Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By...

24
Reduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

Transcript of Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By...

Page 1: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

Reduction of Emissions by

By Terence G. Hazel Senior Member IEEE

Optimal use of Gas Turbines

Page 2: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

Summary

...................................................................................... p.1

Introduction..................................................................................................p.2

Basic.concepts.............................................................................................p.4

Frequency.control.&.Dry€Low€NOx. operation .............................................. p.8

Voltage.control............................................................................................p.10

Implementation.of.algorithms......................................................................p.12

Case.study.................................................................................................p.13

PMS.implementation..................................................................................p.17

Conclusion p.20

References.................................................................................................p.21

Executive€summary

.................................................................................................

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 3: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1

Executive summary

Large.facilities.are.often.powered.by.gas.turbines..In.many.cases.turbines.

having.different.ratings.and.operating.characteristics.are.used.at.the.same.

site..The.decision.regarding.which.turbines.to.use.and.when.is.not.an.easy.

one.to.make.since.several.constraints.must.be.taken.into.account...

Some.of.these.are:

maintain .sufficient.spinning.reserve

operation.at.low.NOx.emission.levels

poor.dynamic.response.of.larger.sized.turbines

us . .Heat.Recovery.Steam.Generators

sufficient.power.for.all.production.islands.

Some.of.these.criteria.can.be.contradictory..For.example,.operation.at.low.

NOx.emission.levels.requires.a.high.load.on.the.turbine,.but.high.load.on.

turbines.often.means.lower.spinning.reserve.and.unequal.load.sharing,.both.

of.which.can.be.detrimental.to.system.stability.

The.paper.will.explore.the.different.aspects.that.must.be.taken.into.account.

in.the.optimal.selection.of.which.turbines.to.use.under.different.operating.

conditions€to€ .It .also.describes

.the.minimum.requirements .of .the.Power .Management .System. (PMS).

that

.

is

.

necessary.to.implement.this.optimization.

•••••

enhance€the€ .

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

ing

ing

reliability€of€the€suppfly€of€power

Page 4: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �

Introduction

Gas.Turbines.(GTG).and.Steam.Turbines.(STG).often.provide.much,.if.not.all.

of.the.power.necessary.for.the.process.at.petrochemical.plants..They.are.

therefore.very.important.pieces.of.equipment.and.must.be.carefully.selected.

in.order.to.fulfill.the. requirements. . .:

sufficient.power.at.rated.frequency.for.all.loads

correct.voltage.at.all.load.busbars

robustness.to.ride.through.system.disturbances.

In.addition.there.are.several.environmental.constraints.that.must.be.met,.one.

of.which.is.the.emission.level.of.Nitrogen.Oxides.(NOx)..Modern.GTGs.use.

combustion.methods.which.limit.NOx.emission.without.the.use.of.water.or.

steam.injection,.a.process.called.Dry.Low.NOx .combustion (DLN).

This. .consists .of .mixing . . gas.thus. recording .

the.formation.of.NOx..This.type.of.combustion.however,.requires.

that.the.GTGs.operate.at.certain.minimum.power.output.levels.which.are..

a.function.of.the.air.inlet.temperature.

Another.environmental.constraint.is.the.increase.in.efficiency.in.order.to.

produce.more.MW.per.unit.of.gas..Cogeneration.is.a.method.commonly.used.

and.consists.of.producing.steam.from.the.exhaust.gas.of.the.GTGs.to.power.

steam.turbines..While.this.increases.efficiency,.it.makes.the.reliable.operation.

of.the.GTGs.even.more.important.since.the.loss.of.a.GTG.will.not.only.reduce.

the.available.power.of.the.gas.turbine,.but.also.of.the.associated.steam.

turbine.running.off.of.the.heat.of.the.GTG.exhaust.gas.

It.is.thus.very.important.that.extensive.engineering.studies.be.carried.out.

during.the.Front.End.Engineering.Design.(FEED).to.ensure.that.the.correct.

number.and.size.of.GTGs.are.selected..This.will.depend.on.the.plant.load.but.

also.on.the.design.of.the.electrical.distribution.system..As.will.be.shown,..

the.use.of.distributed.generation.can.make.the.designing.of.power.

systems.quite.complicated..Since.the.steam.supply.is.very.important.when.

cogeneration.is.used,.it.must.be.decided.if.independent.firing.means.are..

to.be.used.in.addition.to.the.heat.recovery.systems.

For.illustration.purposes.in.this.paper,.the.system.frequency.is.50.Hz.and..

40.MW.and.90.MW. . .are.considered..There.is.no.difference.when.

60.Hz.is.used.or.GTGs.with.other.power.output.ratings.

•••

GTGs

following

better of air and

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

ensuring

Page 5: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

Optimal use of Gas Turbines

Reduction of Emissions by

Page 6: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �

Robust Control

A.system.is.“robust”.when.it.can.withstand..

severe.disturbances.and.keep.operating.within.

acceptable.limits..A.power.system.must.be.robust.

in.order.to.be.able.to.provide.power.to.loads.even.

when.faults.occur.such.as.short-circuit.conditions.

or.the.loss.of.a.GTG.or.STG..Since.electrical.

energy.that.is.produced.is.immediately.consumed.

without.any.intermediate.storage,.a.sudden.loss..

of.power.will.result.in.an.immediate.decrease..

in.system.frequency..A.short.circuit.causes..

a.decrease.in.active.power.consumption.due.to..

a.loss.of.voltage.at.the.fault.location..This.results.in.

an.immediate.increase.in.system.frequency...

A.robust.system.must.react.very.quickly.to.such.

disturbances.by.changing.the.operating.points

..

of.the.turbine.governors,.as.well.as.the.generator

.

and.transformer.AVRs..The.primary.regulation

.

associated.with.this.equipment.can.provide.

the.rapid.response.required.provided.that.the.

power.system.is.designed.accordingly.as.will.be.

discussed.hereafter.

The .primary .regulation .must .be .able.to.rapidly.

restore.the.balance.between.generation.and

.load..It.operates.with.no.consideration.for.the

.location.of.the.initial.imbalance..Primary.regulation

.can.be.implemented.in.several.manners.–.it.is.the.

responsibility.of.the.power.system.engineer.to.

determine.which.mode.is.correct..The.goal.of.

primary.regulation. . . . .keep ..the.frequency.

within.±0.5.Hz.and.. ..±5.%.

after.a.disturbance.has.occurred...The

.frequency. steady-state.error.

. less.than.. 150.mHz.

Basic concepts

Secondary.regulation.operates.at.a.global.

level..After.the.transient.conditions.following.

a.disturbance.have.subsided,.the.secondary.

regulation.will.send.±.set.point.changes.to..

the.GTG.and.STG.governors.to.bring.the.

frequency.back.to.its.nominal.value,.and.to..

ensure.correct.load.sharing.among.the.turbines..

It.will.also.send.±. set. point. changes. to. generator.

and.transformer .AVRs.in.order.to.ensure.correct.

voltage.levels.throughout.the.system..Secondary.

regulation.will.also.ensure.reactive.power.sharing.

The.key.points.of.robust.control.are.therefore:

separate ..global.&.local.control.functions.(Fig..1)

local.control.implement .in.primary.regulation

global.control.implemented.in.a.PMS

communicatie.between.control.layers.using.

incremental.values.(±.set.points).

Secondary regulation,set point changes

Optimizing equipmentoperating points

Global controllayer

Incremental set-point changes

Primary regulation,governor, AVR

Local controllayer

Turbine, generator,transformer

Stand-aloneregulation of electrical equipment

Power generation &transmission equipment

Figure 1 – Robust control philosophy

••••

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

is€to and

voltage deviation

of

should€be

provide

Un

Page 7: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �

The.local.controllers.should.implement.control.

based.on.droop.characteristics..Turbines.should.

all.operate.at.a.4%.frequency.droop..The.use.of.

droop.characteristics.will.ensure.that.all.turbines.

react.in.the.same.manner.to.disturbances.and.this.

greatly.enhances.the.ability.of.the.power.system.to.

recover.correctly..Fig..2.shows.2.GTGs.operating.

in.frequency.droop.and.sharing.the.load.–.each.

