int. 1. Heat Mass Transfer 20, 1045-1050. [6.11.2] Tyvand, P. A. 1977 Heat dispersion effect on thermal convection in anisotropic

porous media. 1. Hydrol.34, 335-342. [2.2.3, 6.12] Tyvand, P. A. 1980 Thermohaline instability in anisotropic porous media.

Water Resources Res. 16, 325-330. [9.1.6.2]

Tyvand, P. A. 1981 Influence of heat dispersion on steady convection in anisotropic porous media. 1. Hydrol.52, 13-23. [2.2.3, 6.12]

Tyvand, P. A. and Storesletten, L. 1991 Onset of convection in an anisotropic porous medium with oblique principal axes. 1. Fluid Mech. 226, 371-382. [6.12]

Vadasz, P. 1990 Bifurcation phenomena in natural convection in porous media. Heat Transfer 1990, Hemisphere, Washington, DC, 5, 147-152. [6.1304]

Vafai, K. 1984 Convective flow and heat transfer in variable-porosity media. 1. Fluid Mech. 147, 233-259. [4.8]

Vafai, K. 1986 Analysis of the channeling effect in variable-porosity media. ASME 1. Energy Res. Tech. 108, 131-139. [4.8]

Vafai, K. and Kim, S. J. 1989 Forced convection in a channel filled with a porous medium: an exact solution. ASME 1. Heat Transfer 111, 1103-1106. [4.9]

Vafai, K. and Kim, S. J. 1990 Analysis of surface enhancement by a porous substrate. ASME 1. Heat Transfer 112, 700-706. [4.8]

Vafai, K. and Sarkar, S. 1986 Condensation effects in a fibrous insulation slab. ASME 1. Heat Transfer 108, 667-675. [lOA]

Vafai, K. and Sarkar, S. 1987 Heat and mass transfer in partial enclosures. AIAA 1. Thermophys. Heat Transfer 1, 253-259. [1004]

Vafai, K. and Thiyagaraja, R. 1987 Analysis of flow and heat transfer at the interface region of a porous medium. Int. 1. Heat Mass Transfer 30, 1391-1405. [4.8]

Vafai, K. and Whitaker, S. 1986 Simultaneous heat and mass transfer accompanied by phase change in porous insulation. ASME 1. Heat Transfer 108, 132-140. [lOA]

Vafai, K., Alkire, R. L., and Tien, C. L. 1985 An experimental investigation of heat transfer in variable porosity media. ASME 1. Heat Transfer 107, 642-647. [4.8]

References 397

Vanover, D. E. and Kulacki, F. A. 1987 Experimental study of mixed convection in a horizontal porous annulus. ASME HTD 84, 61-66. [8.2.3]

Vasantha, R., Pop, I., and Nath, G. 1986 Non-Darcy natural convection over a slender vertical frustum of a cone in a saturated porous medium. Int. J. Heat Mass Transfer 29, 153-156. [5.8]

Vasseur, P. and Robillard, L. 1987 The Brinkman model for boundary layer regime in a rectangular cavity with uniform heat flux from the side. Int. J. Heat Mass Transfer 30, 717-728. [7.6.2]

Vasseur, P., Nguyen, T. H., Robillard, L., and Thi, V. K. T. 1984 Natural convection between horizontal concentric cylinders filled with a porous layer with internal heat generation. Int. J. Heat Mass Transfer 27, 337-349. [6.17]

Vasseur, P., Robillard, L., and Anochiravani, I. 1988 Natural convection in an inclined rectangular porous cavity with uniform heat flux from the side. Warme­Stoffubertrag. 22, 69-77. [7.8]

Vasseur, P., Satish, M. G., and Robillard, L. 1987 Natural convection in a thin, inclined, porous layer exposed to a constant heat flux. Int. J. Heat Mass Transfer 30, 537-550. [7.8]

Vasseur, P., Wang, C. H., and Sen, M. 1989 The Brinkman model for natural convection in a shallow porous cavity with uniform heat flux. Numer. Heat Transfer 15, 221-242. [6.19.1.2, 7.6.2]

