RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e...

36
t57L The Canadian Mburalogist Vol.35, pp. 157 l-1606(1997) RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: REPOFT OFTHE SUBCOMMITTEE ON ZEOLITES OFTHEINTERNATIONAL MINERALOGICAL ASSOCIATION, COMMISSION ON NEWMINERALS AND MINERAL NAMES DOUGLASS. COOMBS1 (Chairnan) Geology Departmznt, university of Otago, P,O, Box 56,Duned.in, New Zealand ALBEMOALBERTI Istiato d.i Mineralogia" (JniversftA di Fenara,Corso Ercole I" d.'Este, j2, 144100 Ferrara, Italy TIIOMAS ARMBRUSTER Laboratoimftr chcmische und mburalogische Kristatlographie, Universitdt Bern" Freiestrasse 3, CH-i012 Bem, Swiaerl'anl GILBERTOARTIOLI Dipartimento di Scienze d.ell.a kna. [Jniversitd. di Milana, vin. Botticelli, 23,I-20133 Milarc, Italy CARMINECOLELLA Dipartimento di Ingegneria deiMaterialie della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80,I-80125 NapolL ltaly ERMANNOGALLI Dipartimcnto d.i Scienze dellaTbrra, Universitd di Modena, via S.Eufetnia, 19, 141100 Modena, Italy JOELD. GRICE Mineral Sciences Division, Canadian Musewn of Naturc, Ottawa" Ontarin KiP 6P4, Canada FRIEDRICHLIEBAU Mineralogisch-Petrographisches Instint, IJniversitdt Kiel, Olshaasenstasse 40-60, D-2300 Kiel"Germany JOSEPH A. MANDARINO (retired from Subcommittee, December I 994 Depanmcnt of Mineralagy, Royal Ontario Mweum, Toronto, Onnrio MSS 2C6Canada HIDEOMINATO 5-37-17 Kugayam+ Suginami-ku, Tolqo 168, Japan ERNESTH. MCKEL Division of Exploration and Mining, CSIRO, Private Bag, Wembley 6014, Westem Au*tralia" Aastralin ELIO PASSAGLIA Dipanimento di Scienze dellaTerra, Universitd. di Modena"via S. Eufemia 19,I-4II0a Modenu haly DONALD R. PEACOR Departnent of Geological Sciences, University of Michigan, Ann Arbor Michisan 48109, U.S.A. SIMONAQUARTIERI Dipartim.ento di Scienze itellaTena, Universitd ili Modeno,via S. Eufemiu 19,141100 Modena" Italy ROMANORINALDI Dipartinznto di Scienze della Terra, Universitd. di Perugia I-06100 Perugia"Italy MAITCOLMROSS U.S. Geological Suney, MS 954, Reston,Wrginia20192, U.SA. RICHARDA. SHEPPARD U.S. GeologicatSurvey, MS 939, Box 25M6, Federal Center Denve4 Colorado 80225, U.SA. EKKEHARTTILLMANNS Institutflr Mineralogie md Kristallographie, UniversitdtWiett Althanstrasse 14, A-1090Vmna, Austria GIOVANNAVEZZALIM Dipartimento di Scienze d.ella Tena, Ilniversitd.di Modena,via S. Er{emia 19, 141100 Moden'a lta$ I E-mnil address: [email protected]

Transcript of RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e...

Page 1: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

t57L

The Canadian Mburalo gistVol. 35, pp. 157 l-1606 (1997)

RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: REPOFT OFTHESUBCOMMITTEE ON ZEOLITES OF THE INTERNATIONAL MINERALOGICALASSOCIATION, COMMISSION ON NEW MINERALS AND MINERAL NAMES

DOUGLAS S. COOMBS1 (Chairnan)Geology Departmznt, university of Otago, P,O, Box 56, Duned.in, New Zealand

ALBEMOALBERTIIstiato d.i Mineralogia" (JniversftA di Fenara, Corso Ercole I" d.'Este, j2, 144100 Ferrara, Italy

TIIOMAS ARMBRUSTERLaboratoimftr chcmische und mburalogische Kristatlographie, Universitdt Bern" Freiestrasse 3, CH-i012 Bem, Swiaerl'anl

GILBERTOARTIOLIDipartimento di Scienze d.ell.a kna. [Jniversitd. di Milana, vin. Botticelli, 23, I-20133 Milarc, Italy

CARMINECOLELLADipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli,

Piazzple V Tecchio, 80, I-80125 NapolL ltaly

ERMANNOGALLIDipartimcnto d.i Scienze dellaTbrra, Universitd di Modena, via S. Eufetnia, 19, 141100 Modena, Italy

JOELD. GRICEMineral Sciences Division, Canadian Musewn of Naturc, Ottawa" Ontarin KiP 6P4, Canada

FRIEDRICHLIEBAUMineralogisch-Petrographisches Instint, IJniversitdt Kiel, Olshaasenstasse 40-60, D-2300 Kiel" Germany

JOSEPH A. MANDARINO (retired from Subcommittee, December I 994Depanmcnt of Mineralagy, Royal Ontario Mweum, Toronto, Onnrio MSS 2C6 Canada

HIDEOMINATO5-37-17 Kugayam+ Suginami-ku, Tolqo 168, Japan

ERNESTH. MCKELDivision of Exploration and Mining, CSIRO, Private Bag, Wembley 6014, Westem Au*tralia" Aastralin

ELIO PASSAGLIADipanimento di Scienze dellaTerra, Universitd. di Modena" via S. Eufemia 19, I-4II0a Modenu haly

DONALD R. PEACORDepartnent of Geological Sciences, University of Michigan, Ann Arbor Michisan 48109, U.S.A.

SIMONAQUARTIERIDipartim.ento di Scienze itellaTena, Universitd ili Modeno, via S. Eufemiu 19, 141100 Modena" Italy

ROMANORINALDIDipartinznto di Scienze della Terra, Universitd. di Perugia I-06100 Perugia" Italy

MAITCOLMROSSU.S. Geological Suney, MS 954, Reston, Wrginia20192, U.SA.

RICHARDA. SHEPPARDU.S. Geologicat Survey, MS 939, Box 25M6, Federal Center Denve4 Colorado 80225, U.SA.

EKKEHARTTILLMANNSInstitutflr Mineralogie md Kristallographie, UniversitdtWiett Althanstrasse 14, A-1090 Vmna, Austria

GIOVANNAVEZZALIMDipartimento di Scienze d.ella Tena, Ilniversitd. di Modena, via S. Er{emia 19, 141100 Moden'a lta$

I E-mnil address: [email protected]

Page 2: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

r572 THE CANADIAN MINERALOGIST

ABSTRACT

This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association,Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this revie\p, structurescontaining an intemrpted f:amework oftetrahedra are accepted where other zeolitic properties prevail, and complete substitrtioDby elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional seriesin which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriatechemical symbol is attached by a hyphen to the series name as a suffx, except forthe narnes harmotomq pollucite and wairakitein the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeoliteshaving the same topologically distinctive framework do not in general provide adequate grounds for recognition of separatespecies. Zeolite species ate not to be distinguished solely on the ratio Si : Al except for heulandite (Si : Al < 4.0) andclhoptilolite (Si : Al > 4.0). Dehydration" partial hydration, and overhydration are not suffrcient grounds for the recogritionof separate species of zeolites. Use of the term "ideal formula" should be avoided in referring to a simplified or averagedformula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba" chabazite-Ca"-Na -Ii clinoptilolite-I! -Nq -C4 dachiardite-C4 -Na, erionite-Na" -K, -Cq faujasite-Na, -Ca -Mg, ferrierite-Mg, -K -Nagmelinite-Na, -Cq -K heulandite-Ca, -Nq -K -Sr, levyne-Ca -Na paulingite-K -Ca, phillipsils-1.{q -Cq -K and stilbite-Ca,-Na. Key references, type locality, origin of name, chemical dat4 ZA structure-type symbols, space-group synmefiry, unit-celldimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeotte mineral species, and thJeeof doubtfrrl status. Herschelite, leonhardite, svetlozarite, and wellsile are discredited as mineral species names. Obsolete anddiscredited names are [sted.

Keyvords: zeolite nomenclanre, herschelite, leonhardite, svetlozarite, wellsite, brewsterite, chabazite, clinoptilolite, dachiardite,erionite, faujasite, ferrierite, gmelinite, heulandite" levyne, paulingite, phill;Fsite, stilbite.

SoMruans

Ce rapport contient les recommandations i propos de la nomenclature des z6olites, telles qu'approuvdes par l'Associationmin{mlsgiqus internationale, commission des nouveaux min6raux et des noms de min6raux. Daas la d6finition d'une z€oliteretenue ici, les structures contenant une trame interrompue de t6traAdres sont acceptdes dgns les cas oi les autres propri6t6ssatisfont les crit0res de cetie famille de min6raux. De plus, il peut y avoir remplacement complet de Si et Al par d'autres6l€ments. Des espbces distinctes font partie de s6ries de compositions dont I'agencement topologique est le m6me, le cationdominant ne faisant pas partie de la trame d6ierminant l'espBce. Pour en d6terminer le nom, il s'agit de rattacher le symbolechimique appropri6 au nom de la s6rie par un trait d'union, sauf dans les cas de harmotome, po[ucite et wairakite, faisant partiedes s6ries de la phillipsite et de I'analcime. Des diff6rences en symdtrie exprim6es par le groupe spatial et en degt6 d'ordreSi-Al dans les z6olites ayant le m€me agencemetrt topologique ne suffisent pas en g6n6ral pour ddfinir une espece distincte.Le seul critdre de rapport Si : Al ne sufEt pas pour distinguer les espBces de z6olites, sauf pour la heuladite (Si : Al < 4.0)et clinoptilolite (Si : Al > 4.O).Yetat de d6shydratation, d'hydratation partielle, et de sur-hydratation ne suffit pas pourreconnaltre une espBce distincte de z6olite, On doit 6viter d'utiliser le concept d'une "formule iddale" en parlant desformules simplifi6es ou repr6sentatives des z6olites. I,es nouveaux noms d'espOces dans ces s6ries de compositions sont:brewsterite-Sr, -Ba, chabazite-Ca, -Na -K, clinoptilolite-I( -Na -Ca dachiardite-Ca -Na,6rionite-Na" -K -Cq faujasite-N4-Ca -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, l6vyne-Ca, -Na, paulingite-K, -Ca,philipsite-Na, -C4 -K, et stilbite-Ca" -Na- Nous pr6sentons les r6f6rences-cl6s, la localit6-type, l'origine du nom, des donn6eschimiques, le symbole structural ZA, le groupe spatial et la syndftie, les parambtes r6ticulaires et des commentaires sur lastructure de 13 s6ries compositionnelles, 82 espBces homologu6es, et trois dont le statut est douteux. Herschelite, ldonhardite,svetlozaxite, et we[site sont discr6dit6es cotrme norns d'esp€ces min6rales. Nous dressons une liste des noms obsoldtes etdiscr6dit6s.

(Iraduit par la R6daction)

Mots-cl6s:. nomenclature des z6olites, herschelite, ldonhardite, svetlozarite, wellsite, brewsterite, chabazite, clinoptilolite,dachiardite,6rionite, faujasite, ferrierite, gmelinite, heulandite, l6vyne, paulingite, phillipsite, stilbite.

INIRoDuc"iloN

The name "zenli€'\'ras inftoduced by the Swedishmineralogist Cronstedt ia 1756 for certain silicateminerals in allusion to their behavior on heating in aborax bead (Greek zeo =borli lithos = stone). Threesuch minerals were listed by Haiiy (1801), namelystilbite, analcime, and harmotome, together with"mesofype", which has not survived. Chabazite andleucite had been named even earlier. Nineteen had been

described with their present 6saning by L842.Forty-six zeolites were listed by Gouardi & Galli(1985), and new species continue to be described. Thefirst crystal-structure determination of a zeolite wasdone on analcime (Taylor 1930); following this, Hey(1930) concluded tlat zeolites in general havealuminosilicate franeworks with loosely bonded nlkalior alkali-earth cations, or both. Molecules of HrOoccupy extra-framework positions. He pointed outtle consequential requirements that the molar ratio

Page 3: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCI.-ATURE FOR AOLIIE MINERALS L573

AlzOr : (CaSr,BaNaz,K)O = 1 and that O : (Si + Al) =2 in the empirical formula.