GTG.supplies.the.same.percentage.power.based.

on.its.maximum.rated.output..When.the.plant.load.

increases,.the.GTG.primary.regulation.will.detect.a.

decrease.in.system.frequency.and.will.increase.the.

GTG.power.output.to.compensate...Due.to.the.4.%

.droop.setting,.the.new.operating.point.will.be.at.a

.slightly.lower.but.still.acceptable.frequency.as.

shown.in.Fig..3.

FrequencyHz

51

50 Hz

49

MW

90 MW GTG

7560

40 MW GTG

20

20 MW 45 MW

40 90

Figure 2 – Primary regulation in frequency droop

Isochronous.or.fixed.power.modes.should.not.be.

used.except.for.very.specific.operating.conditions..

As.will.be.discussed.later,.the.use.of.DLN.turbines.

introduces. additional. operation. constraints.

When .generators.are.directly.connected.to.. the. same. busbar,. their. AVRs. should. operate.

at..a.5.%.voltage. droop.

40

FrequencyHz

51

50

49

MW

90 MW GTG

7560

40 MW GTG

20

49.75 Hz

25 MW 56.3 MW

90

Figure 3 – Operating points after load increase

When.generators.are.connected.to.busbars.via.

step-up.transformers,.the.transformer.impedance.

ensures.the.voltage.droop.characteristic,.and.it.is.

recommended.to..set.these.generator.AVRs.to.

fixed.voltage...In.some.cases,.busbars.will.be.also

.be.supplied.by.transformers.which.import.power.

from

.

other

.

sources.in.the.system.(Note:.

Transformers.can.control.the.flow.of.reactive.

power.but. do. not. produce

.

any.).. The. AVRs. of.

these.transformers.should.also.operate.at.a.5.%.

voltage.droop.thus.contributing.to.maintaining.

the.busbar.voltage.in. the.same.manner.as.the.

generators.

[1]...

This.

avoids.conflicts. that.can.occur.when. .

.with€have€.different .operating.modes.and.

characteristics

.

try

.

to. control. the. voltage. on.. the. same.

busbar..It.is. also.possible.in.some.cases.to.allow.the

.transformer.to.supply.the.reactive.power.necessary.

to.maintain.the.busbar.voltage.and.to.operate.the.

generators.at.fixed.power.factor..Generators.

operating

.

at

.

fixed

.

power. factor. however,. are. not.

able.to.contribute.to.maintaining.system.voltages.

after.a.disturbance.has.occurred.

Primary Regulation of GTGs and STGs

generators and tansformers which

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 8: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �

Fast Load Shedding

In.some.cases.it.is.not.possible.for.the.primary.

regulation.to.keep.the.power.system.within..

the.limits.defined.above.after.a.disturbance.has.

occurred..One.reason.can.be.the.limitation.of.

the.dynamic.release.of.reserve.power.from.large.

turbines.as.will.be.discussed.in.a.later.section...

The.only.means.of.preventing.a.collapse.of..

the.power.system.in.such.cases.is.to.shed.

sufficient.load.quickly.enough.that.the.generation.

can.continue.to.supply.the.priority.loads...

Plant-wide.fast.load.shedding.is.one.of.the.typical.

functions.implemented.in.a.PMS.

The.level.of.security.is.defined.taking.into.

account.credible.contingencies,.called.“normative.

incidents”,.for.which.the.power.system.is.

supposed.to.remain.within.the.limits.defined.above..

Primary.regulation.cannot.ensure.that.nominal.

values.of.frequency.and.voltage.are.present.

throughout.the.power.system..Global.control.is.

required.and.is.provided.by.the.PMS...

The.PMS.measures.the.system.frequency,.busbar.

voltages.and.power.output.of.the.turbines.and.will.

change.the.set.points.of.the.primary.regulation.in.

order.to.ensure:

correct.frequency

correct.busbar.voltages

DLN.operation.where.possible

equal.sharing.of.load.as.a.percentage.of.rated.

power.

The.secondary.regulation.measures.the.frequency.

and.output.power.of.each.GTG...

When.the.frequency.deviates.from.the.set.point,.

the.secondary.regulation.will.adjust.the.position.of.

the.droop.curves.of.each.GTG.such.as.to.adapt.

the.output.power.to.correct.the.frequency...

The.droop.curves.of.all.GTGs.are.adjusted.by..

the.same.amount.which.guarantees.automatic.

sharing. of. the. loads.. Fig.. 4. shows. the.modified.

droop.curves..

••••

FrequencyHz

51

50 Hz

49

MW756020

Droop curves moved upwardsto maintain 50 Hz at new load.

90 MW GTG40 MW GTG

25 MW 56.3 MW

40 90

Figure 4 – Secondary regulation frequency adjustment

Frequency.control,.load.sharing.and.DLN.

operation.require.set.point.changes.in.turbine.

governors..It.is.very.important.that.the .PMS .

algorithms.consider.frequency.control . be.the.main.

criteria.and.ensure.that.the.steady.state.frequency.

will.never.be.far.from.the.set.point.even.if.it.is.not.

possible.to.ensure.correct.load.sharing...

A.typical.normative.incident.is.the.loss.of.a.GTG..

For.contingencies.larger.than.these.normative.

incidents,.such.as.the.simultaneous.loss.of.several.

GTGs,.a.defense.plan.is.required.that.will.allow.the.

controlled.shutdown.of.the.installation.under.the.

best.possible.conditions.(defense.plans.are.not.

covered.in.this.paper)...

.

To.implement.fast.load.shedding,.the.PMS.

normally.calculates.what.load,.if.any,.must.be.shed.

for.each.normative.incident..When.that.particular.

normative.incident.occurs,.the.predefined.loads.

are.immediately.tripped..Underfrequency.load.

shedding.is.also.used.as.a.backup..Should.for.any.

reason.insufficient.load.have.been.shed.and.the.

frequency.continue.to.decrease,.additional.circuits.

will.be.tripped.as.a.function.of.frequency.and.time.

Secondary Regulation

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

to

position€of€the

Page 9: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �

As.an.example,.consider.a.governor.of.a.lightly.

loaded.turbine.not.responding.to.set.point.

changes.from.the.PMS.due.to.some.internal.fault.

condition..In.order.to.achieve.load.sharing,.the.

PMS.must.increase.the.load.of.this.turbine.but.at.

the.same.time.decrease.the.load.on.other.turbines.

in.order.to.avoid.any.changes.in.frequency..Since.

the.faulty.governor.does.not.respond.to.set.

point.increases,.it.will.not.increase.its.load.whereas.

the.other.turbines.will.respond.to.the.PMS.set.

point.changes.and.decrease.their.power.output..

The.result.will.be.a.decrease.in.frequency..Should.

the.frequency.decrease.below.the.dead-band.value,.the.PMS.must.immediately.cease.attempts.

to.share.the.load.since.that.would.result.in..

an.unacceptable.decrease.in.system.frequency.

Secondary.regulation.does.not.react.quickly.and.

should.not.react.quickly..It.is.used.to.“fine.tune”.

the.power.system.by.bringing.frequency,.voltage.

and.power.values.within.steady.state.tolerances..

Attempting.to.change.state.values.too.quickly.

could.cause.instabilities.and.power.outages...

In.addition,.the.reaction.of.primary.regulation.to.set.

point.changes.is.inherently.slow.and.even..

if.the.secondary.regulation.tried.to.quickly.change.

set.points,.it.couldn’t.do.so.

The.basis.for.power.system.design.is.knowing.

how.the.system.will.react.to.contingencies...

For.green.field.projects,.or.for.large.extensions.to .

existing.facilities,.simulations.must.be.carried.out.

since.it.is.not.possible.to.make.measurements..

The.simulations.must.calculate.the.transient.and.

steady.state.frequency,.active.and.reactive.power.

flow,.and.busbar.voltages.immediately.after.

contingencies..In.many.cases.it.is.necessary.to

.conduct.simulations.over.a.long.period.of.time.to.

ensure.that.the.power.system.remains.stable.after.a.major.disturbance..Short-time.simulations.may.

show.that.the.power.system.recovers. correctly.

after.a.contingency.only.to.find . .

after

.

several

.

seconds,.the.power. system. actually.collapses.