Vasseur, P., Wang, C. H., and Sen, M. 1990 Natural convection in an inclined rectangular porous slot: the Brinkman-extended Darcy model. ASME J. Heat Transfer 112, 507-511. [7.8]

Vedha-Nayagam, M., Jain, P., and Fairweather, G. 1987 The effect of surface mass transfer on buoyancy induced flow in a variable-porosity medium adjacent to a horizontal heated plate. Int. Comm. Heat Mass Transfer 14, 495-506. [5.2]

Veinberg, A. K. 1967 Permeability, electrical conductivity, dielectric constant and thermal conductivity of a medium with spherical and ellipsoidal inclusions.

Soviet Phys. Dokl. 11, 593-595. [10.1.6] Viljoen, H. J., Gatica, J. E., and Hlavacek, V. 1990 Bifurcation analysis of

chemically driven convection. Chem. Engng. Sci. 45, 503-517. [6.19.2] Vincourt, M. C. 1989a Competition between two directions of convective rolls

in a horizontal porous layer, non-uniformly heated. Mechanics 16, 19-24. [6.15.1]

Vincourt, M. C. 1989b Influence of a heterogeneity on the selection of convective patterns in a porous layer. Int. J. Engng. Sci. 27, 377-392. [6.15.1]

Walker, K. L. and Homsy, G. M. 1977 A note on convective instabilities in Boussinesq fluids and porous media. ASME J. Heat Transfer 99, 338-339. [6.6]

Walker, K. L. and Homsy, G. M. 1978 Convection in a porous cavity. J. Fluid Mech. 87, 449-474. [7.1.3]

398 Convection in Porous Media

Wang, B. X. and Zhang, X. 1990 Natural convection in liquid-saturated porous media between concentric inclined cylinders. Int. J. Heat Mass Transfer 33,

827-833. [7.8] Wang, C. Y., Wu, C. Z., Tu, C. 1., and Fukusako, S. 1990 Freezing around a

vertical cylinder immersed in porous media incorporating the natural convection effect. Warme-Stoffiibertrag. 26, 7-15. [10.2.2]

Wang, M. and Bejan, A. 1987 Heat transfer correlation for Benard convection in a fluid saturated porous layer. Int .. Comm. Heat Mass Transfer 14, 617-626. [6.9.2]

Wang, M., Kassoy, D. R., and Weidman, P. D. 1987 Onset of convection in a vertical slab of saturated porous media between two impermeable conducting blocks. Int. J. Heat Mass Transfer 30, 1331-1341. [6.15.2]

Ward, J. C. 1964 Turbulent flow in porous media. ASCE J. Hydraul. Div.90 (HY5), 1-12. [1.5.2, 10.1.6]

Weaver, J. A. and Viskanta, R. 1986 Freezing of liquid saturated porous media. ASME J. Heat Transfer lOS, 654-659. [10.2.2]

Weber, J. E. 1974 Convection in a porous medium with horizontal and vertical temperature gradients. Int. J. Heat Mass Transfer 17,241-248. [7.9]

Weber, J. E. 1975a Thermal convection in a tilted porous layer. Int. J. Heat Mass TransfedS, 474-475. [7.8]

Weber, J. E. 1975b The boundary-layer regime for convection in a vertical porous layer. Int. J. Heat Mass Transfer IS, 569-573. [7.1.2, 7.1.3, 7.2, 7.6.1, 10.1.2]

Weidman, P. D. and Kassoy, D. R. 1986 Influence of side wall heat transfer on convection in a confined saturated porous medium. Phys. Fluids 29, 349-355. [6.15.2]

Weinitschke, H. J., Nandakumar, K., and Sankar, S. R. 1990 A bifurcation study of convective heat transfer in porous media. P hys. Fluids A 2, 912-921. [6.17]

Whitaker, S. 1986 Flow in porous media J: A theoretical derivation of Darcy's law. Transport in Porous Media 1, 3-25. [1.4.3]

White, S. M. and Tien, C. L. 1987 Analysis of laminar film condensation in a porous medium. Proceedings 1987 ASME JSME Thermal Engineering Joint Conference, ASME, New York, 2, 401-406. [10.4]

Wooding, R. A. 1957 Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2, 273-285. [1.5.l]

Wooding, R. A. 1959 The stability of a viscous liquid in a vertical tube containing porous material. Proc. Roy. Soc. London Ser. A 252, 120-134. [6.16.1, 11.3].