Zeolites have other highly characteristic featuresdeveloped to varying degrees, notably the potentialfor reversible low-temperature dehydration, the abilityof the dehydrated forms to reversibly absorb otlermolecules, a tendency toward more or less easy low-temperature exchange of extra-framework cations, anda lack of clear-cut, structu(ally controlled constraintson end-member compositions in terms of Si : Al ratioswithin the framework. In some cases, observed extra-framework compositions may be artefacts of cationexchange resulting from human activities in the labora-tory or elsewhere, and firrtlermore, tle compositionsare not convenienfly determined by traditional opticalmetiods. Perhaps for a combination of such reasons,separate names have been glven to few zeolites on thebasis of the dominant extra-framework cation insolid-solution series. This conflicts with standardpractice in most mineral groups and with guidelines ofthe Commission on New Minerals and Mineral Names(CNMMN) (Nickel &Mandarino 1987).

With intensification of research and tlre adventof the electron microprobe, a flood of informationon compositions has become available, and withautomated single-crystal X-ray diffractometers atrdotler developments, many complexities have beeninvestigated, including order-disorder relationships inthe frameworks and associated changes in unit-cellpaxameters and symmetry. Thus in the case ofanalcime, Mazzi & Galli (1978), Te,ertsfraet al. (1994),and otlers have demonstrated a wide range of space-group symmetries associated with different patternsof order in tle framework and possible displacivetransformations. Sites of extra-framework cationsare commonly less well defined in an open, zeoliticstructure tlan in most other minerals, and are variablyoccupied. Guidelines allowing recognition of separatespecies depending on the dominant ion occupying eachstructural site are thus compromised in the case ofextra-framework sites in zeolites. Furthermore, changesin the occupancy of such sites can distort the frameworkto varying degrees, changing the space-group symmetry.

Some minerals meet traditional criteria forzeolites in all respects except that they contain R Be, orother elements in tetrahedral sites, witl consequentdeparture from the requirement of Hey (1930) that O :(Si + A1) = 2. Other structurally related minerals vrithzeolitic properties have all tetrahedral sites occupied byelements other than Si and Al. Certain other mineralsdisplaying zeolitic properties depart from traditionalrequirements for a zeolite in having a franework that isintemrpted by some (OH) groups. An example isparth6ite, fisted by Gottardi & Galli (1985) as azsoTitp.Synthesis and structural analysis ofmaterials havingzeolitic properties have become major fields ofresearch and have led to a voluminous literature, as hasthe industrial use of zeolitic materials.

The recommendations of an IMA CNMMNsubcommittee set up to review zeolite nomenclatureare set out below. These recommendations have beenadopted by the Commission.

DtrnmIoN oF A ZEoIxrE MINERAL

In arriving at its working definition of a zeolite,1ls gufssmmittee took the view that zeolites in thehistorical na4 mineralogical sense are naturallyoccurring minerals, irrespective of how the term maybe applied to synthetic materials and in industry. In thelight of advances in mineralogy, the Hey (1930)definition is found to be too restictive. The Subcom-mittee gave particular consideration to the followingquestions. Is more that 5OVo substitution of elementsother than Si andAl permissible in tetrahedral sites? Istle presence of HzO and of extra-framework cationsabsolutely essential? Can'ointemrptedo' frameworkstructures qualify as zeolite minerals? These mattersare furtler discussed inAppendix 1.

Definition

A zeolite mineral is a crystalline substance with astructure characterized by a framework of linkedtetrahedra, each consisting offour O atoms surrowtdinga cation. This framework contains open cavities in thcform of channels and cages. These are u.sually occupiedby H2O rnolecules and. extra-framework cations thatare commonly exchangeable. The channels are largeenough to allow the passage of guest species. In thehydrated. phases, dehydration occurs at temperaturesrnost$ below about 400oC and is largely reversible.The f'ram.ework may be interru.pted by (OH,F) groups;these occupy a tetrahedron apex that is not shared withadjacent tetrahedro.

Application of the defi.nition (see also Appendix 1)

Relatively easy exchange of extra-frameworkcations at relatively low temperature is a characteristicfeature of zeolites and zeolitic behavior, but variesgreatly from species to species. Its extent does notprovide a convenient basis for the definition of zeolites.In practice, it appears that channels must have aminimum width greater than that of 6-membered rings(i.a., rings consisting of six tetrahedra) in order to allowzeolitic behavior at normal temperatures and pressures.Framework structures such as in feldspars, nepheline,sodalites, scapolites, melanophlogite, and probablyleifite, in which any channels are too resticted to allowtypical zeolitic behavior such as reversible dehydration,molecular sieving, or cation exchange, are not rggardedas zeolites.

Framework densify, defined as the number oftetrahedral sites in 1000 43, was used as tle criterionfor inclusion inthe Atlas of Zeolite Structure Ilpes

Page 4: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1574 TT{E CANADIAN MINERALOGIST

@Ierer et aL 1996). However, this criterion provides noevidence that the channels necessary for diffitsion arepresent, as well as cages, and it has not been adoptedin the present definition.

In some minerals witl a tetrahedral frameworksfructure and other zeolitic characteristics as described,namely parth6ite, roggianite, maricopaite, andchiavennite, one apex of some tetrahedra is occupiedby an (OH) group or F atom instead of being occupiedby an O atom. This (OH) group or F atom does notform a bridge with an adjacent tetrahedron. Theframework is tlus intemrpted. Such minerals are hereaccepted as zeolites.

In terms of the definition adopted, minerals of thecancrinite group can arguably be considered as zeolites.This group has long been regarded by many or mostmineralogists as distinct from tle zeolites, in part, atleast, because of the presence of large volatile anions(e.9., Hassan 1997). They are not reviewed in thepresent report. 3a1trs1 similarly, wenkite contains largecages and channels, but these are blocked by SOa, C4and Ba ions (Wenk 1973, Merlino 1974), inhibitingzeolitic behavior. In addition, no water is lost below500oC. Wenkite is not included as a zeolite in this report.

Leucite has seldom been regarded as a zeolite, as itdoes not display a full range of zeolitic behavior.Nevertheless. it has the same framework structureas analcime and conforms to the adopted definition.Ammonioleucite can be regarded as an analcimederivative, can be synthesized from analcime by cationexchange, and may have formed naturally bylow-temperature replacement of analcime. Leucite andammonioleucite are included in the list of zeolites. as iskalborsite, a derivative of the edingtonite structure.

Also conforming to the definition adopted aretle beryllophosphates pahasapaite and weinebeneite.These contain neither Si norAl and can be regarded asend-member examples of Si-free zeolites or zeolitephosphates.

RuLes ron NowNo.eruns or Zrolrre MnrERAr-s

In presenting the following rules for nomenclatureof zeolite mine14ls, the Subcommittee feels stronglythat they should be viewed as guidelines rather thanas being rigidly prescriptive. As stated by Nickel& Mandarino (1987): "It is probably not desirableto formulate rigid rules to define whether or not acompositional or crystallographic difference issufficiently large to require a new mineral name, andeach new mineral proposal must be considered on itsown merits". Explanatory notes following the proposedrules or guidelines give examples of how the Subcom-mifree envisages thaf rulebeing applid but Iike Nickeland Mandarino, the Subcommittee urges that each casebe treated on its merits. In some casesn compellingreasons may exist on grounds ofhistorical usage forretaining an existing name, or other grounds may exist

for departing from tle rules for giving a new nrme.Cases arising under Rule 2 are particularly difficult,and require individual consideration.

RuIe 1

(a) One or more zeolite minerals having atopologically distinctive framework of tenahedra, anda composition that is distinctive for zeolites having thatframework, constitute separate species. (b) Zeoliteshaving the same topologically distinctive frameworkof tetrahedra constitute a series when they display asubstantial lange in composition in which differingextra-framework cations may be the most abundant inatomic proportions. These cations rnay occupy differentextra-framework sites. Such sarras consist of two ormore species that are distinguished on the basis of themost abundant extra-framework cation.

Application ofthe rule

Laumontite, for example, has a topologicallydistinctive framework and a composition which, as faras is cunently known, is distinctive in that Ca is alwaysthe dominant extra-framework cation. It is a separatezeolite species under Rule la. Natrolite, mesolite, andscolecite have the same topologically distinctive frane-work structure as each other, and have compositionsthat are distinctive. They also are separate speciesunderRule la.

Zeolites having the topologically distinctivechabazite structure have a range of compositions inwhich any one of Ca, Na, or K may be the mostabundant extra-framework cation. Substantial Sr is insome cases present as well, bui so far has never beenreported as the most abundant in natural gxamples.Chabazite is a series consisting ofthree separate speciesunder Rule lb. It is known that near-end-member Na KCa and Sr compositions are readily obtainable by ionexchange from nalural Ca-dominant chabazite at 110"C(Alberti et al. L982a), but this is not the essentialcriterion for recognition ofthe natural series.

Mesolite may have either Na or Ca slightly inexcess of the other, but the ratio Na : Ca is always closeto I : 1. The range of its composition is not regarded as"substantial", and mesolite is not divided into morethan one species on grounds of composition.

Several distinct structural sites for extra-frameworkcations are recognized in many zeolites, but in view oftle relatively loose bonding and specialized problemsin esablishing the individual site-occupancies, only thetotal population of exfra-framework cations should ingeneral be used in defining zeolite species.

Rule 2

(a) Differences in space-group symmebry and inorder-disorder relationships in zeolite minerals havingthe same topologically distinctive framework do not in

Page 5: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCT.ATURE FOR reOLITE MINERALS L57s

general provide adequate grounds for recognition ofseparate species, but each case should be treated on itsmerits. (b) In assessing such cases, other factors, suchas relationship to chemical composition, should betaken into consideration.

Application ofthe rule

The Subcommittee found it to be impracticable toformulate quantified criteria 1e1 hnadling problemsarising from this rule. Irrespective of decisions thathave been made in the past, care should be takenthat departures envisaged in Rule 2b from the principleenunciated in Rule 2a are based on grounds ttrat aretruly compelling.

Analcime and certain other zeolites exist withseveral different space-group symmetries, in somecases occurring on a yery fine scale in the same handspecimen and with the same chemistry. Even thoughthis may be related to Si,Al ordering, separate speciesnames in these cases are in general not warranted.

Gismondine and garronite are examples of zeolitesthat have the same topologically distinctive framework.Both have Ca as the dominant extra-framework cation.Their differing space-gtoup symmetry is associatedwith disordered Si,Al and the presence of significantNa in garronite. They are accepted as separate species.Gobbinsite and amicite have topologically tle sameframework structure as gismondine, but are alkali-dominant. Their different space-group symmetriesEpear to be related to Si,Al disorder in gobbinsite andpossible chemical differences, and they are provisionallyretained. Barrerite is topologically similar to stilbiteand stellerite, but it has different symmetry correlatedwith the presence of extra cations that cause rotationaldisplacements within the framework (Galli & Alberti1975b); it is similarly retained.

Rule 3

Zeolite mineral species shall not be distinguishedsolely on the basis of the framework Si : Al ratio. Anexception is made in the case of heulandite andclinoptilolite; heulandite is defined as tle zeoliteminslal series having the distinctive frameworktopology of heulandite and the ratio Si : Al < 4.0.Clinoptilolite is defined as the series with tle sameframework topology and Si : Al 2 4.0.

Application ofthe rule

Many zeolites have a widely variable Si : Al ratio,but this, in itself, is not regarded as providing adequategrounds for recognition of separate species. Theexception is based on entrenched usage of &e nameshealandite and clinoptilolifa, and their convenience forrecognizing an important chemical feature. The cutoffvalue adopted (following Boles 1972) is arbitrary in a

continuous range of compositions. The usual 507ocompositional fl1ls gnnnsf be applied, as there are noclearly defined Si,Al end-member compositions forheulandite and clinoptilolite. Thermal stability hasbeen used by some investigators to distinguishclinoptilolite from heulandite. This is a derivativeproperty, however, suggested by Mumpton (1960) as anaid to identification, and it is not appropriate as thebasis for definition. Afietti (1972) and Boles (1972)have shown that there is no gap in composition either inframework or extra-framework cation contents betweenheulandite and clinoptilolite, and that samples transi-tional in composition show intermediate properties interms of thermal stability.

Rule 4

Dehydration, partial hydration, and overhydration,whether reversible or irreversible, are not sufficientgrounds for the recognition of separate species ofzeolite minetals.

Application ofthe rule

If a new topologically distinctive framework arisesfrom overhydration or partial dehydration, separatespecies status would result from application ofRule 1.Leonhardite, a partially and in most cases reversiblydehydrated form of laumontite, is not accepted as aseparate mineral species.