The.transfer.functions.of.the.turbine.governor,.

and.the.generator. and.transformer.AVRs.must.

be.well.known.in.order.to.perform.such.

simulations...This.information.is.unfortunately.

difficult.to.get...As.will.be.discussed,.the.dynamic.release.of.reserve.power.is.often.much.

less.than.would.be.expected.and.must.be.

correctly.simulated.[2].

System Calculations and Simulations

at€the site€out

actually

that€

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 10: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �

Frequency control & DLN operation

Frequency.control.and.active.power.sharing.

among.turbines.is.very.important.and.often.

referred.to.as.P/f.control..Implementation.of.

DLN.operation.adds.to.the.complexity.of.the.P/f.

control.algorithms..In.order.to.reduce.the.NOx.

concentrations.in.exhaust.gas,.the.air/gas. . .must€be€homogeneous .This.can,.however,..

only.be.achieved.when.the.turbine.output.exceeds..

a.certain.percentage.of.its.nominal.rating.as..

a.function.of.the.air.inlet.temperature..Fig..5.shows.

the.relationship.between.the.DLN.limit.and..

the.maximum.power.output..Both.depend.on.

the.air.inlet.temperature.(shown.on.the.abscissa)..

The.ordinate.is.in.percent..From.Fig..5.it.can.be.

seen.that.for.DLN.operation,.the.turbine.output.

must.generally.exceed.60.%.of.the.nominal.rating..

Since.operation.close.to.the.DLN.limit.can.result.in.instability,.it.is.necessary.to.ensure.that.the.turbine.

output.is.either.well.above.or.well.below.the.DLN.

limit..This.constraint.does.not.apply.to.turbines.

that.do.not.have.the.capability.of.DLN.operation.

nor. to.steam.turbines.

As.mentioned.in.the.previous.section,.equal.

sharing.of.the.load.as.a.percentage.of.nominal.power.is.important.since.it.enhances.the.capability.of.the.power.system.to.respond.correctly.to.

contingencies..Equal.sharing.is.always.possible.when.no.turbines.operate.in.the.DLN.mode.

since.there.are.no.constraints.regarding.output.power.other.than.exceeding.the.minimum.or.

maximum.power.output..It.is.easy.to.meet.

these.requirements.since.these.points.are.at.the.extremes.of.the.turbine.output.capability.curves..When.DLN.operation.is.used,.it.is.not.possible.to.

ensure.equal.loading.among.all.turbines.

44244-16-3600

25

50

75

100Maximum Output

DLN limit

Figure 5 – DLN limits as function of temperature

As.an.example,.consider.several.non-DLN.GTGs.

supplying.the.load..As.shown.in.Fig..2,.3.and.4,.

operation.in.4.%.frequency.droop.will.automatically.

ensure.that.load.is.shared.equally.as.a.percentage.

of.nominal.power..Should.the.plant.load.increase,.

the.steady-state.frequency.will.decrease.and..

the.PMS.will.send.the.same.set.point.adjustments.

to.all.governors.to.increase.the.GTG.output.thus.

bringing.the.frequency.back.to.its.nominal.value.

and.ensuring.correct.load.sharing.at.all.times...

This.is.true.for.all.values.of.output.power.

Should,.however,.one.of.the.GTGs.operate.in.

the.DLN.mode,.it.is.no.longer.possible.to.have.

identical.load.sharing.among.the.machines.since.

it.is.necessary.to.ensure.that.the.DLN.machines.

operate.far.from.the.DLN.limit..Secondary.

regulation.is.used.to.ensure.operation.far.from.

the.DLN.limit..This.is.achieved.by.considering.two.

different.values.of.minimum.output.for.the.DLN.

machine..At.low.load,.the.minimum.output.will.be.

a.few.%.of.the.nominal.rating..Operation.of.the.

DLN.GTG.can.then.be.at.the.same.%.output.as.

all.other.GTGs.since.at.light.load.the.output.will.be.

far.below.the.DLN.limit.which.is.close.to.60.%.of.

rated.power..When.the.plant.load.is.high.however,.

the.DLN.GTG.must.be.made.to.operate.well.above.

the.DLN.limit..For.this.case,.the.minimum.output.

used.is.the.DLN.limit..Secondary.regulation.will.

ensure.that.the.%.load.within.this.range.(DLN.limit.

to.maximum.output).is.the.same.as.the.%.load.of.

all.other.GTGs,.their.range.being.between.the.

minimum.and.maximum.values..This.is.shown.in. Fig..6..

FrequencyHz

51

50 Hz

49

MW756020

DLN Limit

90 MW GTG

40 MW GTG

12.2 MW

40

65 MW

90

Figure 6 – Operation above the DLN limit

%Pn

Co

mixture.

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 11: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �

The.dashed-line.portion.of.the.droop.curve.of.the.90.MW.GTG.corresponds.to.output.values.below.the.DLN.limit..The.GTG.is.not.to.operate.there.at.high.load..This.range.is.from.0.MW.to.54.MW.(60.%.of.the.rated.output)..The.solid-line.portion.of.the.droop.curve.of.the.90.MW.GTG.is.the.permissible.operating.range.and.equals.36.MW.(90.MW.–.54.MW)..The.%.loading.“x”.is.based.on.the.total.power.required.“P”. . .

P.=.(x(36).+.54).+.x(40)€;.. x.=.P.-.5476

The.power.supplied.by.the.GTG.is.65.MW.which.exceeds.the.DLN.limit.by.a.comfortable.11.MW...11.MW.is.equal.to.30.5.%.of.the.permissible.36.MW.operating

.range.

..The. other. GTG. shall. also. operate. at.

30.5.%.of.its.range,.but.its.range. is. between. 0. MW.and

.40

.MW.

.Its.operating.point.is..12.2.MW...Thus

.although.the.%.loading.within.the.operating.ranges.are.the.same,.the.%.loading.based.on.the.total.output.capacity.is.not..The.DLN.GTG.is.operated.at.a.higher.%.load.than.the.other.GTG.

When.a.load.step.occurs,.the.primary.regulation.of.all.turbines.will.react.to.increase.the.power.output.but.at.a.slightly.lower.frequency..As.shown.in..Fig..7,.primary.regulation.will.change.the.operating.point.along.the.droop.curves.without.taking.into.account.DLN.operation..

FrequencyHz

51

50

49

MW756020

DLN Limit

90 MW GTG40 MW GTG

17 MW

76 MW

40 90

Figure 7 – Reaction of DLN turbine to step load

The.DLN.turbines.are.intially.too.heavily.loaded.–.76.MW.corresponds.to.61.%.of.the.DLN.operating.range.whereas.17.MW.corresponds.to

.only.42.5.%.of.the.non-DLN.operating.range..

It.is.the.secondary.regulation.that.will.ensure.that.the.correct.operating.positions.of.all.DLN.and..non-DLN.turbines. Fig..8.shows.the.operating.points.after.secondary.regulation.has. .modified

.the.governor. set. points. of. all. turbines.. The.output

.of.the.DLN.

turbines.

was. decreased. and.that.of.the.non-DLN.turbines.increased..The.new.loading.factor.is..51.3.%.for.all.turbines.

FrequencyHz

51

50 Hz

49

MW756020

DLN Limit

90 MW GTG40 MW GTG

20.5 MW

72.5 MW

40 90

Figure 8 – Correction of DLN turbine loading

Even.if.all.GTGs.operate.in.DLN.mode,.there.may.be.situations.where.load.sharing.cannot.be.achieved..In.the.previous.example,.consider.that.both.GTGs.could.operate.in.a.DLN.mode..Should.plant.load.be.close.to.78.MW,.which.is.60.%.of.the.total.generation .capacity, .it .would .not€be .possible .to .

equally

.share.the.load.since.this.would.result.in.the.

GTGs.

operating.at.their.DLN.limit. ..One.GTG.mustbe.selected.to.operate. at. a. higher. rated.

load

.

and

.the.other. at. a. lower. rated. load.. Both. GTGs

.will.thus. be.operating.far.from..their.DLN.limits.but. .

.will

.not

.equally

.share

.

the

.

load.