Wooding, R. A. 1963 Convection in a saturated porous medium at large Reynolds number or Peclet number. J. Fluid Mech. 15, 527-544. [5.10.1.1, 5.11.1]

Wooding, R. A. 1978 Large-scale geothermal field parameters and convection theory. N. Z. J. Sci. 27, 219-228. [6.12, 6.13.3]

References 399

Wooding, R. A. 1985 Convective plumes in saturated porous media. Convective Flows in Porous Media (eds. R. A. Wooding and I. White) Dept. Sci. Indust. Res., Wellington, N. Z., 167-178. [5.11.1]

Wu, R. S., Cheng, K. C., and Craggs, A. 1979 Convective instabilities in porous media with maximum density and throughflow effects by finite-difference and finite-element methods. Numer. Heat Transfer 2, 303-318. [6.10]

Yen, Y. C. 1974 Effects of density inversion on free convective heat transfer in porous layer heated from below. Int. J. Heat Mass Transfer 17, 1349-1356. [6.9.1, 6.9.2]

Yucel, A. 1990 Natural convection heat and mass transfer along a vertical cylinder in a porous medium. Int. J. Heat Mass Transfer 33, 2265-2274. [9.4]

Zaturska, M. B. and Banks, W. H. H. 1987 On the spatial stability of free­convection flows in a saturated porous medium. J. Engng. Math. 21, 41-46. [5.1.9]

Zebib, A. 1978 Onset of natural convection in a cylinder of water saturated porous media. Phys. Fluids 21, 699-700. [6.16.1]

Zebib, A. and Kassoy, D. R. 1978 Three dimensional natural convection motion in a confined porous medium. Phys. Fluids 21, 1-3. [6.15.1]

Zhang, X. and Nguyen, T. H. 1990 Development of convective flow during the melting of ice in a porous medium heated from above. ASME HTD 156, 1-6. [10.1.7]

Zhang, X., Nguyen, T. H., and Kahawita, R. 1991 Melting of ice in a porous medium heated from below. Int. J. Heat Mass Transfer 34, 389-405. [10.1.7]

Zhang, Z. and Bejan, A. 1987 The horizontal spreading of thermal and chemical deposits in a porous medium. Int. J. Heat Mass Transfer 30, 2289-2303. [9.2.3]

Index

A

Acceleration coefficient tensor, 9 Acceleration, 7-9 Agar-agar, 4 Alternating hot and cold spots, 243,

244 Analogy between layering and

anisotropy, 181-183 Anisotropy, 23, 25, 40, 178-180,

186, 192, 229-231, 240, 284, 285

Annulus, 194, 196, 227, 232-234, 250, 256, 270, 272

Arrhenius relationship, 34 Attic-shaped enclosure, 236, 237 Augmentation of heat transfer, 57 Averaging theorem, 37 Axisymmetric cavities, 237 Axisymmetric surface, 118-120, 267,

303, 342, 343

B

Beads: see Spheres Beavers-Joseph condition, 15-17,

205, 207 Bifurcation, 161, 175, 187-191, 196,

256 Biot number, 147 Blowing at the surface: see Suction

or blowing at the surface Body of revolution, 119, 303 Boiling, 334-343 Boundary between two porous media,

17 Boundary conditions, 14-18, 27, 198

Boundary friction, 66-74, 91-97, 104, 135, 249, 250, 256, 263, 267, 273, 326, 343