Rule 5

Individual species in a zeolite mineral series withvarying extra-framework cations are named by attachingto the series name a suffix indicating the chemicalsymbol for the extra-framework element that is mostabundant in atomic proportions, e.9., chabante'Ca.

The following exceptions are made: a) On groundsofhistorical precedence and long-established usage, thetame harmotome is retained for the Ba-dominantmember of the phillipsite series. b) On grounds oflong-established usage, pollucite is retained as theCs-dominant zeolite of the analcime stucture-type. Ongrounds of established usage and markedly differentspace-gtoup symmetry and Si,Al order related to theextra-framework cation content @ule 2b), wairakite isretained as the Ca-dominant zeolite of tle analcimestructure-type. On the ottrer hand, herschelite issuppressed in favor ofchabazite-Na (Appendix 2).

Application ofthe rule

New species arising from Rule 5 that are wellauthenticated by published data are set out in Table 1.Future proposals for additional new species under thisrule should be dealt with as for any otler proposal fora new mineral name.

Page 6: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

r576 TIIE CANADIAN MINERALOGIST

Adoption of a Levinson-style system of suffixesavoids the proliferation of a large number of new andpotentially unrelated species names, and ensures thatall members of a topologically identical compositionalseries are indexed together. It has the great advantagethat where adequate chemical data are not required orare not available, a mineral can be referred to correctlyby an unambiguous series name. The system adoptedhere is witlout the brackets (parentheses) used byLevinson (1966) in suffixes for rare-earth minerals.

Substantial amounts of extra-framework cationsotler than the dominant one may be indicated, ifdesired, by the use of adjectives such as calcian andsodiann e.g., calcian clinoptilolite-K. Such adjectivalmodifiers are not part of the formal name of a species.

Informal use is often made of descriptive terms suchas calcium chabazite and Ca cbabazite, in which thename or symbol of an element is used adjectivally. Inconformity with general IMA guidelines, these shouldnot appear in print as mineral names or in hyphenatedform. The correct narne for tle mineral species in thiscase is chabazite-Ca. Terms such as sodium-substitutedchabazite-Ca are suggested for what in effect would bea synthetic chabazite-Na prepared by cation exchangefrom chabazite-Ca. Chabazite remains the correct namefor a member of the chabazite series that is not sfecifi-cally identified on compositional grounds.

Rule 6

(a) Space-group variants of zeolite mineral speciesmay be indicated by placing the space-group symbol inround brackets (parentheses) after the mineral speciesname,e.g.,analcime(Ibca),heriandite-Ca(C2lm).(b)Levels of order may be indicated by adjectival use ofwords such as oodisordered" or "fullv ordered" beforethe mineral name.

Application ofthe rule

Modifiers as suggested here are not paxt of t}leformal name e1&s mineral.

AccspIED ZEourE SERTFS AND Sprcrss

Zeolites to be elevated to series status and theconsequential new species to be recognized on the basisof the most abundant extra-framework cation (Rule 5)are set out in Table 1.

An annotated list of accepted zeolite series andspecies follows below. In each entry for series, and forthose species tlat are not members of compositionalseries, a simplified or generalized formula is givenin the first line. This is followed by Z, the number ofthese formula units per unit cell, as given later in theentry. The sim.Flified or generalized formula shouldbe regarded as representative only, and should notbe regarded as an o'ideal" composition (see next

TABLE I. NEWLY PROPiOSK) AOLTTE SPECIESwmtrN coMPiosrnor{Al gERrEst

Sp6i€s nono Spoi€s nrdg

brwnt€dt€ brwdecitesr

br$rs€dtsBe

dhabarrt+Ca

claboziteNa

chabaziteK

dinoftiloliteK

clitroFdolitsNs

olinopflolilFCa

dacfiindite-Ca

daclirditeNg

gioite-Ns

simitFK

sioni!+Ca

frliasit&.Nr

h{ieitscs

ftnisitelvt

ftrrigit+I(

ftrdcitoNa

gedhft, gnrfidtFNa

gmdid€..Ch

gn8tidbK

hgrhdno.Ce

hsl$ditFNr

haileditFKhs'hndit*Sr

la4tmCa

l64fseNa

padi4$sK

fingilsCs

pmil6ileN8

pmipitc-Ca

pmipoits-f

dilhe-Ca

scilbiteNa

clhopdolte

lsr4no

dacliarditopadiqdto

pbillipcito

$ lto firc-med nmbo of ec& s€d€s is ths @ to xtbic,h ths 6i8iml t,rpe

Bpeim ftrth€ sis 8@ to bdorg;

paragraph). Users of the list should bear in mind tlatthe Si : A1 ratio, or, more generally, occupancy oftetrahedral sites by Si, Al, R Be, Zr, and possiblyotler elementso varies widely in many zeolites. Thetotal exfta-framework cation charge varies accordingly.Major variation in more-or-less exchangeable, extra-framework cations is also a feature of many naturalzeolites. Contents of H2O tend to decrease withincreasing number and size of extra-frameworkcations, as well as with increasing temperature anddecreasing P(HzO). Such variations can be vital topetrological, geochemical, environmental, and experi-mental considerations.

gimFlified or generalized formulae of zeolites, e.9.,NaAlSi2O6.H2O for analcime, have often been referredto as "ideal" formulae. However, the supposed idealitymay be in writers' desire for simFlicity, rather than inanything fundamental to the zeolites concerned, andcan lead to false assumptions. There is much evidencethat the composition of naturally occurring analcime isa function of the chemicul eayllenment in which itforms (e.9., Coombs & Whetten 1967).In environmentsof low Si activity, as in altered sfrongly silica-deficient

Page 7: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDBD NOMENCI-ATTJRE FOR AOLITE MINERALS I577

ANA

alkaling rocks, natural analcime approaches a Si : Alratio of 1.5. The composition in burial metamorphicrocks in equilibrium with quartz appears to bedistinctly more Si-rich than the supposed'oideal" Si : Alvalue of 2. The evidently metastable equilibrium innatural environments contafufng siliceous volcanicglass or other source of silica yielding higher activity ofSi than coexistence with quartz, leads to analcime u.ithSi : Al approaching 3. Analogous observations apply toheulandite and other zeolites. If "ideaf is taken toimply equilibrium, it can tlerefore be concluded tlatthis is a function of the chemical (and P-T) environ-ment during crystallization, rather than simply being afunction of crystal structure. Differing Si : Al ratiosmay in turn favor different patterns of order in tleframework Application of the term "ideal" to simFlifiedor averaged formulae of zeolites should be avoided.

Also given in the fust line of each entry is tlestructure-type code allocated by the StructureCommission of the International Zeolite Association(ZA) and listed in Meier et al. (L996). The codeconsists of tlree capital letters. A preceding hyphenindicates an intemrpted framework of tetrahedra.

The second line of each relevant entry startswith the odginalreference in whichthe currentnane ofthe mineral, or a near variant of tlat name, is given,followed by the type locality, or, in the case of descrip-tions that predate the concept of type localities, thegeneral region of origin of tle material on which thename and original description are based, rrhere this isknown. The locality is followed by a note on thederivation of the name. Further information on thesematters is given by Gottardi & Galli (1985), Clark(1993), and Blackburn & Dennen (1997), but in somecases tle information is here revised.

Next is given inforrnation on tle currenfly knownrange in composition of the mineral concerned. Thisincludes known values, or rumge of values, for \i, theproportion of tetrahedron sites occupied by Si atoms,as reported in published results of acceptable analyses.For many zeolites, this value varies widely, and thevalues reported may not indicate the firll range possible,especially in the case of the rarer zeolites.

Much information on zeolite compositions wasgiven by Gottardi & Galli (1985). The present compilationincorporates results offurther extensive searches oftheliterature. A widely used criterion for acceptability ofzeolite compositions is that the value of the balance-error function of Passaglia (1970)

should be less than l07o , a figure that is itself arguablyexcessive. The calculation of.EVo may be modified toallow for other suspected cations, such as FeA and Cs*.The role of Fe causes problems that may not beresolvable. Some Fe reported in zeolites is undoubtedlya contaminant, but there are reasons to suspect that

both Fez* and Fd+ may enter the structures of somezeolites in extra-framework or framework sites, orboth.

Space-group symmetry and crystallographicparameters follow. Many accepted zeolite species existwith more than one known space-group symmetry, andthese are listed. Variations in space-gtoup symmetryand variations in order-disorder relationship of frame-work cations are not in themselves adequate evidencefor establishing new species (Rule 2). Cell parametersgiven are as reported for material specified in keyreferences. Cell dimensions of many species varywidely as a result of variable composifions, variableextent of order, and differing levels of hydration.Except for a few newly described species, details ofstructure, including size and orientation of channels,can be obtained for each structure type from Meier etaL (1996) and are discussed in Gottardi & Galli (1985).

The accepted series and species are as follows:

Amicite

I(aNaa[A\SisO32]. 1 0H2OZ= 1 GIS

Alberfr. et aI. (1979). Tlpe locality: Hiiwenegg (a Tertiarymelilite nephelinite volcano), Hegau, southwesternGermany. Named after Giovan BattistaAmici (178G1863), inventor of tle Amici lens and microscopeobjectives with a hemispherical front lens.Both type amicite and the only other known example(Khomyakov et al. 7982) include minel Q1. f.t =0.51.0.49.Monoclinic, .I2, a 1O.226(l), b LO.422(L),c 9.884(1) A,B 88.32(2)".The framework is characterized by double crankshaftchains as in gismondine (Alberti &Yezzalni1979).Amicite has tle same framework topology asgismondine. Si,Al and NaK distributions are orderedand lower tle symmetry from topological l4llamd toreal symmetry.I2.

Ammonioleucite

(NII4)[AlSirOr] Z = L6 ANA

IJoi et al. (1986). Tlpe locality: Tatanzawa, Fujioka,Gunma Prefecture, Japan. The name reflects itscomposition and relationship to leucite.Material from tle only known locality containssignificant K. T5i = 0.70.Tetragonal, I41la, a 73.2L4(L), c 13.713(2) A.

Analcime

Na[AlSi2O6].H2O 2=].6Hany Q797, p. 278). Tlpe locality: near Catanes,Cyclopean Isles, Italy (Haiiy, 1801, p. 180-185). Namefrom Greek roots meaning "witlout strength", in

Page 8: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1578 TTIE CANADIAN MINBRALOGIST

allusion to the weak electrical etrects induced by friction.In most analyzed specimens, Na is the only substantialextra-ftamework cation, but analcime forms a continuousseries with pollucite and possibly with wairakite (Seki& Oki 1969, Seki 1971, Cho & Liou 1987). Ts varieswidd 0.594.73 (e.9., Coombs &Whetten 1967).AsSi increases, NaAl decreases and HrO increases.Topological symmetry is cubic, Ia3d.Real symmefyvariants include:cubic, Ia3d, a 13.725 A;tetragonal, I41lacd, a 13.723(1), c 13.686(10) A;a L3.72I(I), c L3.735(l) ANIaz.zi & Galli 1978);tefragonaT, I41la;orthorhombic, Ibca, a 13.733(l), b L3.729(I), c13.712(r) L: a 13.727(2), b 1.13.71.4(2), c B.7a0Q) A.Mun & Galli 1978);monoclinic with 2-fold axis parallel both to pseudo-cubic [100] and [110];triclinic, a 13.6824(5), b L3.7OM(6), c L3.7063(5) A,o 90.158(3)', B 89.569(3)', y 89.543(3)' (Hazen &Finger 1979);and probably trigonal with variable Si,Al order (a.9.,Hazen & Finger 1979, Teertstra et al. 1994).The name applies to Na-dominant composifions withthis framework structure regardless of the degree andpatterns of order.

Barrerite

Nar[AlrSirOtr].6H2O Z=8 STIPassaglia & Pongiluppi (1974,1975). Tlpe locality:Capo hrla, Sardinia, Italy. Named after ProfessorRichard M. Barrer (1910-1996) ef Imperial College,London, for contributions to the chemistry of molecularsieves.Also known from Kuiu Island, Alaska @i Renzo &Gabelica 1997). Tsi =O.77,O.78. The type example hascomposition:(Na:.asKr.oeCao.sM&.rz) [Als.reF% .orSin.72O7).25.78H2O.Orthorhombico Amma ot Arnmm, a L3.643(2),b 18.200(3), c 17.842(3) A (Passaglia & Pongiluppir974).The stucture is similar to that of stilbite and stellerite.but it has different symmetry as a result of extracations, which cause rotational displacements withinthe framework (Galli &Alberti 1975b).