.During .disturbances,.the.primary.regulation. of. all.turbines .will. react. based. on. the. 4. %. frequency.droop.curve.only,.as.shown.in.Fig..2...The.minimum.value.used. by. the. PMS. to. determine. the. operating.points.of.DLN.GTGs. has. no. influence. on.the.dynamic.response. of. the. turbines... Simulations.should.be.made.to.check.that..the.power.system.remains.stable.when.some.GTGs.are.more.heavily.loaded

.than

.others

.due.to. the.DLN.constraints..

After.the.transients.have.died.down.(and.possibly.load.shedding),.the.PMS.will.recalculate.the.power.output.that.each.GTG.should.have.and.send.the.required.incremental.set.point.changes.to.each.GTG.

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

is:

therefore

Page 12: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 10

Voltage control

Voltage.control.and.reactive.power.sharing.is.often

.

referred.to.as.Q/V.control..Voltage.control.in..

a.power.system.is.very .different .from .frequency .

control..The.frequency.is.the.same.throughout.

the.whole.power.system.and.is.not.influenced.by.

.transformers..The.primary.regulation.of.all.

turbines.therefore.react.to.the.same.state.variable

.

no.

matter

.

where.a.turbine.is.located. ..Voltage,. on

.

the.other.hand,.is.a.local.state.variable.and.can.

differ.greatly.throughout.the.power.system..It.is.

the.impedances.in.the.power.system.(lines.&.

transformers).that.decouple.the.voltage.levels.at

.

different.locations..Frequency.control. is. made.

by.adjusting.the€power. output.of.the.turbines..

Voltage

.

control.requires.adjusting.the.reactive.

power

.

output.of.the.generators.but.also

.changing.the .tap.positions.of.transformers.

When.all.power.sources.are.connected.to..

the.same.busbar,.the.generator.AVRs.will.ensure

.

that.the.voltage.on.that.busbar.is.correct.by.

adjusting

.

the

.

reactive.power.output. ..The.PMS.will

.

fine

.

tune

.

the

.

voltage. to. ensure. that. it. remains.

within.the.steady-state.tolerance..Transformers.

supplying.

load.busbars.may.have. on-load.tap.

changers.(OLTC).and.their.associated.AVRs.will.

ensure.the.correct.flow.of.reactive.power.to.

downstream.busbars..When.distributed.

generation.is.used,. .it.is.often.necessary.to.

change.the.tap.position.of.the.transformers.on.

the.interconnection.lines.in.order.to.move.reactive

.

power.from.one.location.to.another..This.can.be

.

achieved.in.primary.regulation.by.implementing.

.

a.voltage.droop.characteristic.in.the.transformer

.

AVR.as.shown.in.Fig..9..When.the.transformer.voltage.droop.has..the.same.%.value.as.the.generator.AVR.droop,.then.all.generators.and.all

.

transformers.connected.to.the.same.busbar.

will .supply .the.same.percentage.of.reactive

.power.to.support.the.busbar.voltage..An.

increase.in.load.will.also.increase. the.reactive.

power.consumption..Additional.reactive.power.will

.

be.supplied.by.both.the.generator.and.the.

transformer...Transformers.can.supply.additional

.reactive.power.only.when.there.is.a.surplus.

elsewhere.in.the.power.system..Reactive.power.

is.produced.by.generators.–.transformers.control.

only.the.flow.of.reactive.power.

VoltagekV

7.2

6.6 kV

Mvar

100 MVATranformer

806020

6

40

40 MW GTG

18 Mvar

63 Mvar

100

Figure 9 – Reactive power sharing

A.40.MW.GTG.with.a.generator.that.has..

a.power.factor.capability.of.0.8.will.be.able.to.

supply.up.to.30.Mvar..The.100.MVA.transformer.

could.supply.100.Mvar.provided.there.was.no.

active.power.flowing.through.it..Both.voltage.droop.

curves.are.shown.in.Fig..9..In.reality.the.transformer.

voltage.droop.curve.is.not.linear... . .Changes.in.

reactive

.

power

.

flow

.

are. due. to. tap. position.

changes

.

which. are. step. functions,. not. linear. as.in. the. case. of. the. reactive. power. output. of. a.

generator..Also. the

.

generator.AVR.will.act.much.more.quickly.than.the.transformer.AVR..

The.steady.state.conditions.will .be.in .accordance.with.the.voltage.droop.curves.shown.in.Fig..9.but.not.during.transient.conditions..

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Since.it.is.not.

necessary.to.have.perfect.sharing.of.reactive.

.

power,.a.linear.transformer.voltage.droop.curve.

having.the.same.dynamic.response.as.the.

generator.AVR.can.be.assumed.for.most.

calculations.

Since.voltage.is.a.local.variable,.reactive.power.

sharing.makes.sense.only.for.generators.

connected.to.the.same.busbar..Generators.

connected.to.different.busbars.may .have .very .

different .reactive .power .outputs.. Attempting .to .all.generators.produce.equivalent.amounts..

of.reactive.power.can.have.very.detrimental.effects.

or

.

voltage

.

levels. throughout. the. plant... The. fact. that.

the.power.factor.in.GTGs.and.STGs.connected.at.

have

Page 13: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

.

different.locations.in.the.plant.may.be. very.

different

.

has.no.consequence.on.system.stability

.nor.on.correct.operation.

Voltage.control.is.independent.of.frequency.

control,.DLN.operation,.and.active.power.sharing..

This.allows.the.PMS.to.have.2.sets.of.algorithms,.

one.set.for.P/f.control.and.another.set.for.Q/V.

control..Since.these.control.algorithms.make.set.

point.adjustments.to.different.devices, ..

they.are.implemented.independently.of.each.other.

.

The.only.validation.required.is.to.ensure.that..

the.apparent.power.flowing.through.equipment.or.

in.an.interconnection.does.not.exceed.acceptable.

limits..For.example.in.Fig..9.it.is.necessary.for..

the.PMS.to.ensure.that.the.active.power.through.

the.100.MVA.transformer.does.not.exceed.78.MW.

Since.changes.in.reactive.power.output.occur.

more.quickly.than.active.power,.often.the.PMS.

will.introduce.time.delays.such.that.the.transition.

speed.resulting.from.set.point.changes.sent.to.

governors.and.AVRs.will.be.approximately.equal.

P/f and Q/V algorithms,,,,,,,,,;: -,

When.the.power.system.is.islanded,

.the.P/f. algorithm.will.determine.the.total.power.

required

.

to

.

maintain.the.system.frequency.at.its.

nominal.value.

.

When .however, .the .power

.

system

.

is

.

connected

.

to.the.local.utility,.the.frequency.is.

fixed .by .the. utility. .The . . .the .frequency

.because€it

.

fixes

.

.

has.thousands. of.installed.MW.of.power

.

generation.whereas.the. industrial.plant.only.a.few

.

hundred..

The.

PMS.

will.

now. determine. the. total.power

.required.to.ensure .that.the.import/export.

of.active.power.is.within. acceptable.limits..

After.having.determined.the.total.power.

required,.the.PMS.now.determines.how.this.

power.is.to.be.shared.among.the.GTGs.and.

STGs.in.operation,.also.taking.into.account.DLN.

operation.if.required..The.result.of.these.calculations.

will.be.set.point.adjustments.that.will.be.sent.to.

each.turbine.governor.as.described.above..At.the.

end.of.each.PMS.control.time.interval,.new.set.

point changes will be calculated and executed.

utility

As.mentioned,..voltage.is.a.local

.condition. .The.PMS.will. therefore. measure. voltage

.levels .at .different .parts .of .the .plant .in .order .to .determine..the. reactive. power. requirements...At.

each

.

location.where.voltage.control.is.possible,.the.PMS.will.determine.the.required.set.point.

changes.for.generator.and.transformer.AVRs...

Reactive.power.sharing.among.the.devices .controlling.the.voltage.at.a.specific.location.will..

also.be.implemented.by.the.PMS..

In.the.same.manner

.

as

.

for

.

the

.

implementation

.

of

.the.P/f.algorithms, .set.point.changes.corresponding.to. 50. %.of.the.

calculated.values.will.be.sent.to.the.AVRs..Since.

changes. in. reactive. power. normally. occur. much.

quicker.than.active.power,.the.PMS.will.add.time.

delays.in.the.Q/V.set.point.changes.such.that.the.

rate.of.change.of.P/f.and.Q/V.state.variables.will.

be.approximately.the.same.