Boundary imperfections, 226 Boundary layer regime, 216-221 Boundary layers, 47, 48, 50, 51,

58-60, 82, 85, 90, 91, 138, 214, 259, 312, 325, 326, 351

Boundary topography, 355 Boussinesq approximation:

see Oberbeck-Boussinesq approximation

Brick, 4 Brinkman boundary friction:

see Boundary friction Brinkman model, or equation, 11-14,

16, 66, 73, 92, 97, 134, 156-158, 175, 201, 208, 209, 226, 249, 250, 268, 272, 285, 286, 343

Brinkman term, 156 Brinkman-Forchheimer:

see Forchheimer-Brinkman Buoyancy ratio, 277, 289, 292, 293

source, 297, 301 Buoyant wake, 99 Buried pipes, 137

c

Capillary pressure, 42 Carman-Kozeny relationship, 6, 7, 9,

156 Catalyst, 4 Catalytic reaction, 35 Centrosymmetry, 217 Channel, 56, 71, 188-193, 267-274

402 Index

Channelling, 16, 18, 25, 73, 161, 263, 356

Chemical reaction, 34, 35, 286, 351 Chemical reactors, 73 Cigarette, 4 Circular plate, 137 Coal, 4 Combined heat and mass transfer, 33,

34, 275-304 Compressibility effect, 159 Concentrated heat and mass sources:

see Sources Concentration expansion coefficient,

33, 276 Concrete, 4 Condensation, 343, 344 Conduction, 142, 215 Conduction and convection 135, 320 Conductivity variation, 263 Cone, 115-119, 342, 343 Configurations, other, 135-137, 267,

330 Confined (enclosed) flow, 56-58,

70-74, 141-258, 290-296, 305-334

Conjugate boundary layers, 88-90 Conjugate conduction and convection:

see Conduction and convection Conservation of energy:

see Energy equation Conservation of mass:

see Mass conservation Conservation of momentum:

see Momentum equations Continuity equation, 5 Convection with change of phase,

305-344 Copper powder, 4 Core flow, 221, 226, 315, 317 Corey formulas, 45 Cork board, 4 Comer, 136, 137 Correlation formulas, 108, 164-168,

210, 233, 234, 236, 254-256, 269, 270, 273, 326

Critical point, stability, 153 Critical point, thermodynamics, 356 Critical Rayleigh number, 145, 147,

158, 159, 161, 163, 170, 172, 174, 177, 178, 184, 189, 194, 205-207, 237, 257, 278, 285, 286, 297, 336, 350, 353

Critical wavenumber, 145, 147, 207, 257, 297

Cross-diffusion, 34, 282 Crystallization, 351 Curvature effects, 118 Cylinder embedded in box, 137 Cylinder, 51-54, 64, 71, 106-110,

119, 193-195, 231-234 241 264-267 "

Cylindrical enclosure, 231-234

D

Dalton's law, 30 Darcy flow, 5-7, 13, 14, 16, 44, 79,

120, 141, 211-226, 338 Darcy number, 105, 144, 156, 250 Darcy's law: see Darcy flow Darcy, permeability unit, 6 Darcy-Forchheimer intermediate range,

248 Density differences, large, 130 Density inversion, 347 Density variation, 196 Departure from Darcy flow:

see Non-Darcy effects Deterministic models, 6, 7 Diagenetic processes, 351-353 Diffusion, 31 Diffusive flux, 31, 33 Disc, 137 Dispersion tensor, 24, 284 Dispersion, 24-26, 28, 64-66, 69-74,

91-97, 130, 156-158, 175, 180, 261-264, 267, 280, 284, 285

Distinct boundary layers, 214 Double diffusion, 33, 104, 267,

275-303, 333, 350, 356 Double walls, 224 Duct, 56, 71, 196 Dufour effect, 34, 282 Dupuit-Forchheimer relationship, 5,

7, 33

E

Eccentricity, 234 Effective Prandtl number, 68, 69, 165 Effective thermal conductivity, 43,