Bellbergite

(KBaSr)zSrzCar(CaNa)a[Al1sSi13072].30H2OZ=L EAB

Riidinger et al. (1993). Tlpe and only known locality:Bellberg (or Bellerberg) volcano, near Mayen, Eifel,Germany. Named after the locality.Ca is overall the dominant extra-framework cation.Tsi = 0.51.Hexagonal, possible space-groups^PQlmmc, P62c, alidP63mc, a 13.244(l), c 15.988(2) A.The framework structure is as for svnthetic zeoliteTMA_EAB.

Bikitaite

LilAlSi2O6l.H2O Z=2 BIK

Hurlbut (1957). Tlpe locality: Bikita, Zimbabwe.Named after the type locality.Tlvo known localities, with the bikitaite having verysimilar ee6p6sitions. Tsi = 0.67.Monoctinicf P2 1, a 8.6L(4), b 4.962(2), c 7.600(a) A,B L14.45(l)'(Kocman et aI.1974).Also triclinic, Pl, a 8.606(1), b 4.953(I), c 7 .599(l) 4,,cr 89.89(2)", B 174.42(2)', y 89.96(2)" (Bissert &Liebau 1986).The framework stucture consists of 5-memberedringslinked by additional tetrahedra Its topological symmetryis P21. The monoclinic P2t variant of Kocman et al. haspartly ordered Si,Al distribution; the triclinic Pl variantof Bissert and Liebau is highly ordered.

Boggsite

CatNa:[AlrqSinOp2].70H2OZ = I B O G

Pluth er al. (L989) and Howard et al. (L990).TYpelocality: Basalt above cliff, Goble Creek, south side oftle Neer Road, 0.2 km nofih of Goble, ColumbiaCounty, Oregon, U.S.A. Named after Robert MaxwellBoggs (father) and Russell Calvin Boggs (son), mineralcollectors in the Pacific Norttrwest.Tlpe boggsite approximates the above formula, withminor Fe, Mg, and K. Boggsite from Mt. Adamson,Antarctica (Galli et al. 1995) approximatesCa6l.{a5K[AlrsSilOp2].70H2O, with minor Fe, Mg, Sr,Ba. T51 = Q.Sl.Orthorhombic, Irnma, a 20.236(2), b 23.798(L),c 12.798(l) A (Ptutl & smirh 1990).Si,Al highly disordered.

Brewsterite (series)

(Sr,Ba)zlAlaSiuO32l. 10H2OZ=L BRE

Brooke (1822). Tlpe locality: Strontian, Argyll,Scotland. Named after Sir David Brewster (1781-1868), Scottish natural philosopher who discoveredlaws of polarization of light in biaxial crystals.Monoclinic, P21lm, P2y or triclinic (Akizuki 1987a,Akizuki et aL.1996).The structure is sheet-like parallel to (010) @errotta &Smith 1964).

Brewsterite-Sr

New name for the original species of the series; Sr isthe most abundant extra-framework cation. T51 in theran9e0.744.75.Monoclinic, 72rlm, a 6.793(2), b 17.573(6), c 7.759(2)A, B 94.54(3)oo for composition (Sr1.a2Baa.arKo.r)

Page 9: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCI.Af,URE FOR ZBOLITE MINERAI.S r579

[AI4.uSirLe5O32].aHzO (Schlenker et al. 1977 a).On optical grounds, possibly triclinic (Akizuki I987a).Refined as triclinic in three separate growth-sectors byAkizuki et aI. (L996).Partly ordered Si,Al distribution.

Brewsterite-Ba

New name; Ba is tle most abundant extra-frameworkcation.Proposed type-example: the Gouverneur TalcCompany's No. 4 wollastonite mine near Harrisville,Lewis County, New York, U.S.A. (Robinson & Grice1993). Also Cerchiara mine, Liguria, Italy (Cabella etal. L993, including structure refinement). Tsi = 0.73,0.74.Monoclinic^, P21lm ot P21, a 6.780(3), b L7.599(9),c 1 .733(2) L, B 94.47 (3)" for type examFle, containingup to 0.85 Ba per 16 O atoms.

Chabazite (series)

(Caos,NaK)alAlaS isO S. 12H29Z=I (trigonal) CHA

Bosc d'Antic (1792), as "chabazie". The source oftheoriginal specimen is unclear. The name is from a word"chabaziono' used for an unknown substance in thestory of Orpheus.Ca-, Na-, and K-dominant species occur in that order offrequency, with Sr and Mg occasionally significant Bamore minor. Ts varies widely, 0.58 to 0.81.Topological symmetry of tle framework, trigonal(R3n), where a = L3.2, c = 15 J A (pseudohexagonalcell). Significan! deviations to triclinic, PI, a * 9.4,b = 9.4, c o 9.4 A, U.= 94o, B * 94",T- 94" (Smith etal. 1964, l,0lllazzr & Galli 1983).Partial ordering leads to the lower symmetry.

Chabazite-Ca

New name for the original and most common species;Cais the most abundant single exfia-framework cation.Other cations vary widely. Tr; in the range 0.58-O.80.a L3.790(5), c 15.0210(4) A, for pseudo-hexagonal cell,with composition (Ca1361.{a6.orlq.20Mg6.02Sre.o:)[Al:.saFes.61Sis.i3O2l'13.16H2O, from Col de Lares' Val diFass4 Italy @assaglia 1970, #L3).

Chabazite-Na

New name; Na is ttre most abundant single extra-framework cation. Other cations vary widely. Ts1 in thenngeO.624.79.Suggested type-locality: biggest "Faraglione" facingAci Trezza, Sicily, Italy (Passaglia 1970, #D.a L3.863(3), c 15.165(3) A, for hexagonal cell, withcomposition (Na3.11K1.65Cax.rrlVlge.66Srs.65) [Ala.53Fes.e1Sir.aoOz].11.47H2O.

Although originally described 4s sqalaining "silexnalumina, and potash" (L6vy 1825), tle nameherschzlitehas often been applied to chabazite mineralsof tabular habit and high Na content. Herscheliteshould no longer be used as a species name.

Chabazite-K

New name; K is the most abundant single extra-frameworkcation. Othercations vary widd T51 intherange 0.6G{.74.Suggested fype-specimen: Tufo Ercolano, Ercolano,Naples, Italy (De Gennaro & Franco L976)'a iz.t+g(z),

" ts.tos(r) A, for hexagonal cell, witl

composition (K2.s6Nan.$Cas.a6Mge.16Sre.e1)[[email protected].

Chiavennite

CaMnlB erSisO r(OlD2l'2H2OZ=4 -{HI

Bondr et al. (1983), Raade et aI. (1983). Tlpe locality:Chiavenna Lombardy, Italy. Named after type locality.The limited data available show up to 0.72 Aland 0.15 B in tetrahedral sites, and significantextra-framework Fe and Na (Raade et al. 1983,Langhof & Holstam 1994). Ts1 in the range 0.63 to 0.68.Orthorhombic, Pnab, a 8.729(5), b 31'.326(1'l),c 4.903Q) A, (tazzob et al. 1995).A CaMnberyllosilicate with an intemrpted frameworkof four-connected [SiOa] and tbree-connected [BeOa]tetrahedra.

ClinoPtilolite (series)

(NaK,Caos,Sro.s,B aos,Mgos)e[Al6si30o72]'-20ILOZ= L I{EU

Schaller (1923, 1932). Tlpe locality: in d6semFosedbasalt at a high point on ridge running east fromHoodoo Mountain, Wyomin g, U.S.A. ("crystallizedmordenite" of Pirsson 1891). The name reflects itsinclined extinction and supposed similarity incomposition to "ptilolite" (mordenite). Ptilo-, fromGreek, alludes to the downy, finely fibrous nature ofthat mineral.The cation content is highly variable. Ca-, Na-, andK-dominant compositions are known, and Sr, Ba,and Mg are in some cases substantial. Feh and Fek arepossible constituents. In Pirsson's (1890) analysis, K isthe most abundant single cation by a small margin.Clinoptilolite-K is therefore taken as the type species ofthe series. Tn in the range 0.8G{.84.Minerals with the same framework topology but withTsi < 0.80, Si/Al < 4.0 are classified as heulandite, withwhich clinoptilolite forms a continuous series.Monoclinic, CArn,or A,or Cm.Structure refinements by Alberti (I975a) andArmbruster (1993) demonstrate variations in extra-

Page 10: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1580

framework cation sites compared with heulanditeand as a function of the extent of dehydration.

Clinoptilolite-K

New name for tle original species; K is the mostabundant single sx66-fram.\ /ork cation. A moderatelyK-rich clinoptilolite-K was referred to as "potassiumclinoptilolite'by Minato & Takano (1.964). Ts in therange 0.8G{.83.Monoclinic, AJm. C2, ot Cm., a L7 .688(1,6), b L7 .902(9),c 7.409(7) A, n tto.solt)o, for (I!.zzNao.rcao.*Sre3TMge.,eFee.orlr4ns.sJ[A16., 2Si2e ssO'f,.nH2O, froman off-shore borehole, Japan (Ogrhara & Iijima 1990).

Clinoptilolite-Na

New name; Na is tle most abundant single extra-framework cation. Other cations vary widely. Ts1 in therange 0.80--0.84.Suggested type-example: Barstow Formation, about1.6 km east of mouth of Owl Canyon, San BernardinoCounty, California U.S.A., USGS Lab. no. D100594(Sheppard & Gude 1969a).Monoclinic, QAm, C2, or Crn, a 17 .627(4), b 17 .955(4),c 7.399(4) 4,, n ne .ZO1Z). (Boles 1972), for typematerial of Sheppard & Gude (L969a), (Na'1K1..,Ca66tBao'Mgo,,Mno.o,)[Al66rFq .6Si,p,nO7.].20.4L12O.

Clinoptilolite-Ca

New name; Ca is the most abundant single extra-framework cation. Other cations vary widely. Ts1 in therange 0.80-0.84.Suggested type-specimen: Kuruma Pass, FukushimaPrefecture, Japan (Koyama & Tak6uchi 1977).\/f6a6s1inis,^()1t771, C2, or Cm, a 17 .660(4), b L7 .963(5),c 7.4O0(3) A, B L1"6.47(3)o based on C2"/m (Koyama &Tak6uchi 1,977), for Kuruma Pass specimen,(Nar.ruKr.e5Ca,.roMgs.17) [A.16.7 2Si,2e.6Or").23.7H2O.

Cowlesite

Ca[AlrSi3O,o].5.3HrO Z=52 @Acodenotassigned)Wise & Tschernich (1975). Tlpe locality: road cuts0.65 km northwest of Goble, Columbia County,Oregon, U.S.A. Named after John Cowles of Rainier,Oregono amateur mineralogist.Minor substitution for Ca by Na and lesser K, Mg, Sr,B4 Fe. To in the range 0.60--0.62 (Yezzalitr et al. 1992).Orthorhombic, P222tor Pmm.m, Pmm2, Y2wn, Y222(Nawaz L9U), a 23.249(5), b 30.629 (3), c 2a.96a@) A(Artioli et al. 1987).Structure and degree of order of framework cationshave not been determined.

Dachiardite (series)

(Caj5,Na"K)a-5 [AI4-5Si20-r eo4s]. 1 3HrOZ=L DAC

D'Achiardi (1906). Dpe locality: San Piero in Campo,Elba, Italy. Named by the author in memory of hisfather, Antonio D'Achiardi (1839-1902), frst fuIlprofessor of Mineralogy at the University of Pisa.May contain minor Cs and Sr. Ts1 in the range 0.7H.86.Monoclinic, topological symmetry Alm, realsymmetry Crn.The structure consists of complex chains of5-membered rings cross-linked by 4-membered rings(Gottardi & Meier 1963), but with complexities thatcommonly resuhin diffrse and streaked X-ray-diffractionmaxima (Quartieri et aL.7990).

Dachiardlte-Ca

New name for the original species of the series; Ca isthe most abundant extra-framework cation. Dachiarditefrom the type locality contains 0.12 Cs atoms performula vnut (apfu) (Bonardi 1979). Tsi in tle range0.7H.83.14e16slinic, topological symmetry C2lmo real symmetyCm. a 1"8.676, b 7.5L8, c 10.246 A, B 107.87o, fortlte composition (Car.saNao.azlG.e2Csj.11Sre.12Baa.j1)[Al4.s6Fe0.02sir8 .s6O asl.l2.56E2O from tle type localityNezz,abnL984).Partly ordered distribution of Si,Al.