Load shedding calculations

P/f€algorithms:

Q/V€algorithms:

COM-POWER-WP0�EN Rev1 | 11

Load.shedding.calculations: .are.based.on..the.

dynamic.spinning.reserve.of.all.turbines.in.operation..

Should.distributed.generation.be.used,.the.spinning.

reserve.for.each.viable.island.(generation.+.load).is.

calculated.

.

Should

.

there

.

not.be.sufficient.spinning.

reserve,.the.PMS.will. determine.which.loads.in.that.

island.are.to.be.shed.should.that.part.of.the.plant.

actually.be.islanded. from.the.rest..The.PMS.will.

warn.the.operator. that .load .shedding .occurs€after€a After .each .viable .island

.configuration

.

has .been

.

calculated,. the. PMS. will.

then .perform .the. same. calculations. for. the. whole.

plant. .Should .there .not. be. sufficient. spinning.reserve,

.the.PMS.will. determine .which

.

loads

.

are

.

to

.be .shed. should. .a. normative. incident. occur.. The.

loads

.

to

.

be. shed.are.calculated.based.on.process.

requirements.

only,.and.do.not.take .into

.

account

.which.normative .. leads. to. load. shedding

.execution..When.the.normative.incident.occurs,.

load.shedding.is.immediately .executed .based .on .

the.previously.executed.calculations.

time

disturbance .

any.

described in€the€next section,

the

These

incident

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 14: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1�

The.PMS.will.perform.several.calculations.for.

determining.the.set.point.changes.required..

by.the.P/f.and.Q/V.algorithms..The.magnitude.of.

the.set.point.changes.will.depend.on.the.difference

.

between.the.actual.state.of.the.power.system.and.

what.is.should.be..Since.it.is.important.for.system.

stability.to.make.changes.in.a.controlled.manner, .

the.PMS.will..send.a.set.point.change.that.

corresponds.at.most.to.50.%.of.the.calculated.

total.set.point.change.as,.illustrated.in.Fig..10.

PMStimeintervals

P

P0

1 2 3 4 5

P1

P2P3

P4

dTmaxdT’2

dT’’2

Figure 10 – PMS execution of set-point changes

The.abscissa .Fig..10.shows.the.PMS.control.

time.intervals..After.each.time.interval,.the.PMS.

calculates.all.set.point.changes.and.will.send..

the.appropriate.control.signals.to.the.governors.

and.AVRs..These.signals.will.be.executed.during.

the.next.PMS.control.time.interval..Fig..10.

shows.the.P/f. calculations.to.illustrate.the.control.

principles .that .are .implemented..Pn.is.the.GTG.

output

.

power

.

that

.

should.be.produced.after.the.

nth.PMS.time.interval. .Since.the. response. to.

secondary

.

regulation.incremental.set.point.

changes. is. a. straight. line. with. a. fixed. slope,. the.

distance.between.the.actual.value.of.P.and.the

.next.value.is.shown.by.a.line,.the.length.of.which

.is.(Pn+1-Pn)/m.where.Pn+1-Pn.is.

Implementation of algorithms

the.amount..of.MW.

the.power. output. is. to. change€by,. and. m. is.. the.slope. of. the. response. in. MW. per. second..The

.result.of .the .calculation.is.the.time.dT..the.control.signal

.

is .to. be. applied. to. achieve. the. required.change. in.output.power,.and.this.is.illustrated.by

.the.line. joining.points.Pn+1.and.Pn...The.PMS.will,.

however,.only.execute.a.maximum.of.50.%.of.

the.change.and.this.is.illustrated.by.splitting.the

.

line

.joining.Pn+1.and.Pn.into.2.parts,.a.solid.line.and.a

.dashed.line..The.solid.line.represents.the.control.

signal

.

actually. sent,. and. the. dashed. line. shows.

what

.

control.signal.is.still.required. to. achieve. the.

change.in.power.output.

dT’.is.the.time.required.to.apply.the.control.signal.

to.produce.P1.MW..The.signal.will.only.be.applied.

for.dT’/2.however..Since.dT’/2.is.shorter.than..

the.PMS.control.time.interval,.after.dT’/2.seconds,.

the.control.signal.will.be.removed.and.the.power.

output.will.remain.unchanged.for.the.remainder.of.

the.PMS.calculation.interval..This.is.shown.by.the.

horizontal.curve.just.after.dT’/2..P2.shows.a.lower.

power.output.is.required,.and.the.same.control.

sequence.is. implemented,.this.time. .using .

a.negative.slope..P3.has.the.same.value.as.P2.and.

thus.no.control.signal.need.be.applied.as.shown.

by.the.horizontal.output.curve..

.

The.time.to.get.from.

P3.to.P4.exceeds.twice.the.PMS.control.time.interval..Thus.the.maximum.duration.for.this.control.

signal.will.be.the.PMS.calculation.interval.itself,.

which.is.less.than.50.%.of.the.calculated.time.

.Thus.at.no.time.do.the.PMS.control.signals.

achieve.full.correction.–.they.just.successively.bring.

the.system.closer.to.the.desired.operating.condition..

The.farther.away.the. desired. value,. the. longer. the.

control.

signal.

is.

applied...

This.type.of.control.is.very.common.

PMS control - signal duration

in

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 15: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 13

The.case.study.illustrates.many.of.the.concepts.that.have.been.developed.in.the.previous.sections.

.

The.plant.shown.in.Fig..11.has.2.main.process.areas.and.the.total.load.is.200.MW..The.total.installed.generation.is.340.MW..

The.90.MW.GTGs.are.to.operate.in.the.DLN.mode..The.40.MW.GTGs.have. .standard .combustion..The.40.MW.GTG.shown.in.dotted.lines.indicates.a.machine.in.maintenance...There.is.a.connection.to.the.local.utility,..the.purpose.of.which.is.to.be.able.to.import.power.during.contingencies.in.order.to.help.keep..the.plant.power.system.stable..The.power.system.can.thus.operate.in.the.connected.mode..(utility.circuits.are.closed).or.in.the.islanded.mode.(utility.circuits.are.open)..In.normal.operation..the.exchange.of.active.and.reactive.power.with..the.utility.should.be.kept.close.to.zero..

As.can.be.seen.in.Fig..11,.the.turbines.are.not.all.connected.to.the.same.busbar..In.both.process.units.there.are.sufficient.turbines.to. .

loads

.

Case study

. .

supply€the

.should.that.part.of.the.plant.be.islanded.from

.the

.utility

.and.from.the.other.process.unit..

This.

requires. that. the. load. shedding. algorithms.also.ensure.sufficient.generation.in.each.process

.area. to. avoid. loss. of. production. should. any.islanding.occur.

2x20 MVA

Utility G G 2x90 MW

110 kV

G G G G

33 kV

3x40 MW

2x100 MVA 2x60 MVA

80 MW+55 Mvar

120 MW + 70 Mvar

The.design.criteria.for.the.power.system.and.PMS.are:

implement.the.concepts.of.robust.controlmaintain .correct .frequency .when .islanded

import/export.of.active.&.reactive.power

...close.to.zero

maintain.correct.busbar.voltages.in.both..the.islanded.and.connected.modes

DLN.operation.is. .. .when.possibleimplement.active.power.sharing.among.DLN.

operated.turbinesimplement.active.power.sharing.among.other.

turbinesimplement.reactive.power.sharing.among.

generators.connected.to.the.same.busbarsensure.correct.transfer.of.reactive.power.

between.groups.of.generation

•••

••

ensure.sufficient.spinning.reserve.in.each.process.area.and.plant.wide

optimize.the.number.and.type.of.each.GTG.throughout.the.plant€to€reduce. .

provide.fast.load.shedding.in.each.process.area.and.plant.wide.In.some.cases.it.is.not.possible.to.meet.all.of..the.design.criteria..It.is.very.important.to.determine.up.front.which.criteria.are.the.most.important..After.the.essential.criteria.have.been.met,.the.others.will.be.implemented.based.on.their.importance...For.example,.frequency.and.voltage.control.are.more.important.than.active.and.reactive.power.sharing..DLN.operation.is.also.more.important.than.load.sharing..Under.no.circumstances.however,.should.the.concepts.of.robust.control.be.compromised.