73, 164 Effective viscosity, 12, 13 Elastic porous matrix, 160

Elliptic cross-section, 54 Enclosures: see Confined (enclosed)

flow Energy equation, 21-26, 40-43 Energy method, 350 Equation of state, 26, 346 Ergun's equation, 10, 19 Experimental investigations, 28, 70,

73, 97-99, 104, 122, 124, 151, 152, 162-169, 174, 177, 178, 181, 194, 201, 208, 209, 226, 230, 233, 234, 236, 250, 251, 253-256, 264, 266, 269, 270, 272, 273, 280, 281, 303, 332-334, 336

External flow, 47-56, 259-267 External natural convection, 79-139

F

Fiberglass, 4 Fick's law, 32 Film boiling, 338-343 Film condensation, 343, 344 Fingering, 280, 281, 303, 350 Finite-amplitude convection,

160-162, 280, 281 Fins, 75, 135, 136, 267 Fissures, 284 Floquet theory, 177 Fluctuating convection regime, 160,

164, 254 Fluid adjacent to porous medium, 14,

201-209, 250, 251 Fluid mechanics, 1-19 Folded porous layer, 352 Forced convection, 47-77, 343 Forchheimer coefficient, 156 Forchheimer drag, 8, 69 Forchheimer flow limit, 167 Forchheimer model, or equation, 9-11,

93, 95, 109, 122-124, 156, 165, 246, 247, 328

Forchheimer parameter, 96 Forchheimer-Brinkman model,

or equation, 13, 19, 73, 99, 161, 201, 329, 333

Form drag coefficient, 9, 10 Fourier number, 307 Fourier's law, 21 Freezing, 330-334 Frustum of cone, 116

Index 403

G

Galerkin method, 174, 177, 257 General two-dimensional body:

see Two-dimensional body Geophysical aspects, 345-356 Geothermal reservoirs, 345, 355, 356 Geothermal system, 179 Grashof number, 98, 99 Gravitational instability, 334, 336

H

Hair, 4, 74-77, 137-139 Heat capacity ratio, 143 Heat flux distribution, 353 Heat flux unit, 353 Heat transfer coefficient, 23, 24, 139 Heat transfer, 21-28 Heat-generating porous medium:

see Internal heating Hele-Shaw cell analogy, 27, 28, 162,

181, 280, 355 Helicoidal cells, 254, 347, 348 Hexagons, 152, 160, 162, 168, 175,

347 High Rayleigh number, 106-108,

110-112, 120-124, 127-130, 215, 216, 282-284

Higher-order boundary layer theory, 90, 91, 104, 121, 263

Higher-order transitions, 160-162 Homogenization method, 7 Horizontal cylinder, 106-11 0, 112,

139, 194, 195, 266, 267, 342 Horizontal heat and mass transfer,

286-297 Horizontal layer: see Horton-Rogers­

Lapwood problem Horizontal layer, melting, 322-325 Horizontal layer, mixed convection,

268-271 Horizontal line source, 120-127, 267 Horizontal plate, 99-103, 106, 137,

264 Horton-Rogers-Lapwood problem,

141, 142, 256, 275-279, 346 Hot springs, 355 Hydrodynamic boundary conditions,

14-18

404 Index

I J

Ice front, 347 Ice melting, 330 Ideal gas, 159 Images, method of, 126 Inclined cylinders, concentric, 256 Inclined plate, 104, 105, 136,

259-263, 264 Inclined porous layer or enclosure,

251-256, 347, 353 Inclined temperature gradient,

256-258 Inertia, 7-9, 64-66, 69-74, 86, 91-97,

104, 120, 165, 246-249, 261, 263, 267, 326, 328

Inhomogeneity, 180-187, 229-231, 285, 296

Injection, 261, 264, 355 Instability (see also Stability, Linear

stability analysis, Nonlinear stability analysis), 28, 280

attic-shaped enclosure, 237 gravitational, 334 oscillatory, 275, 280, 281 phase-change, 335 sinuous, 153 subcritical, 149 varicose, 153 vortex, 104-106, 264