Dachiardite-Na

New name; Na is the most abundant exba-frameworkcation.Suggested type-example: Alpe di Siusi, Bolzano, Italy(Alberti L975b).Available analytical results for material from sevenlocalities, e.9., Bonardi et al. (198L) show considerablevariation in Na : K : Ca proportions. Tsi in the range0.81-0.86.Monoclinic, a 18.647(7), b 7.506(4), c 1,0.296@) L,B I 08.37(3)', for (Na2.5eKn.r1Caa.53Mge.eaBao.or) [AI+.zzFe6.11Si1e.61Oasl.13.43HzO from the type locality(Alberti L975b).Diffrrse diffraction-spots indicate disorder.

Edingtonite

Ba[AlzSi:Oro].4ItO Z=2 EDIHaidinger (1825). Tlpe locality: Kilpatrick Hills, nearGlasgow Scotland. Named after a Mr. Edington ofGlasgow, in whose collection Haidinger found the mineral.Small amounts of K, Na and Ca may replace Ba. T5i inthe range 0.59-0.61.Orthorhombic, F2t2t2b a 9.550(10), b 9.665(10),c 6.523(5) A @Ohlet mine, Westergotland, Sweden)(Galli 1976).

Page 11: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCLATTJRE FOR 4OLITE MINERAI,S 1581

Also tetragonal, P42rm, a9.584(5), c 6.524(3) A (OnKilpatrick, near Glasgow, Scotland) @Iazzi et al.1984).From optical evidence, Akizuki (1986) suggested that atriclinic true symmetry also is possible.The structure is similar to that of natrolite, but with adistinctive slessJinking of the chains (Taylor &Jackson 7933, Mazzi et al. 1984). Examples oforthorhombic edingtonite have nearly perfect (Si,Al)order. The tetragonal form is disordered, and availableanalytical results show that slightly more Ba has beenreplaced by other ions.

Eptutilbite

(CaNaJlAlzStAOd.4H2OZ=4 EPI

Rose (1826). Tlpe localities: "Iceland" and "FartieIslands". Named from Greek epi in the sense of near,and stilbite, from its supposed similarity to the latter.Na/(Na + Ca) varies from about 0.1 to 0.3, with minorK and Ba (e.S- CaIi & Rinaldi 1974). Tsi in the range0.724.77.Monoclinic, C2, a 9.LOL(2), b 17.74L(L), c 10.226(l)A, B 124.66(2)o (Teigarhorn, Iceland: Nberti et al.1985), ortriclinie, CI, a 9.053(L), b L7.738(3), c L0.209(I) 4.,o 89.95(1)', I 124.58(1)', y 90.00(1)' (Gibelsbach,Valais, Switzerland: Yang & Armbruster 1996).The structural framework belongs to tle mordenitegroup (Gottardi & Gatli 1985). Earlier work suggestedspace-group symmetry C2J m @elr.otta L967 ). Albem etal. (L985) proposed a domain structure involvingacentric configurations of tenahedra, and space groupC2. Yaq & Armbruster (1996) indicated that theproposed domains can be modeled by (010) disordercaused by a local mirror plane, and tlat increasedpartial order of Si,Al leads to fisliniq symmetry.

Erionite (series)

Kr(NaCao j)s [AlroSi26O72].3 0H2OZ = 7

Eakle (1898). Tlpe locality: Durkee, Oregon, U.S.A.,in rhyolitic, welded ash-flow tuff. Name from Greekroot meaning wool, in refergnce to its alpearance.Substantial amounts of any or all of Ca, Na and K andsubordinate Mg may be present, and there is evidencethat frace Fe may enter tetrahedral and extra-frameworksites. Eakle's (1898) analysis of type erionite shows Naas the most abundant extra-framework cation; Passagliaet al. (L998) found Ca to be the most abundant in atype-locality specimen. Ts1 in the range-0.68-{.79.Hexagonal, PQlmmc, a I3.I5, c L5.02 A (Kawahara &Cwien 1969).The sfructure is related to those of offretite, with whichit may form intergrowths with stacking faults(Schlenker er al. 1977b), and levyne, on which it forrns

epitactic growths (Passaglia et al. L998). The threeminerals have4-, 6- and 8-memberedrings. They differin the stacking of single and double Gmembered rings,resulting in different c dimensions and differently sizedand shaped cages. Si,Al disordered.-

Erionite-Na

New name; Na is the most abundant exfta-frameworkcation.Proposed type-example: Cady Mountains, Californi4U.S.A. (Sheppwdet aL.1965). Tsl in the range0.744.79.For tho rypJspecimen, a B.rI4Q), c tS.OaS(+) A,composition (Na5.5eK2.ssCax.11Mgq.1sFe6.0, [AL.57Si2s.2?0721.24.6OH2O (Sheppard & Gude L969b).

Erionite-K

New name: K is the most abundant extra-frameworkcation.Proposed type-example: Rome, Oregon, U.S.A. inwhich K makes up 58Vo of extra-framework cations;significant Na, Ca, and Mg also are present (Eberly1964). Tsi in the range O.74F4.79.For a specimenaom Ortenberg, Germany, a I3.227(L),c 15.075(3) A, (K3.32Nas1Ca".*Mgs.o6Bao.oJ[A]msSi2r.6,O721.31.99H2O @assaglia et al. 1998).

Erionite-Ca

New name; Ca is the most abundant extra-frameworkcation.Proposed type-example: Maz{ Niigata Prefecture,Japan (Harada et al. 1967). Ts in the range 0.68-0.79.For thi rype exnmplet a ].3-.433{1), c fS.OSt(Z) A;(Ca2.2sK1.5aNa6.e5Mge.s6)[Als.sSi26.eeO72].3 1.35H2O(Haxaala et al. L967).

Faujasite (series)

(Na Caos,M&.5,K),[Al,Si 12-"O ul. L 6HzO2=16 FAU

Damour (1842). Tlpe locality: Sasbach, Kaiserstuhl,Germany. Named after Barth6l6my Faujas de SaintFond. noted for his work on extinct volcanoes.Major amounts of Na, Ca and Mg are commonly presentand in some cases, K; minor Sr is also reported. Theratio Si : Al also varies; Tsl in the range 0.68-{.74, withone record of 0.64. In most samples analyzed,.r in theabove generalized formula is in the range 3.2-3.8, withone record of 4.4 (Rinaldi et al. 1975a, Wise 1982,Ibrahim & Hdl 1995).Cnbic, Fd3m, a 24.65 A (material from Sasbach:BergerhoffetaL 1958).The framework structure is very open, with completesodalite-type cages and with very large cavities havingL2-membered ring openings. Up to 260 molecules ofI{2O can be accommodated per unit cell @ergerhoff eral. L958, Baur 19@).

Page 12: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

r582

f,'aujasite-Na

New name; Na is t}le most abundant extra-frameworkcation, as it is in the original (incomplete) and mostsubsequent analyses of samples from the type locality,Sasbach, Kaisersfubl, and some other localities. Ts1 inthe range 0.70_0..74, with one report of O.64. -Reported values of a range from 24.638(3) A (Wise1982) to A.728(2) A (Ibrahim & Hall 1995).

Faujasite-Ca

New name; Ca is the most abundant extra-frameworkcation. Reported Tsi in the range 0.6H.73. Proposedtype-example: drill core from Haselborn nearIlbeshausen, Vogelsberg, Hessen, Germany (Wise 1982),composition (Car.azNfu5oVIBogIG.onXAL.83Si8.reo24l'nHzO,Z=L6.Reported values of a:24.714(4) and 24.733(3) A (JabalHanoun, Jordan: Ibrahim & Hall 1995).

Faqiasite-Mg

New name; Mg is the most abundant extra-frameworkcation.Proposed type (and only) example: 'oOld (museum)sample" (# 32, Genfh Collection, Pennsylvania StateUniversity) from Sasbach, Kaiserstuhl, Germany (anal.#15, Rinaldi et al. 1975a), composition(Mgrs:Caa.Naz.0K6.4XAl56Si 13? Q 3sal.nH2O, Z = L.

f,'errierite (series)

(K,Na,Mgs5,Caos)6[A16Si30Ozr].8HzOZ=]. FER

Graham (1918). Tlpe locality: Kamloops Lake, BritishColumbia Canada. Named after Dr. Walter F. Ferrier,mineralogist, mining engineer, and one-time member ofthe Geological Survey ofCanada who first collected it.Substantial arnounts of any or all of Mg, K Nq and Ca,may be presenl and smaller amounts of Fe, Ba, and Sr.Ts1 in the range 0.8H.88.Statistical symmetry, ortlorhombic, Imrnm:, truesymmetries orthorhombico Pnnm, a 19.23, b L4.t5,c 7.5O A (Alberti & Sabelli 19^87), and monoclinic,Y2/n, a 18.89, b L4.78, c 7.47 A, B 90.0' (Gramlich-Meier et al. L985).The structure was first determined by Vaughan (1966).Framework Si,Al partially ordered (Alberti & SabelliL987).

f,'errierite-Mg

New name for the original member of the series; Mg isthe most abundant single extra-framework cation.Substantial extra-framework Na, K, and lesser Cacommonly present. T51 in the range 0.80-0.84.True symme6y orthorhombic, Pnnmo a 19.23L(2),

b 1,4.145(2), c 7 .499(I) A for specimen from Monastir,Sardinia, of composition (Mgr.orKt.rsl.{ao.reCaos,Srs.1aBao.0r[Al6.6eSi2e.eaO72].17.86H2O (Alberti &Sabelli 1981.

X'errierite-K

New name; K is the most abundant single extra-framework cation.Proposed type-example: Santa Monica MountainsoCalifornia, U.S.A., composition (l(r*Na1.1alvlgo .roCao.ro)[Al5.00Si3mrO72].aH2O (Wise & Tschernich 1976, #3).T.t in the range 0.81-0.87.Orthorhombic, a 18973Q), b L4.L40(6), c 7.478(4) Lfor type specimen.

Ferrierite-Na

New name; Na is the most abundant single extra-framework cation.Proposed type-example: Altoon4 Washington, U.S.A.,composition (1.{a:.oe&.s'Mge jsCa6.s5Srs.6B q.d [Al5S13 rO72l.18HrO (Wise & Tschernich 1976, #L).T31 in the range 0.85-0.88.Monoclinic, Y2rln, a 18.886(9), b 14.182(6), c 7.470(5)A, B 90.0(1)' (Gramlich-Meier et al. 1985, for aspecimen from Altoona, Washington).

Garronitr

NaCa2.5 [A16Si nO.e]. | 4 H2OZ= | GIS

Walker (1962). Tlpe locality: slopes of GlenariffValley, County Antrim, Northern keland. Named afterthe Garron Plateau, where the type locality is sited.Cal(Na + K) is variable, but Ca predominates. Tlpe-locality garronite has about l.3Naapfu, some others have(Na + K) < O.2 apfu. H2O in the range 13.0-14.0molecules per formula unit. \1 in the range 0.60-0.65.The crystal_structure has been refined in" tetragonalsy mmety, i4m2, a 9.9266(2), c I 0. 3 03 I (3 ) A, by Artioli(1992), and Na-free synthetic garronite has been refinednI4/a, a9.873(1), c 10.288(1) A, by Schriipfer & Joswig(1997). Orthorhombic symmetry has been proposed onthe basis of X-ray diftaction witi twinned crystals(Nawaz 1983) and crystal morphology (Howard 1994).The framework topology is the same as forgismondine, but Si andAl are essentially disordered.The different space-group symmetry (tutioli L992) isassociated with disorder and the presence of significantNa. Gottardi &Alberti (1974) proposed partial orderingsubsequent to growth to explain fwin domains.

Gaultite

Naa[Zn2Si7O1d.5H2O Z=8 VSVErcit & Van Velthuizen (L994).Iype locality: MontSaint-Hilaire, Quebec, Canada. Named after RobertA.

Page 13: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCLATURE FOR reOLITE MINERALS 1583

Gault (b. 1943), mineralogist at the Canadian Museumof Nature, Ottawao Ontario, Canada.No other elements detected in the one reportedexample; Tsi = 0.78.Orthorhombico Fkld, a L0.2IL(3), b 39.88(2),c 10.304(4) A.The zincosilicate framework of tetrahedra ischaracterized by stacked sheets of edge-sharing 4- and8-membered rings. The sheets are cross-linked bytetrahedra. Gaultite is isostructural with syntheticzeolite VPI-7 and similar in structure to lovdarite Grcit& Van Velthuizen 1994).