Description of the power system

Figure 11 – Case study single-line diagram

System design criteria

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

use

keep€theemissions

Page 16: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1�

Steady state operation

Normal.operation.is.in.the.connected.mode.as.

shown.in.Fig..12..Import/export.of.active.and.

reactive.power.is.close.to.zero.so.all.loads.are.

supplied.from.the.GTGs..The.larger.turbines.

operate.in.the.DLN.range.meaning.that.their.

proportional.loading.is.higher.than.the.other.

smaller.turbines..The.DLN.GTGs.are.connected..

to.HRSGs.and.provide.process.steam...Sufficient.

turbines.are.to.be.in.operation.to.ensure.

adequate.spinning.reserve.for.the.whole.power.

system.as.well.as.for.the.process.unit.islands...

Due.to.the.amount.of.load.in.the.various.process.

units,.active.and.reactive.power.will.flow.from..

the.process.area.with.the.larger.turbines.to..

the.process.loads.associated.with.the.smaller.

turbines..A.dead.band.is.associated.with.each.

state.variable.such.a.frequency,.voltage,.and.active

.&.reactive.power.output..When.a.state.variable.is

.within.the.dead.band,.no.corrections.. .will.be.

required.

In.the.connected.mode,.exchange.of.active.and.

reactive.power.with.the.utility.is.to.be.kept.close.

to.zero..The.P/f.algorithm.measures.the.active.

power.flowing.through.the.utility.transformers.and.

calculates.what.the.total.generated€power. should.

be

.

in

.

order.to.keep.this .value.close .to .zero...The.P/f.

algorithm.also.checks.the.correct.sharing.of.load.

among.the.smaller.turbines.and.between.the.2.

larger.ones.which.are.operating.in.the.DLN.range..

Based

.

on.these.2.sets.of.values.(total.power.

required

.

and

.

load. sharing). the. PMS. calculates.

the

.

set.point.adjustments.required.for.each

.turbine. ..It.then.sends.set.point.corrections.

equivalent

.

to

.

50. %.of.the.calculated.values.as.

described

.

in

.

the

.

previous.section...These

.algorithms.are.executed.continuously

.

and

.

ensure

.

correct

.

operation

.

at

.

all

.

times.

.In.a.similar.manner.the.Q/V.algorithms.are.

executed..In.the.connected.mode,.the.utility.tie.is.

not

.

strong .enough.to.guarantee.that.the.power.

system

.

voltage

.

will

.

be

.

correct.

0 MW + 0 Mvar

G G 2x71.5 MW+46 Mvar

G G G G

2x28.8 MW+16.5 Mvar

80 MW+55 Mvar

120 MW + 70 Mvar

2x31.5 MW+18.5 Mvar

Figure 12 – Case study steady-state power flow

This

.

is

.

due

.

to

.

the

.

lack.of.reactive.power.reserves.on.the.utility.side.and.is.the.reason.for.keeping.reactive.power.

import.close.to.zero..The.generators.are.used.to.

maintain.correct.system.voltages..

.

Thus.the.per.

unit.voltage.on.the.plant.side.of.the.utility

.transformers.will.be.close.to.the.nominal.

value,.but.the.per-unit.voltage.on.the.utility.side.of.

these.transformers.could.be.quite.different.from.

the.nominal.utility.voltage..The.only.way.to.ensure.

that.the.flow.of.reactive.power.through.the.utility.

transformers.is.close.to.zero.is.to.ensure.that..

the.turns.ratio.of.the.utility.transformer.equals..

the.ratio.of.the.voltages.on.the.utility.and.plant.

sides..This.will.cause.the.voltage.drop.across..

the.utility.transformers.to.be.very.small.leading..

to.a.very.low.flow.of.reactive.power.through..

the.transformers..In.order.to.achieve.the.correct.

turns.ratio,.the.PMS.will.send.voltage.set.point.

adjustments.to.the.utility.transformer.AVRs...

These.set.point.adjustments.will.result.in.the.tap.

position.being.changed.until.such.time.that..

the.correct.turns.ratio.is.achieved..In.accordance.

with.the.principles.of.robust.control.described.

earlier,.only.voltage.set.point.changes.are.sent.to.

the.transformer.AVRs.–.no.attempt.is.made.by..

the.PMS.to.directly.control.the.tap.position.of.the.

utility.transformers.

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 17: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1�

It.is.also.necessary.to.ensure.correct.voltage.

throughout.the.plant..For.load.busbars.supplied.

only.via.step-down.transformers.(not.shown.in.

Fig..11),.this.is.achieved.by.the.transformer.AVRs.

without.any.assistance.from.the.PMS...For. load

.busbars.that.are.also.supplied.by.GTGs..(the.33.

kV.bus.in.Fig..11),.it.is.necessary.to.ensure.that

.reactive.power. .provided.both.from..

the.generators,.and.from.the.step-down.

transformers .connected.to.the.same.busbar...

This.is.achieved.by.implementing.the.same

.voltage.droop.characteristic. in. the. transformer.

AVR

.

as.in.the.generator.AVRs..Should.the.busbar.

voltage.differ.from.the.nominal.value,. the. PMS.

will.send.voltage.set.point.changes.to.the.

transformer.AVR.and.reactive.power.output.

set.point.changes.to.the.generator.AVRs...Should.

insufficient.or.excessive.reactive.power.flow.

through.the.transformers,.the.PMS.will.make.

further.transformer.AVR.set.point.changes.to.

ensure.correct.flow.of.reactive.power.between.both.

process.units.

Load.shedding.calculations.are.made.for.each.

process.unit.individually.and.then.for.the.whole.

plant.in.both.the.connected.and.islanded.mode..

Load.shedding.tables.corresponding.to.every.

normative.incident.for.each. ..configuration ...

are

.

made.

.

Should

.

there.not.be.sufficient.spinning.

reserve.for.any.of.the.configurations,. the. PMS. will.

warn.the.operators. and.also.suggest.which.GTG.

should.be.started..

.If.there.is.too.much.spinning.reserve,.the.PMS.

will.also.warn.the.operator.and.will. .suggest .

which.GTG.should.be.stopped.

Seconds

130125120115110105100-4

0

4

8

12

16

MW step load

Figure 13 – Dynamic & static spinning reserve

The.fast.load.shedding.calculations.must.be.based.

on.the.dynamic.spinning.reserve.[2]..Thus.even.

though.there.is.sufficient.generation.capacity,.load.

shedding.may.be.required..Fig..13.shows.what.

often.happens.when.a.GTG.is.subjected.to.a.large.

load.step,.in.this.case.14.MW.for.a.90.MW.GTG..

Initially.the.governor.responds.by.opening..the.gas.

valve.which.results.in.a.very.quick.increase.in.

output

.

power..This.is.of.course.the.desired.result.

–.the.ideal.response.is.shown.in.Fig..13.with..

the.solid.line..The.increased.amount.of.gas,.

however,.increases.the.exhaust.gas.temperature .

until.such.time.as.sufficient.air. . .available..

The.opening.of.the.air.inlet.vanes.is,. however,.very.

slow.in.comparison.with.the.gas.valve...Thus.the.

exhaust.gas.temperature.will.initially.rise.and.the.

exhaust.gas.temperature.regulation.will.decrease.

the.flow.of.gas.until.the.air.inlet.vanes.have.

opened

.

sufficiently..This.explains.the.dip.in.

the.output.power.curve.shown.in.a.dotted.line...

The.dynamic.spinning.reserve.is.only.4.MW...

Full.power.is.available.only.after.20.seconds.

.

GTG dynamic response & fast load shedding

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

is

becomes

It.is.possible.however,.to.consider.2.types.of.

load.shedding..Some.process.loads.will.accept.

outages.of.several.tens.of.seconds.and.can.be.

restarted.afterwards.and.the.process.continues..

Other.process.loads.when.switched.off,.even.for.

a.very.short.period.of.time,.will.require.manual.

intervention.prior.to.restarting..Process.loads.

accepting.outages.could.be.shed.first,.and.then.

restarted.gradually,.at.about.the.same.rate.as..

the.opening.of.the.air.inlet.vanes..Loads.not.

accepting.outages.should.be.shed.only.if.

absolutely.necessary..In.this.manner.it.is.possible.