Instantaneous point source, 133 Integral method, 84-86 Interface between porous medium and

impermeable wall, 16 Intermediate Rayleigh number,

108-110, 113, 134, 135 Internal flow, 56-58, 267-274 Internal heating, 172-175, 178, 193,

195, 196, 209, 251 Internal natural convection:

heating from below, 141-210, 330, 334-338

heating from the side, 211-258, 305-332

Internal partitions: see Partitions Internal Rayleigh number, 174 Intrinsic average, 5 Intrinsic phase average, 36 Intrusion layer, horizontal, 322-325 Irmay-Ergun equation, 19 Isothermal side walls, 211

Jakob number, 341, 344, 351 Jets, 214 Karman-Pohlhausen integral method:

see Integral method Kozeny's equation, 10

L

Large-Reynolds-number limit: Rayleigh number, 94, 247

Lateral mass flux, 83, 84, 135, 263, 343, 344

Lateral penetration, 238-240 Lateral thermal dispersion, 169 Layered double-diffusive convection,

280 Layered porous media, 181, 229-231 Leather, 4 Lewis number, 277, 283, 300 Lienhard's swept length, 53 Limestone, 4 Line source, 54-56, 120-127 Linear stability analysis, 142-147,

152, 169, 188-191, 225, 252, 257, 276, 335

Liquid-dominated system, 334, 335 Local nonsimilarity method, 118,

264, 266 Local similarity, 105, 137, 267 Local thermal equilibrium, 21, 42,

141, 154, 333 Localized heating, 197-201, 268-274 Low Rayleigh number, 108-110, 112,

113, 124-127, 130-134

M

Macroscopic quantities, Magma bodies, 356 Magma chambers, 350, 351 Magma production, 350, 351 Malkus hypothesis, 151 Mammals, body lengths and hair

sizes, 77 Mass conservation, 31-33, 37-39 Mass flow, net, 169-171, 258

Mass fraction, 30 Mass transfer, 29-46, 103 Matched boundary layer analysis,

217, 226 Materials, porous, 2, 4 Maximum density effects, 103, 104,

171, 209, 210, 235, 236, 330 Melting rate, 319 Melting, 305-330 Merged-layer regime, 225 Mixed convection, 259-274 Modified averaging theorem, 37 Molar mass, 29 Mole fraction, 30 Mole, 29 Momentum equation, 5-7, 39, 40 Multicomponent flow, 29-31 Multiphase flow, 35-45

N

Natural convection: internal, heating from below,

141-210, 330, 334-338 internal, heating from the side,

211-258, 305-332 external, 79-139

Net mass flow, 169-171 Neumann solution, 311, 312, 319 Neutral stability curve, 154, 208,

277, 338 Non-Boussinesq effects, 158-160, 231 Non-Darcy effects, 98, 106, 118,

135, 136, 156-158, 161, 246-250

Non-equilibrium, thermal, 23, 74, 137, 154-156

Non-Newtonian fluid, 99, 103, 108, 112

Non-similarity results, 96 Non-uniform porosity:

see Porosity variation Nonlinear initial profiles, 172-178,

258, 279-281 Nonlinear neutral curves, 153 Nonlinear stability analysis, 171,

175, 225, 281, 350 Nonuniform heating, 187, 188 Nusselt number:

conduction referenced, 149, 222 local, 49, 50, 52, 82, 85, 95,

Index 405

100, 101, 105, 107, 117, 148, 261, 263, 341

o

overall, 49, 50, 53, 57, 69, 83, 87, 88, 101, 110, 113, 157, 214, 283, 287, 310, 323

Oberbeck -Boussinesq approximation, 26, 27, 79, 141, 212, 338, 356

Oceanic crust, 353-355 Optimal hair strand diameter, 76, 138 Oscillating wall temperature, 99 Oscillations, tidal, 130 Oscillatory convection, 137, 157,