Gismondine

Ca[AlzSizOs].4.5HrO Z=4 GISvon Leonhard (in footnote, 1817), renamingoozeagonitd' of Gismondi (1817). Tlpe locality: Capo diBoveo near Rome, Italy. Named after Cado GiuseppeGismondi (1762-l8U), lecturer in Mineralogy inRome.(K + Na) does not exceed 0.12 apfu with K less tlan0.08 apfu; analyses showing high K result fromintergrown phillipsite. Minor Sr may be present; Ts inthe range 0.514.54 ('lezzalni & Oberti 1984). HzO isslightly variable (4.M.5 molecules per formula unit)because of mixed 6- and 7-coordination of Ca (Artioliet al.1986b).\{easeliniso originaily refined tn P2/a by Fischer &Schramm (1970); cell converted to standard P21lcs_econd setting is a 10.023(3), b 10.61.6(5), c 9.843(15)A, B 92.42(25)". Also refined (t'wo samples) by Rinaldi&yezzalini (1985).

The framework topology is based on crankshaft chainsof 4-membered rings as in feldspars, connected inULIDD configuration.Si,Al are strictly ordered.

Gmelinite-Na

New name for the most coulmon species of the series.I1 occurs in at least one of the g@elinite type-localities(Montecchio Maggrore). The Ca content is commonlysubstantial, K is minor, and Sr is significant in a fewsamples analyzed. Ts1 in the range 0.65-0.71.Hexagonal, P6y'mmc, a 1.3.756(5), c 10.048(5) A(Gallt et aL L982), for near-end-member materialfrom Queensland, Australiao of composition(Nar.utCao.*&r6)[AL.41Si16.4eO4s].21.5 1H2O @assagliaet al. t978a).

Gmelinite-Ca

New name for a species that also occurs in at least oneof the type localities (Montecchio Maggiore). Ca is themost abundant single exta-framework cation. Signifi-cant to substantial Sr and Na, minor K. \1in the range0.68-{.70.Hexagonal, PQlrnmc, a 13.800(5), c 9.964(5) A (Galliet al. 1982), from Montecchio Maggiore, of compositron(Ca2.s6Sr1.35Na0.78K0.r 1) [Al?.s2Si 16.21Oas]'2 3.23H2O@assaglia et al. 1978a).

Gmelinite-K

New name; K is the most abundant single extra-framework cation. Proposed type-example: FaraVicentina" Vic enz4 Italy, composition (K2.72Ca1.67Sre3eNao.uzMgo.rJ[Alr.7eSi16.32Oa3].23.52H20 (YezzalTm etal. 1.990\. Also known from the Kola Peninsula(Malinovskii 1984).Hexagonal, P6zlmmc, a L3.62I(3), c L0.254(l) A.

Gobbinsite

Na5[Al5Si11Orzf.L2LlzO Z=l GIS

Nawaz & Malone (1982). $pe locality: basalt cliffs

Gmelinite (series) near Hills Port, soutl of the Gobbins area, CountyAntrim, Nortlem Ireland. Named after the locality.

(Naz,Ca,K)a[ALSi16oa3].22H2o Na: Ca: Mg: Kvariable, withNagreatlypredominant

2=L GMF. Ca < 0'6 apfu'-.Reports of high K are ascribed to

Brewster (1825a). rlpe rocariry, th" ou*" *i ffi%?fjffi;'jilffih&X?,#fl?*;ffirffproposed for minerals occuning both at Little Deer Orthorhombic, pmn2y a 10.108(1), b 9.766(L),Park, Glena:m, County Antrim, Northern keland, and c 1,0.I7L(I) A for the anhydrous compositionat Montecchio Maggrore, Yrcenz4- ltaly. Named after (Nar.roKr.r,Ca".5e)[Al6.17sie.$o32] from Tlvo-MouthChristian Gottlob Gmelin, Professor of Chemistry, Cav",-Countyemirn,Northemlreland(McCuskereraLUniversity ofT0bingen. 1985); a 1O:1027(S), b 9.8016(5), c 10.1682(6) A forNa-dominant members are the most common. \1 in the (Na.43Cao.6)[Al5.6Siro.nOr2].12HrO from Magheramornerange 0.65-{.72. quarry, Larne, Northern heland (Artioli & Foy 1994).Hexagonal, PQlmmc, a 13.62-t3.88, c 9.97-1O.25 A. The framework topology is the same as for gismondineThe stucture is similar to that of chabazite, with which and is based on cra:rksha:ft chains of 4-membered rings,it is commonly intergrown (Sfrunz 1956), but gmelinite as in feldspars. Distortion from tetragonal topologicalhas a different stacking of the double 6-membered symmetry results from the arrangement of cations inrings @scher 1966). Si,Al are disordered. the channels. Si,Al in the fra.rnework are disordered.

Page 14: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1584

Gonnardite

(NaCa)o+[(Al,Si)2oO4o]. 1 2H2OZ = I

TTIE CANADIAN MINERALOGIST

NATLacroix (1896). Tlpe locality: Chaux de Bergonne,Gignat Puy-de-D6me, France. Named after FerdinandGonnard. who had earlier described the material asoomesole" (= thomsonite).Forms an extensive substitution serieso commonlyapproximating Na3-3,Ca2,[A\*"Si12-Oa6].12H2O (afterRoss el aL 1992), with minor Feh, Mg, Bq Sr, and K.Ts; in the range 0.52-{.59 (or O.524.62 if tetranatrolite= gonnardite).Tefragonal, IZd, a L3.2L(l), c 6.622(4) A for materialfrom Tvedalen, Langesund, Norway, of composition(Nat.az&.orCar jo) [A1e.22Sir0.73O aa]. L2.37H2O @Iazzi etal. 1986).The structure is similar to that of natrolite. but withSi,Al disordered, and usually with significant tosubstantial Ca (Mazzi et al. L986, Artioli & TorresSalvador 1991,Alberti et al. L995).

Goosecreekite

Ca[Al2Si6O16].5H2O Z=2 GOODunn et al. (1980). Tlpe locality: Goose Creek quarry,lnudoun County, Virginia" U.S.A. Naned afterthe locality.Results ofthe single analysis available conform closelyto the formula given, with no other elements detected.Tsi = 0.75.Monoclinic, P2r, a7 .4AL(3), b L7 .439(6), c 7 .293Q) A,B L05.M(4)" @ouse & Peacor 1986).The framework consists of 4-, 6-, and 8-memberedrings that link to form layers parallel to (010), withsome similarities to the brewsterite structure. Si,Al arenearly perfectly ordered @ouse & Peacor 1986).

Gottardiifs

Na:IUg:Caj [Al 1 eSil 1rO2r2].93H2OZ= l NES

Alberti et al. (L996), Galli et al. (L996). Mt. Adamson,Victoria Land, Antarctica. Named after ProfessorGlauco Gottardi (1928-1988), University of ModenAin recognition of his pioneering work on the structureand crystal chemistry of natural zeolites.Known from the type locality only, with compositionapproximating the above simplified formula; minsl [1,and very high Si. Ts = 0.86.Orthorhombic, topological symmefr'y Fmmmo realsymmetry Cmca, a 13.698Q), b 25.213 Q), c 22.660(2)A (Alberti et al.1996).The framework topology is the same as for thesynthetic zeolite NU-87, which, however, hasmonoclinic symmetry, P21lc. Some Si,Al orderis probable.

Harmotome

@an5,Caa5,K,Na)5[A15Si11O32]. L2H2OZ=T PHI

Haiy (1801, p. 191-195), renaming andreasbergolite,also known as andr6olite, of Delam6therie(1795,p.393).Tlpe locality: Andreasberg, Harz, Germany. Namedfrom Greek words for a'Joint'' and "to cut'', in allusionto a tendency to split alongjunctions (twin planes).

Ba is tle most abundant extra-framework cation.Harmotome forms a continuous series withphillipsite-Ca. The name hannotorne predatesphillipsite; on grounds of history and usage, bothare retained in spite of Rule I of the present report. Tsiin the range 0.68-{.71 (e.g., Cern! et al. 1977).Monoclinico refined in P21lm, but on piezoelectricand optical grounds, tle true symmeft'y may benoncentrosyrnmetric and triclinic, Pl (e.5., Akizuki1985, Stuckenschmidt- et al. L990), a 9.879(2),b L4.139(2), c 8.693Q) A, B 124.81(1)o for @a1.sCan.*IG.r) [Alr.uoSi t peO 3). L2H"O fr om Andreasber g, Harz(Rinaldi et aI. L974).The structure is the same as for phillipsite, with little orno Si.Al order.

Heulandite (series)

(Can5,Sre5,B a6s,Mgo.s.Na K) sl$Siy1O 7,1. *).41J',;9

Z= I IIEUBrooke (L822). Tlpe locality: none; the name wasgiven to the more distinctly monoclinic mineralspreviously known as stilbite. Named after HenryHeuland, English mineral collector.The cation content is higbly variable. Ca-, Na-, K-, andSr-dominant compositions are lcnowno and Ba and Mgare in some cases substantial. Tsi in the range 0.71 to0.80. Minerals with the same frarnework topology, butwith T51 > 0.80, Si/Al > 4.O, are distinguished asclinoptilolite.Monoclinic, with highest possible topological symmetryCAm (I2lm). Cm ard C2 also have been suggested.The sheet-like strucfure was solved by Merkle &Slaughter (1968). There is partial order of Si,Al.

Heulandite-Ca

New name for the most corlmon species of the series,and that deduced from results of most older analyses.Ca is the most abundant single extra-framework cation.T51 in the range 0.71-0.80.Monoclinic, C2lrn, Crn, or C2, a L7.7I8(7),b 17.897(5), c 7.428(2) A, B 116.42(2)" from FariieIslands, composition (Ca357Sre.e5Ba6.66Mg.61Na1slft .a3)lAle3?Si26.70O721.26.02H2O (Ts = 0.74) (Nbertr 1972).

Page 15: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RFCOMMEI.IDED NOMENCLATURE FOR ZEOLITE MINERALS 1585

Heulandite-Sr

New name; Sr is the most abundant single extra-framework cation.One known example: QamFegli, Eastern Ligurian Framework of Si,Al tetrahedra with channels along cophiolites, Italy, of composition (Sr2.1eCa1.76Ban.1a containing B(OH)4 tetrahedra and K, Cl (Malin6vsliiMgs.62Nae.ffi.22)[A1e.resi26.e4O.,2f.nH2O, Tsr = 0.75 & Belov 1980). Considered by Smitl (1988) to be an(Lucchetti et al.L982). anhydrous analogue ofthe edingtonite strucfure-fypeMorlocLtric,-CUn4 Cm, or C2' a L7.655(5),b 17.877(5), EDI.c 7.396(5) A" B 116.65".

Known from two localities in the Khibina massif. bothwith compositions close to the above formula @ekov &Chukanov 1996). Tst values are 0.59, 0.61. ̂Tetagonal, P42p, a 9.851(5), c 13.060(5) A.

Heulandite-Na

New name; Na is the most abundant single extra-framework cation.Proposed type-example: Challis, Idaho, U.S.A., U.S.National Museum #9451213 @oss & Shannon 1924,Boles L972, #6').Monoclinic, C2)m, Cmo ot C2, a 17.670(4),b 17.982(4),c 7.4O4(2) A, B 116.40(2)o @oles 7972) for thetype example, of composition (Na3.esCar,rl(n:s)[AL.*5!46O71.27.74HO, T't = 0.78.

Heulandite-K

New name; K is the most abundant single extra-framework cation.Proposed type-example: Albero Bassi, Vicenza, Italy@assaglia 1969 a), composition (K2.asNaoj6Ca1.ooMgo.*Sre5paj.p)[Ale.6Fq56Si"o.cO 7,].25.84H2O, Ts1 = 0.73.Monoclilis, C2/rn, Cm" or A, a L7.498, b 17.816,c7.529 A, B 116.07'.A close approach to end-member Ke[AleSi27O72].zH2Ohas been reported by N/rnbere (1990).

Hsianghualite

Li2Ca3[BgSiO,2]F2 Z=8 ANAHtang et al. (1958). Tlpe locality unclear, in metanor-phosed Devonian Limestone, Hunan Provinceo China.The name is from a Chinese word for fragrant flower.Known from the original locality only. MnorAl, Fe,Mg, Na, and L.28Vo loss on ignition reported @eus1960). \t = 0.48.Ctbic,I2r3, a 12.864(2) 4,.Has an analcime-type structure, with tetrahedral sitesoccupied alternately by Si and Be. Extra-frameworkCa, Li, and F ions @astsvetaeva et al. L99L).