Page 18: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1�

to.make.use.of.the.“static”.spinning.reserve.as.

well.at.the.dynamic.spinning.reserve..It.requires,.

however,.categorizing.loads.based.on.acceptable.

outage.times.and.not.just.on.importance.as.is.

normally.done.when.defining.load.shedding.tables.

Sudden.islanding.of.a.process.unit.will.of.course.

have.consequences.for.that.process.unit...

The.consequences.can.often.be.limited.by..

the.use.of.fast.load.shedding..There.are.however .

also.consequences.for.the.other.process.unit.

when.the.other.one.is.islanded..If.the.process.unit.

associated.with.the.40.MW.GTGs.is.islanded,..

the.other.GTGs.will.suddenly.lose.much.of..

the.load..Primary.regulation.will.ensure.that..

the.GTGs. .reduce.their.power.output,.but.

the.main.problem.will.be.that.they.can.no.longer.

operate.in.the.DLN.region..It.is.important.that..

the.consequences.of.normative.incidents.be.

reviewed.for.all.parts.of.the.plant,.and.not.just..

the.part.most.directly.affected.

In.this.plant,.much.of.the.process.steam.is.

produced.from.HRSGs.associated.with..

the.larger.turbines..The.power.output.of.these.

GTGs.is.however.determined.by.electrical.and.

DLN.considerations,.and.not.by.process.steam.

requirements..This.would.also.be.the.case.should.

STGs.use.the.steam..Since.it.is.not.possible.to.

regulate.the.GTG.output.based.on.process.steam.

requirements,.it.is.necessary.to.fit.the.boilers.with.

auxiliary.burners.[3]..Thus,.steam.can.be.produced.

independently.of.the.operation.of.the.turbines..

This.decouples.the.steam.system.from.the.power.

system..Thus.the.PMS.can.define.the.required.

power.output.of.the.turbines.based.on.electrical.

considerations.only,.and.does.not.need.to.take.

into.account.steam.system.constraints..

Process Steam

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Case Study Remarks

There.are.advantages.to.using.distributed.

generation..A.single,.large.contingency.cannot.

cause.a.total.loss.of.generation.and.thus.

production..Also.having.loads.close.to.generation

.

reduces.transmission.losses..The.down.side.is..

the.difficulty.in.correctly.controlling.the.power.

system,.especially.the.voltage.

Operation.of.some.GTGs.in.DLN.mode.will.result.

in.very.unequal.load.sharing..The.DLN.turbines.

will.generally.be.more.heavily.loaded.since.they.

must.operate.well.above.the.DLN.limit.to.ensure.

stable.firing..The.dynamic.response.of.the.turbines.

will.not.be.the.same.since.they.are.operating.at.

different.percentage.loads..In.some.cases.this.can.

lead.to.nuisance.tripping.after.a.contingency.has.

occurred. The.very.limited.dynamic. response.

capability.of. large.turbines.is.often.a.surprise..

Fast.load. shedding.must.be.triggered.even.

though.there

.

is.enough.generation.capacity.

on.paper...From

.

a.dynamic. spinning. reserve.

viewpoint,..it. is. better .to. have. more. smaller.

turbines.than.fewer

.

larger.ones.

The.use.of.DLN.turbines.has,.however,. .positive

.

points..

The.

emissions.

are.

greatly.

reduced.

and.

this.is.very.important.today.since.more.and.more.

regulations.are.coming.into.effect.on.this.subject..

As.shown.in.the.case.study,.the.effective.loading..

of.the.DLN.turbines.is.higher.than.the.non-DLN.turbines.since.they.must.operate.well.above.

the.DLN.limit..The.DLN.turbines.are.modern.

machines.which.have.a.higher.efficiency.than.

older.machines..Thus.operating.the.more.efficient.

turbines.at.a.higher.output.reduces.energy.consumption.and.CO2.emissions...This,.however,.

can .be.achieved.only .using.secondary.regulation.

Page 19: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1�

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

PMS implementation

A.Power.Management.System.is.an.integrated.set.

of.sensors,.actuators,.communication.devices.and.

networks,.control.logic.and.operator.interfaces.

.

The.purpose.of.the.PMS.is.to.provide.real-time.

control.of.the.industrial.power.system.by.means.of.

the.following.functions,.many.of.which.have.been.

discussed.in.the.sections.above:

monitor.the.power.system

remote.control.the. power.system.switching.

devices

control.power.system.frequency

control.utilization.voltages

ensure.good.power.quality

provide.immunity.to.power.system.disturbances

control.power.import.&.export.

••

•••••

Although.the.PMS.relies.heavily.on.Information.

Technology.to.perform.many.of.the.functions,.

the.conceptual.design.must.be.made.by.power.

system.engineers..Both.disciplines.must.work.

closely.together.to.design.a.PMS.that.meets

..the.requirements.

Fig..14.gives.a.very.general.overview.of.a.PMS...

It.shows.the.connections.to.the.electrical.

distribution.system.which.are.made.via.intelligent.

devices.and.communication.networks,.as.well.as.

hard-wired.digital.&.analog.signals..The.

operator

.

workstations . . . .The.

redundant.PLCs .required.for.power.

management. functions. . .including. their. interface.

to.the.governors. and. AVRs.. This. interface. shows.

the.use.of.incremental.set.point.changes,

.one.of.the.basic.principles.of.Robust.Control.

Description of a Power Management System (PMS)

provide€the interface.

are

G G

GGGG

Utility

PLC

I/O Rack

PLC

AVR

G

AVRGovernor

+- pow

er+- voltage

+- v

olta

ge

Figure 14 – PMS Overview

Data Integrity Validation

The.PMS.actuators.will.send.incremental.set-point.

changes.to.gas.turbine.governors.and.generator..

&.transformer.AVRs..These.set-point.changes.control.

the.system.frequency.and.voltage.and.thus.are.

very.important.for correct.power. system. operation..

All

.

decisions

.

made

.

by.the.PMS.are.based.on.the.

data

.

that

.

has

.

been

.

collected.from.the.various.

devices.connected.to..the. power. system.. It. is. thus.

very.important.that

.

only. valid. data. be. used.. Bad.

data.can.cause.the.PMS. to. send. incorrect. set-point.

changes.and.drive.the.power.system.to.an. abnormal

.operating.condition.

.

Page 20: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1�

.

One.of.the.most.important.functions.of..

the.PMS.is.Data.Integrity.Validation..This.consists.

of.a.number.of.measures.to.check.that.the.data.

being.used.is.coherent..Should.discrepancies.

occur,.an.alarm.will.be.set.and.the.PMS.functions.

which.depend.on.this.data.will.be.suspended..

until.the.discrepancies.have.been.eliminated...

The.philosophy.of.robust.control.ensures.

satisfactory.operation.of.the.power.system.without.

the.PMS...Data.Integrity.Validation.ensures.that.PMS

.will.not.execute.functions.based.on.corrupt. data.

.

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

These.are.the.most.common.functions.of..the

..PMS.and.consist.in.showing.the.operator..

.status.of.the.power.system.and.allowing.him.to.

open.and.close.circuit.breakers.and.thus.change.

the.power.system.configuration..Remote.control.is.

usually.from.a.central.control.point..All.operators.

have.their.own.user.name.and.password.and.only.

operators.who.have.the.correct.authorization.are.

allowed. to. execute. orders. of. any. kind. Any. time.

remote.control.is.implemented,.whether.by.the

.operator.or.from.the.PMS.itself,.redundant.

communication.systems.are.normally.required.

This.prevents.the.failure.of.any.single.device.from.

propagating.through.the.system.

Monitoring & Remote Control

Power€Management€functions

voltage

control the€frequency

€and €and provide immunity€to€power€system

disturbances. Data Integrity Validation is of at€mostimportance€for€these functions. These€are

.

..

automatically.executed.and.the.control.logic.is.

performed.by.Programmable.Logic.Controllers.

(PLCs)...The.PLCs.are.normally.provided. in.a.

hot-standby .configuration.in.order.to.be.able.to.execute.their.

.

functions.even.should.a.fault.occur.

in

.

one

.

device.

.