160-162, 194, 198, 267, 269, 270, 284, 335, 355

Oscillatory instability, 275, 280, 282 Oseen linearization method, 88, 216,

226, 247 Overall thermal conductivity, 22, 23

p

Packed bed, 73 spheres, 3, 4

Packed column, 74 Parabolic density model, 236 Paraboloid, 119, 267 Partial melt problem, 350 Partial pressure, 30 Partitions, 224, 227-229, 250 Pattern selection, 191 Patterned ground, 347, 348 Penetrative convection, 237-243 Permeability, 4-6, 12, 76, 77, 139,

263, 264 intrinsic, specific, 6 relative, 40, 43-45

Perturbations, 142 Pec1et number, 25, 48, 50, 53, 55,

62, 170, 262, 268 Phase average, 36 Phase change, 305-345 Phase-change instability, 335 Pipes, buried, 137 Plane wall, 47, 50, 60, 63-70,

79-104, 259-263 Plate fin, 267 Plate: see Plane wall

406 Index

Point source, 54-56, 127-135 Polyhedral cells, 160, 253, 334 Pore Reynolds number, 26, 67, 249 Pore scale, 1 Porosity, 3, 4

effective, 3 hair, 75, 138 non-uniform, 67, 96, 263 surface, 3, 21, 33 variation, 13, 18, 19, 23, 66-74,

103, 161, 168, 250, 263, 267, 343

values, 4 Porous materials, 2, 4 Porous medium, 1 Porous medium Prandtl number, 165 Power series solution, 126, 131, 146,

150, 151 Power-law wall temperature, 81, 136,

264 Prandtl number, 67, 68, 73

effective, 68, 69, 165 porous medium, 165

Pressure changes, 23, 24, 356 Properties, 4 Property variations, 152, 159, 196,

198, 231, 348

Q

Quadratic drag, 9-11, 64, 66, 86, 94, 122, 135, 157, 158, 165, 196, 249, 250, 262-264, 267, 273, 343

Quartz, 352

R

Rayleigh number, 81, 97, 102, 107, 117, 121, 123, 125, 129, 131, 138, 139, 178, 184, 213, 233, 234, 236, 262, 277, 307, 331, 344

based on heat flux, 226, 293 based on source strength, 297, 302 critical: see Critical Rayleigh

number high, 106-108, 110-112, 120-124,

127-130, 215, 216, 282-284, 302

horizontal, 257

intermediate, 108-110, 113, 134, 135

internal, 174 large Reynolds number limit, 94,

247 low, 108-110, 112, 113, 124-127,

130-134, 300, 301 two-phase region, 335, 340

Rayleigh-Darcy number: see Rayleigh number

Recharge, 355 Rectangular box or cavity, 188-193,

195, 250, 251, 256, 314, 323 Regimes, 211-216, 287, 313, 323 Regions bounded by two planes, 136,

137 Representative elementary volume, 1,

3 Reynolds number, 9, 75 Rock, granular, 4 Rolls, 150, 152, 153, 160, 168, 169,

175, 178, 187, 254, 347, 348

s

Salinity gradients, 349 Salt domes, 356 Salt fingering: see Fingering Sand, sandstone, 4, 352 Saturation, 38 Scale analysis, 48, 58-60, 103, 137,

165-168, 211-216, 234, 235, 238-240, 245-247, 287, 290, 311-314

Seepage velocity, 5 Semi-infinite region, 109, 135, 243 Shale, 352 Shallow layers, 215, 216, 221-225,

312 Sherwood number, 281, 283, 284,

287, 290-296 Silica, 4 Similarity solution, 49, 55, 81, 86,

95, 100, 101, 121, 123, 129, 259, 288, 289, 326, 340

Single-phase flow, 1 Sinks

line, 355, 356 vertical plane, 355, 356

Slate powder, 4 Sloping: see Inclined Slot, 192

Slug flow, 56 Snow, 345-347 Soil, 4 Solid-fluid heat transfer, 23, 24,

154-156, 164 Soret and Dufour effects:

see Cross-diffusion Soret effect, 34, 281, 282, 303 Sources, 297-302

horizontal line, 301, 302 point, 297-301

Spatial approach, 1 Sphere, 51-54, 107, 110-114, 139,

234, 235, 264-267, 302, 342 Spheres, 3 Spherical enclosure, 234, 235 Stability analysis, 142-147, 152,