Katborsite

K6[ALSi6Om]B(OI{)4CIZ=2 ?EDI

Khomyakov er aL (1980), Malinovskii & Belov (1980).Tlpe locality: rischorrite pegmatite, Mt. Rasvumchorr,Khibina alkaline massif, Kola Peninsula, Russia. Thename alludes to the composition.

Laumontite

Caa[AlsSir6Oas].L8HzO Z = L LAUAs lomonite, Jameson (1805), who credits tle name toWerner without specifi.c reference; spelling shanged tolaumonite by Haiiy (1809), and to laumontite by vonkonhard (1821). Named after Gillet de Laumont whocollected material described as "z€ohthe efflorescente"by Haiiy (1801, p. 4I0-4L2), from lead mines ofHuelgoet, Brittany. The later spellings were applied tothis material, and the Huelgodt mines are effectivelythe type locality.Always Ca-dominant, witl minor (K,Na). "Primaryleonhardite" of Fersman (1908) is laumontite withapproximately 1.5 Ca replaced by 3(K,Na) apfu andreduced H2O. Tsi in the range 0.M.7O.Monoclinic, C2lm (although reported to !epyroelectric), a 14.845(9), b 13.167 (2), c 7.5414(8) A,B 1L0.34(2)" (Nasik,India: Artioli & Stnil 1993).Except where unusually rich in (KJ.{a), reversibly losesca. 4H2O at low humidity at room temperature andpressure to form fhe variety termed "leonhardite" (e.9.,Fersman 1908, Armbruster & Kohler 1992); structurerefined by Bartl (1970) and others. Si,Al in the frame-work is highly ordered.

Leucite

KlAlsi2o6] z = 1 6 ANABlumenbachs (I79I), who attributed tle name toWerner, who had previously described the mineral as'lrhite garnet". Tlpe locality: Vesuvius, Italy. Namedfrom Greek, msnning white, in reference to color.Minor substitution of Na for K at low temperatures, andSi in excess of that in the ideal formula, are commonlyreportd also significant Fe9'. Ts1 i1 the range 0.66-O.69.Tefragonal, I41la, a L3.09, c 13.75 A, @laz.zl et aI. 1976).At ordinary temperatures, leucile is invariably finelytwinnsd as a result of a displacive inversion from acubic polymorph with the structure of analcime, spacegrotp la3d, apparently stable above 630'C (Wyart1938, Peacor 1968). Heaney & Veblen (1990) notedthat high leucite inverts to lower symmetry attemperatures between 600" and 750oC depending onthe sample, and that there is a tetragonal, metricallycubic form intermediate between high (cubic) and low(tetragonal) forms.

Page 16: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1586 TIIE CANADIAN MINERALOGIST

Levyne (series) The structure consists of a tiree-dimensionalframework of Si (with minor Al) and Be tetrahedra.

(Caos,Na"K)6tAl6Sir2O36l.17H2O It contains three-membered rings, made possibleZ=3 LEV by the presence of Be instead of Si in one of the

Brewster (1825b). Tlpe locality: Dalsnypen, Fariie teftahedra.Islands. Named after Armand I-Evy (1794-1.84I),mathematician and crystallographer, Universit6 de MaricopaiteParis.Extra-framework cations range from stronglyCa-dominant to strongly Na-dominant, witlh minorK and, in some cases, mi1e1 Sr or Ba; Si:Al isalso variable (Galli et al. L98I). T5i in tle range0.624.70.Hexagonal, Rbn, a 13.32-13.43, c 22.66-23.01 A.The stacking 61 single and double 6-membered ringsdiffers from that in the related shuctures of erionite andoffretite (Merlino et aI. L975).

Levyne-Ca

New na:ne for the original member of the series; Ca isthe most abundant extra-framework cation. Typelocality: Dalsnypen, Farbe Islands. Material closelyapproaching end-member Car[A16SirrO36].L7H2O hasbeen reported by England & Ostwald (1979) from nearMeriwa, New South Wales, Australia. \1 in the rangeo.624.7A.Hexagonal, frmo a 13.338(4), c 23.014(9) A for com-position (Caz.rsl.{ao.65lq.2o) [Al6jlsir.6eO36]. 1 6.66H2Ofrom near the Nurri to Orroli road, Nuora, Sardinia@assaglia et aL.7974, Merlino et aI. 1975).

Levyne-Na

New name; Na is the most abundanl exfra-frameworkcation.Proposed type-example: Chojabaru, NagasakiPrefecture, Japan (Mizota et al. 1974). T5i in the range0.65-{.68.Hexagonal, frm,a 13.330(5), c22.684(D A.for(Nar.ealqjeCao.rglvlgo.oJ[Al6$Si11.?ro36] (lllizota et aI.1974).

Lovdarite

IlNap[BqSi4O?r]. 1 8HrOZ= l LOV

Men'shikov et al. (1973). Ilpe locality: alkalinepegmatites on Mt. Karnasurt, Lovozero nlkalinemassif, Kola Peninsul4 Russia. Name means 'oa gifl ofLovozero".In the type and only known occurrence, approximafely1 Al atom substitutes for Si in the above structure-derived formula, with introduction of additionalexfra-frarneworkNa and Ca. Ts1 = Q.JJ.Orthorhombic, Pmaz, but contains b-centered domainsin which a is doubled; a 39.576(I), b 6.93O8(2), c7 .L526(3) A (Merlino 1990).

(PbCa)[AluSir6(O,O]I)1e6l.n(II2O,QH), n - 32

Z=1 Structure closelyrelated to MoR

Peasor et al. (1988). Tlpe locality: Moon Anchor mine,near Tonopah, Maricopa County, Aizona, U.S.A.Named after the locality.Only one known occurrence. Tsr = 0.76.Orthorhombic, Cm2m (psetdo-Cmcm), a 19.434(2),b 19.702(2), c 7.538(1) A @ouse &Peacot 1994).Has an intemrpted, mordenite-like framework. Pbatoms form Pb4(O,OH)4 clusters with Pb4 tetrahedrawithin channels (Rouse &Peacor 1994).

lV,Iazrite

@Igz.sKrCar J [Al10Si26O72].3 0H2OZ=L MAZ

Galltr et al. (L974). Tlpe locality: in olivine basalt neartop of Mont Semiol, south slope, near Montbrison,Loire, France. Named after Fiorenzo Mazzi, hofessorof Mineralogy at the University of Pavia" Itaty.A new chemical analysis fromthe fype and only knownlocality (G. Vezzalini, pers. commnn., L996) gives theabove forrnula (cf Rinaldi et al. 1975b).Tsi=0:72.Hexagonal, P6y'nmc, a 18.392 (8), c 7.646(2) A.The framework is characterized by stacked gmelinite-type cages (Galli 1975), witl evidence for limited Si,Alorder (Alberti &Yezzalim 1981b).

Merlinoite

&CadAlgSixOsl.22HzOZ= l MER

Passaglia et al. (1977).Tlpelocality: Cupaello quarryin kalsilite melilitite, near Santa Rufina, Rieti, Italy.Named after Stefano Merlino, Professor ofCrystallography at the University of Pisa.The two available reliable analyses @assaglia eral. L977, Della Ventura et aL L993) show stronglyK-dominant compositions, with significant Ca, andless Na and Ba; T51 in the range 0.66-{.71.Orthorhombico Imrnrn, a L4.lL6(7), b L4.229(6),c9.946(6) A @assaglia et aI.1977).The framework is built of double 8-membered ringslinked with 4-membered rings (Galli et al. L979).T\estructure is related to, but different from, that ofphilliFsite.

Page 17: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCLATURE FOR ZOLITE MINERAI.S

Mesolite

Na16Ca16 [Ala3S i7 20 7,a]. 4H2O

Z = l NATGehlen & Fuchs (1813), as mesolitl, for some varietiesof "mesotype" (mostly natrolite) of Haiiy (1801). Notype localify was given. Fuchs (1816) clarified tledistinctions among natrolite, scolecite, and mesolite,and gave analytical data for mesolite from tle FarijeIslands, Iceland and Tlrol. The name recognizes itscompositional position between natrolite aud scolecite.(Na + K/(Mg + Ca + Sr + Ba) varies from 0.45 to0.52,with K Mg, Sr, Ba very minor (Alberti et al. L982b).Ts1 in the rangeO.59-0.62.Orthorhombic, Fdd2, a I8.4M9(8), b 56.655(6),c 6.5M3(4) A, for material from Poona, India (Artioliet al. L986a).Ordered Si,Al in the framework with one natrolite-likelayer alternating with two scolecite-like layers parallelto (010) (Artioli et aI. t986uRoss et al.1992).

Montesommaite

Ke[AleSirOa].10HzO Z=L MONRouse e/ al. (I99O). Tlpe locality: Pollena, MonteSomma, Vesuvius, Italy. Named after the localify.Minor Na was detected in the one published analyticaldata-set. Tsi = 0.70.Orthorhombic, Fdd2, a = b L0.O99(L), c 17.307 Q) A,(pseudoteftagonal, 14 rl amO.The framework can be constructed by linkiag (100)sheets of five- and eight-membered rings; it has simi-larities to those of merlinoite and the gismondine group(Rouse et aI. 1990).

Mutinaite

Na3Caa[Al1 lSirrO,e].60HrOZ= l MF I

Gal1i et aI. (1997b),Yezza1im et al. (L997b).a}pelocality: Mt. Adamson, Northern Victoria Land,Antarctica. The name is for Mutina the ancient Latinname for Modena Italy.Electron-microprobe analyses of mutinaite from thetype and only known locality show limited departurefrom tle simplified formula, with minor Mg(-0.21 apfu) and K (-0.11, apfu). Very high Si,Tsi = 0.88.Orthorhomblc, Pnma, a 20.223(7), b 20.052(8),c 13.491(5) A.Mutinaite conforms closely in stucture with syntheticzeolite ZSM-5.

Natrolite

Na2[Al2Si3O16).2HzO Z=8 NAT

Klaproth (1803). Tlpe locality: Hohentwiel, Hegau,Baden-Wiirttemberg, Germany. Name from natro- forsodium-bearing.(Na + K/(Mg + Ca + Sr + Ba) varies from 0.97 to 1.00,with K, Mg, Sr, and Ba very mineL T3l in the range0.59-0.62 (Alberti et al. l982b,Ross et al.1992).

Orthorhombic, Fdd2, a 78.272, b 18.613, c 6.593 A(Si"{l highly ordered Dutoitspan, South Africa: Artioliit at. 9\qj a r8.3r9(4), uis.sgs@), c 6.5970) A.(-70Vo Si,N order, Zeilberg, Germany: Hesse 1983).

Si,Al partly to highly ordered (Alberti & Yezzalini1981a, Ross et al. 1992, AJ:bem et al. 1995).

0ffretite

Mordenite caKMg[AlsSi13o36]'16H2o

Z= | OFF

(Na2,c4K)a[A18si4oo%].28H'o s,ffin13rT"9r:Lffi?ji;",?x;.ti ffr;H:lZ = | MOR Albert J.J. Offreg professor in the Facuhy of Sciences,

How (1864). Tlpe locality: shore of Bay of Fundy, !Yo1-Franc-e,-3-5 km east of Morden, King's County, Nova Scotiu, Ca Mg, and K substantial, commonly in proportions

canada. Named after the tocality. approacling I : 1,: 1; N1a s6mmofil/ trace or minor.

rhe carion contenr is variable, with Na/(Na + ca) trffiiffi'hli'33,r} ,-*;f$:}ffi#ffi#typicatly in the range 0.5H.81. Some K Ue, ro

f1 ;;.ffiil "nn|*d,

Cal and Na_dominant variantsand Sr also may be present @assaglia 1975, Passaglii ;;;d,r.treE td"ntificarionproblems, includinget al. 1995).In some elrmpleso K is reporred as tle

o"rrilt*1"**]t* io ,h".*g e'o.eg_nlq.demin4r carion (Thugutt L933,1-n et aI. L99L,Lo & "n;;;;;" 1,'-p-;;2,"a tz.zot(i), c 7.592(2) A forHsieh 1991), potentially justifying the recognition of a ;;6;;tt.;'(Mg,*Cuo.rl!.rrSrs.61Bao.e1)[Al'xSi,r.r,mordenite series withNa- and K-dominant species.l'1 OrulltO.ASHrO fiifr di; ryF fo-Jifit'-ipurriEfij-iiin the range 0.8G{.86.orthorhombic , cmcm,^a 18.052-18.16 8, b 20.404- ffitJflh1tJ3fl is retared to rhose of erionite and20.5n,c7.511-7.537 A@assaglia 1975). levlmeo but differs in the stacking of sheets ofStructure determined by Meier (1961). Si,Al disorder six-membered rings, resultrng in different values for cin tle framework is extensive, but not complete. and differently sized and shaped cages (Gard & Tait

Page 18: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1588 TT{E CANADIAN MINERALOGIST

1972). A high degree of Si,Al order is inferred.Offretite may contain intergrown macro- orcrypto-domains of erionite (e.9., Rinaldi 1976). Itforms epitactic intergrowths wittr chabazite, butepitactic associations with levyne are questionable(Passaglia et al. 1998).