The.PLCs.are.connected.to.the.PMS.

communication.system.in.such.a.manner.as.to.

have.direct.access.to.the.information.needed.to.

implement.the.functions..The.PLC.outputs.are.

connected.directly.to.the.primary.regulation.control.

devices.

the

Operator.work.stations.provide.the.information.

necessary.to.the.operator.for.correct.control.of..

the.power.system..The.information.must.be.

organized.in.a.very.clear.manner.in.order.that.the.

operator

.

immediately

.

sees. what.is.important.and.

what.needs.his.attention.. Generally. there. is. a.

main

.

PMS.operator.work.station.in.the

.

central

.control.room,.near..the.process.control

.work.stations. .The.main.work.station.normally.has

.dual.screens. allowing.permanent.visualization.

of

.

the

.

status

.

of

.

the.power.system.while.allowing.

the.operator.to.work.on.the.other.screen...Often.

there.are.local .PMS.work.stations.in.each.

substation,

.

these

.

work.stations. being. primarily.

used

.

when.

maintenance.work.is.being.carried.

out.

Page 21: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | 1�

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Testing a PMS

The.testing.of.a.PMS.is.always.a.challenge.since.only.

part.of.the.system.can.be.tested.prior.to.installation.

at.site..During.the.Factory.Acceptance.Tests.(FAT),.

the.complete.PMS.communication.system,.all.

operator.work.stations,.all.PLCs.and.other.PMS.

devices.are.interconnected.and.powered..Interfaces.

to.the.power.system.devices.such.as.intelligent.relays

and.meters.are.simulated.in.order.to.demonstrate.

correct.communication..All.PMS.functions.are.tested

during.the.FAT.but.it.is.not.possible.to.demonstrate

that.all.performance.criteria.are.met.since.only.few.

of.the.many.devices.are.connected.

It.is.only.at.site,.after.the.PMS.has.been.installed

&.connected.that.the.compliance.with.the.PMS.

performance.criteria.can.be.demonstrated...

There.are.many.control.functions.in.the.PMS.and

each.control.function.depends.on.many.variables

and

.

dead

.

bands.

.

During

.

the

.

commissioning

.

these

variables.are.optimized.in.order.to.provide.the.best

performance.of.the.system..This.“fine.tuning”.is..

a.very.important.step.and.requires.access.to..

the.GTGs.during.commissioning,.something.that

is.often.difficult.to.obtain.

The.PMS.should.be.designed.to.allow.testing.at.

site.without.risk.to.the.power.equipment...

One.means.of.achieving.this.is.to.provide..

a.“gain”.for.each. function... When. the. gain. is.

0.%,.the.PMS.will.not.send.any control.

signals.but.the.commissioning.engineer.can

.check.that.the.signal.that.the.PMS.would.have

.sent.is.correct.or.not..After.validation.of.the.

function.at.0.%.gain,.the.gain.is.slowly.increased.

and.the.functions.checked..When.all.checking.

has.been.done.and.the.variables.and.dead.bands.

optimized,.the.gain.will.be.at.100.%.and.the.PMS.

fully operational.

Training

It.is.quite.difficult.to.provide.adequate.training.for.

PMS.operators.for.several.reasons..One.reason.

is.simply.the.fact.that.any.orders.sent.by.PMS.

operators.will.have.important.consequences.on.

the.operating.point.of.the.power.system...

Trainees.cannot.be.allowed.to.actually.execute.

orders..The.other.problem.is.that.a.well.designed.

robust.power.system.normally.operates.correctly.

for.long.periods.of.time.without.any.operator.

intervention..Some.functions.will.be.used.only.very.

infrequently...

When.operators.don’t.use.the.system.for.long.

periods.of.time,.they.often.forget.what.they.have.

to.do.

Training.of.new.operators,.and.repeat.training.

of.experienced.operators.can.best.be.done.by.

means.of.a.training.simulator.[4]...

The.training.simulator.has.the.same.operator.

interface.as.the.PMS.and.allows.the.operator.to.

execute.orders.and.see.their.consequences...

The.orders.are.simulated.–.they.are.not.really.

executed.on.the.power.system.

Page 22: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �0

Conclusion

The.use.of.DLN.combustion.is.becoming.more.

common.due.to.stricter.regulations..The.additional.

constraints.that.it.brings.regarding.the.operation.

of.the.power.system.should.however,.not.be.

underestimated..It.is.necessary.to.carry.out.in.

depth.studies.and.simulations.of.all.possible.

operating.modes.of.the.power.system.in.order.to.

be.sure.that.the.loads.can.be.supplied.at.the.right.

frequency.and.voltage..This.is.especially.the.case.

when.there.are.turbines.having.different.operation.

modes.(DLN.and.standard).at.the.same.facility.

The.dynamic.response.of.the.turbines.should.be.

carefully.reviewed.with.the.turbine.supplier...

This.should.be.taken.into.account.in.defining..

the.number.and.rated.power.of.the.turbines.to.be.

purchased.for.the.plant.power.supply..Although.

there.are.economical.reasons.for.having.fewer,.

larger.turbines,.these.should.be.weighed.against.

the.costs.of.poor.power.system.performance.

When.STGs.are.used,.or.when.the.GTGs.are.

associated.with.HRSGs,.close.collaboration.

between.the.electrical.and.steam.system.

engineers.is.required..This.will.help.ensure.

that.each.system.is.capable.of.satisfying.the.

requirements.independent.of.the.operation..

of.the.other.system.

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 23: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

COM-POWER-WP0�EN Rev1 | �1

References

[1]..Nick.Hiscock,.Terence.Hazel,.Jonathan.

Hiscock;."Voltage.Regulation.at.Sites.with.

Distributed.Generation,".IAS.Transactions.on.

Industry.Applications,.Vol.44,.No..2,..

March-April.2008,.pp.445-453.

[2]..Roy.Hamilton,.John.Undrill,.Paul.Hamer,.Scott.

Manson,.“Considerations.for.Generation.

in.an.Islanded.Operation,”.Causes.of.Long.

Interruptions,.IEEE.PCIC.Conference.Record,.

2009.

[3]..Graeme.Peck,."Challenges.in.Using.Waste.Heat.

Recovery.and.DLE.Combustion.to.Reduce.

CO2.and.NOx.Emissions".in.PCIC.Europe.

Conference.Record,.2009.

[4]..Terence.Hazel,.Isabelle.Condamin,.Fabrice.

Audemard,.“Facilitating.Plant.Operation.&.

Maintenance.Using.an.Electrical.Network.

Monitoring.&.Control.System.Simulation.Tool”,.

IEEE.PCIC.Conference.Record,.2004.

Vita

Terence. Hazel. graduated. from. the. University. of.

Manitoba.Canada.with.a.BScEE.in.1970...

He.worked.for.one.year.as.a.power.coordination.

engineer.in.Perth.Australia.and.for.several.years.

in.Frankfurt.Germany.as.a.consulting.engineer.for.

construction.and.renovation.of.industrial.power.

distribution.systems..Since.1980.he.has.worked.

for.Schneider.Electric.(formerly.Merlin.Gerin).in.

their.projects.group.where.he.has.provided.team.

leadership.for.several.major.international.projects.

involving.process.control.and.power.distribution..

His.main.interests.are.in.power.quality,.and..

the.reliability.of.electrical.distribution.systems...

Mr..Hazel.is.a.senior.member.of.IEEE.and.is.author.

of.several.IEEE.papers.and.tutorials..He.is.also.

Secretary.and.Technical.Chair.of.the.Petroleum.&.

Chemical.Industry.Committee.Europe.which.holds.

an.annual.technical.conference..

(www.pcic-europe.eu)

of€Emissions€by OptimaI.use.of.Gas.Turbines.Reduction

Page 24: Reduction of Emissions by Optimal use of Gas Turbines · PDF fileReduction of Emissions by By Terence G. Hazel Senior Member IEEE Optimal use of Gas Turbines

Schneider Electric Industries SAS35,.rue.Joseph.MonierCS.30323F-.92506.Rueil.Malmaison.Cedex

RCS.Nanterre.954.503.439Capital.social.896.313.776.€www.schneider-electric.com

12-2009COM-POWER-WP04EN

©.2

009.

-.S

chne

ider

.Ele

ctric

.-.A

ll.rig

hts.

rese

rved

.

This document has been printed on ecological paper