153, 350 Stability balloon, 154, 158 Stability (see also Instability, Linear

stability analysis, Nonlinear stability analysis), 177, 181, 186, 225, 226, 297

Stably heated comer, 136 Starting temperature difference, 88 Statistical approach, 1, 7 Stefan number (see also Jakob

number), 307, 351 Stefan problem (see also Neumann

problem), 349 Stone patterns, 347 Stratification, 86-88, 120, 201, 226 Subcooled forced convection film

boiling, 343 Subcooling, solid, 325 Suction or blowing at the surface,

115, 137, 259, 260, 261, 263, 289

Superconvection, 356 Superheating, liquid, 314-322, 325,

326 Superposition of sources, 133 Surface covered with hair: see Hair Surface per unit volume, 4 Surface porosity, 3, 21, 33 Surface tension, 344

T

Tall layers, 215 Thawing frozen soil, 348

Index 407

Thawing subsea permafrost, 349, 350 Thermal boundary conditions, 27 Thermal boundary layer, 48, 58-60,

82, 85, 138 Thermal diffusivity tensor, 26 Thermal dispersion conductivity

tensor, 26 Thermal dispersion: see Dispersion Thermal expansion coefficient, 23,

33, 276 Thermal wakes, 54-56 Thermohaline, 33, 275 Thin box, 192 Third diffusing component, 286 Three-dimensional disturbances, 28,

152, 153 Throughflow, 170, 171, 175, 258 Tidal oscillations, 130 Time-dependent boundary cooling,

178 Time-dependent boundary heating,

176-178 Topographical forcing, 353-355 Tortuosity, 12 Transient effects, 8, 58-64, 66,

84-86, 103, 115, 127, 130, 131, 135, 175-178, 243-246, 267, 269, 288, 296, 297, 303, 333, 343

Transitions, 160-162, 233, 247, 254, 312, 330

Transport of water vapor, 345 Transport theorem, 37 Truncated cone, 118 Turbulent flow, 8, 249 Two-dimensional bodies, 108, 111,

118-120, 267, 303, 342, 343 Two-dimensional cavities, 237 Two-phase flow, 1, 36 Two-phase 'region, 334 Two-temperatures porous medium

model, 23, 24, 74-77, 137, 154-156, 355

Two-zone model, melt region, 323

u

Uniform acceleration, 267 Unsaturated porous media, 45, 46 Unsteady: see Transient effects

408 Index

v

Vapor-dominated system, 334-338 Vertical cone: see Cone Vertical cylinder, 64, 114, 115, 193,

194, 196, 266, 267, 303 Vertical cylindrical annulus, 227 Vertical cylindrical fin, 135 Vertical layer, mixed convection,

271, 272 Vertical melting front, 325, 326, 330 Vertical penetration, 240-244 Vertical plate, 79-99, 118, 135, 136,

259-263, 326, 343 Vertical side walls:

isothermal, 211 uniform flux, 226, 256

Vertical symmetry, 356 Viscosity variation, 159, 161, 171,

196, 263, 281, 343 effective, 12, 13

Viscous dissipation, 23, 120 Visualization, 162, 168 Volumetric heating:

see Internal heating Vortex instability, 104-106, 264 Vortex, expanding, 126-134, 300

w Wall thickness parameter, 88 Water, 159, 209, 210, 235-236, 254,

330, 336, 345-347, 351 Wavenumber, 144, 337 Weakly nonlinear theory, 147-154,

187, 193 Wedge, 121, 136, 342, 343 Wire crimps, 4 Withdrawal, 264, 355