Pahasapaite

(Ca5.5Li3.6K12Nao.2tr rr)Lis[Be24P24Oe6].3 8II2OZ='1. RHO

Rouse etal. (1987). Tlpe locality: Tip Top mine, BlackHills, South Dakota, U.S.A. Named after Pahasapa, aSioux Indian name for the Black Hills.Known from the type loc^ality only. T'' = Q.Cubic,I23, a L3.781(4) A.A beryllophosphate zeolite with ordered BeOa and PO4tetrahedra and a distorted synthetic zeolite RHO-typeframework, structurally related to the faujasite series(Rouse et al.1989).

Parth6ite

Caz [AlaSiaO r:(OIDr].4HrOZ=4 -PAR

Sarp et al. (L979). Tipe locality: in ophiolitic rocks,7 km souttreast of Doganbaba, Burdur province,Taurus Mountains, southwestern Tirrkey. Named afterErwin Partl6, Professor of Structural Crystallography,University of Geneva" Svritzerland.Minor Na and K. Tr, = 0.52 and 0.495 in the only twoknown occurrences.Monoclinic, C2/ c o a 21.553 (3), b 8.7 61 (L), c 9.3M(2)A, B 91.55(2)" (type locality; Engel & Yvon 1984).The framework contains various 4-, 6-, 8-, andl0-membered rings, and is intemrpted at every secondAlOo tetrahedron by hydroxyl groups. Si and Al areordered.

Paulingite (series)

(K,Caor,Na,B aoJ 1 0[Al1 0Si32O84].27 -44H2OZ=L6 PAU

Kamb & Oke (1960). Tlpe locality: Rock Island Dam,Columbia River, Wenatchee, Washington, U.S.A.Named after Linus Q. pauling, Nobel Prize winnerand Professor of Chemistry, California Institute ofTechnology.Electron-microprobe analyses show K as tle mostabundant cation at tbree known localities and Ca attwo. Significant Ba and Na also are reported(Ischemich &Wise 1982, kngauer et al. L997).Tsiinthe range 0.734.77.Cnbic,Iffim, a35.093(2) A (Gordon et al. L966).The framework contains several kinds 6f 1ffgspolyhedral cages (Gordon et al.1966). The structurehas been refined by Bieniok et al. (L996) and byLergauer et al. (L997).

Paulingite-K

New name; K is the most abundant extra-frameworkcation.Average composition from five analyses of samplesfrom Rock Island Dam, Washington, U.S.A., the sug-gested type-example for paulingite-K: (I(0.*Nao.rrCar.r,Bax.13)[Ale32S\2.21Opa1.44H2O (fschernich & Wise1982): a35.093(2) A (Gordon et al. 1966).

Paulingite-Ca

New neme: Ca is the most abundant extra-frameworkcation. Average result offour analyses, Ritter, Oregon,U.S.A., the suggested type-locality for paulingite-Ca:(Ca3.7eK2.67Nae.s6Bas.1e) [Al r0.?sSi31.2rOs al.3 4H2O ;a 35.088(6) A (Tschernich & Wise 1982).I-angater et al. (1997) found evidence ofreduced HzOcontent (27 H2O for Z = 16) in barian paulingite-Cafrom VinaricM Hora, Czech Republic.

Perlialite

Kfl a(CaSr) [Af usi24od. 1 5H2OZ=j . LTL

Men'shikov (1984). Tlpe locality: pegmatites of Mt.Eveslogchorr and Mt. Yukspor, Khibina alkalinemassif, Kola Peninsula, Russia. Named after LilyAlekseevna Perekrest, instructor in mineralogy atKirov Mining Technical School.Minor substitution by Sr and Ba, but little othercompositional variation in the two known occunences.Tn in the range 0.65-{.67.Hexagonal, P6lmnrm, a 18.49(3), c ?.51(1) A(Men'shikov 1984).Perlialite has the snme framework topology assynthetic zeolite-L (Artioli & Kvick 1990). Structuralcolumns have alternating cancrinite-fype cages anddouble 6-membered rings. No Si,Al order has beendetected.

Phillipsite (series)

(K,Na"Cao.s,B aoJ,[ALSi r o-O: ]. lltIzOZ=L PHI

L6vy (1825). Tlpe locality as recorded by L6vy: AciReale, now Acireale, on the slopes of Etna" Sicily, Italy.Contemporary literature (see Di Franco 1942) al.dpresent-day exposrres suggest that the occunence wasprobably in basaltic lavas at Aci Castello, nearby.Named after William Phillips (1773-1828), author ofgeological and mineralogical treatises and a founderof the Geological Society of London.Either K, Na, Ca, or Ba may be the most abundantextra-framework cation, but tle name harmotome isretained for tle Ba-dominant member of tle series.Minor Mg and Sr may be present. In the generalizedformula above, x ranges from about 4 to about 7. T51

Page 19: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCI.ATTJRE FOR ZOLITE MINERAI.S 1589

varies from approximalely 0.56 to 0.77 .Monoclirlic, P2, or P2rlm, a9.865(2), b 14.3O0(4), c8.668(2) A" B 124.20(3)" @hillipsite-K with substantialCa from Casal Brunori, Rome, Italy: Rinaldi er aL1974). A, pseudo-orthorhombic cell has a = 9.9,b = 14.2, c = 14.2 Fa B = gO.O", Z = 2.Tlvo cation sites have been idenffied, one, with twoatoms per formula unit fully occupied by K inphillipsite-K and by Ba in harmotome, is surroundedby eight framework atoms of oxygen and fourmolecules of HzO; the other is partly occupied by Caand Na in distorted octahedral coordination viith twoframework atoms of oxygen and four molecules ofHrO (Rinaldi et al. 1.974). Framework Si,Al largelydisordered.

Phillipsite-Na

New name; Na is the most abundant extra-frameworkcation.Na forms SLVo of all extra-framework cations inmaterial fromAci Castello, Sicily, Italy, suspected to betle original locality for phillipsite (#6 of Galli &Loschi Ghittoni 1972). Known range in T5i: 0.&4.77.For pseudocell, a^ 9.93I-IO.O03, b L4.1,42-L4.286,c 1.4.159-14.338 A, B 9Oo, Z = 2 (e.5., Galll & LoschiGhinoni 1972, Sheppard & Fitzpatrick 1989).

Phillipsite-K

New name; K is the most abundant extra-frameworkcation. Proposed type-locality: Capo di Bove, Rome,Itaty (Hintze L897,#2 of Galli & Loschi GhittonllgT2).Known range in Tn: 0.594.76.For the pseudocell, a9.87L-1.0.007, b L4.124-L4.332,c 14.L98-14.415 A, B 90o, Z = 2 (e.g., GaIh & LoschiGhittoni 1972, Sheppard et al. l97O).

Phillipsite-Ca

New name; Ca is the most abundant extra-frameworkcation. Proposed type-locality: Lower Salt Lake Tirff,Puuloa Road near Moanalua Road junction, Oahu,Hawaii (Ljima & Harada 1969).Known range in Ts1: 0.57{).74.For the pseudocell, a 9.859-9.960, b L4.224-L4.340,c 14.297-14.362 A, B 90", Z = 2 (e.g., GaJJi & LoschiGhittoni t972, Passagha et al. 1990).

Pollucite

(Cs,Na)[AlSi2O6f.nH2O, where (Cs + n) - |Z = L 6

end-member compositions (Teertstra & dernf 1995).Ts1 in the range 0.67-0.74. Minor Rb and Li may bepresent. Sodian pollucite commonly contains more Sithan the simplifi ed formula- T\e tame pollucite applieswhere Cs exceeds Na in atomic proportions.Cubic, Ia3d, a 13.69 A for Cs11.7Na3.1Lis.25IG..[Al15SirrOe6.2].H2O (Beger L969); a in tle range3.672(1Y13.674(t) A for 0.1 Lm.I73 Na apfu, Z = 16(demf & $imFson 1978).Si.Al disordered.

Roegiantte

Caz[Be(OH)zAlzS iaO rrf. 4.5H2OZ=8 -ROG

Passaglia (1969b). Tlpe locality: in albitite dike@. Passaglia, pers. commun., 1998) at Alpe Rosso inVal Vigezzo about 1.5 km soutl of Orcesco, NovaraProvince, Italy. Named after Aldo G. Roggiani, ateacher of natural sciences, who first found the mineral.Contains minor Na and K.Tetragonal, I4lmcm, a 18.33(1), c 9.16(I) A (Galli1980).Contains framework tetrahedrally coordinated Be(Passaglia & Yezzalim 1988) and framework-intemrpting (OII) groups (Giuseppetti et el. I99I).

Scolecite

Ca[d2Si3O1e].3H2O Z=4or8 NAT

Gehlen & Fuchs (1813), as skolezit. Clark (1993) gavethe type locality as Berufiord, Iceland, but this is notappaxent in the original reference. Fuchs (1816)clarified the distinctions among nafrolite, scolecite, andmesolite. He listed occlurences of scolecite as FardeIslands, Iceland and Staffa (Western Isles, Scotland),with andytical data for specimens from the FariieIslands and Staffa. Named from Greek slalex,wotm,for a tendency to curl when heated.(Na + K)/(Mg + Ca) varies from 0 to 0.16, with verylittle K, Mg, or other elements. Ts1 in tle range0.60_0.62 (Alberti et al.1982b).Monoclinic, Cc, a 6.516(2), b 18.948(3), c 9.767(l) A,B 108.98(1)", Z= 4 @ombay, India: Kvick et al. 1985),or, by analogy with natrolite, pseudo-orthorhombicFd, e.g., a 18.508(5), , 18.981(5) c 6.527(2) A, B9O.64(L)", Z = 8 (Ber:afiord, Iceland: Joswig et al.1984).The structure is similar to that of natrolite, with awell-ordered Si,Al framework, Ca instead of Na2, andan extra molecule of HrO.

ANABreithaupt (1s46). Tlpe locality: Elba, Italy. Named Stelleriteoopollux" with coexisting mineral otastolo (a variety ofpltutit") for twins C-astor and Polluxn of Gieek Ca[A12Si7O13]'7H2O Z = 8 STI

mythology; name modified to pollucite by Dana (1868). Morozewicz (1909). Tlpe locality: Comrnander IslandForms a series with analcime (Cernf 1974) reaching Bering Sea Named afterWilhelm Steller (1709-17216),

Page 20: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1590

natural scientist and military doctor who madeimFortant observations on Commander Island.Variations in composition include up to about0.2,apfuNa and minor K, Mg, Fe. T51 in the range 0.75-0.78.Orthorhombic, Fmmm, a in the range 13.507-13.605,D in the range 18.198-18.2700 c in tle nnge 17.823-17.863 A @assaglia et aI. 1978b).The framework is topologicaly the same as for stilbite,but it has higher symmetrlr, correlated witl fewerextra-framework cations. Only one independent exha-framework site is occupied, and the symmetry isFmmm (Galli & Alberti 1975a). Na-exchangedstellerite retains the Fmmm symmetry, unlike tle Nazeolite, barrerite, with which it is isochemical@assaglia & Sacerdoti 1982).Villarroel (1983) has suggested tle occurrence ofNa-dominant Fmmm stellerite from Roberts Island.South Shetland group.

Stilbite (series)

(Caos,NaK)q [AleSirO72].28FI2OZ=L ST I

Haiiy (1801, p. 161-166), for minerals, apparentlyincluding heulandite, that had previously beendescribed with informal names. He mentioned occur-rences in volcanic terraneso and named lceland,Andreasberg in Harz, Alpes Dauphinoises, andNorway, but there is no clear type-locality. Namedfrom Greek word for mirror. in allusion to its luster('1rn certain 6clat").Ca is almost always tle dominant extra-frameworkcation, accompanied by subordinate Na and minsl l(and Mg, approximating Caa(Na,K) per formula unit,but Na-rich members also are known. Ts1 in the range0.71 to 0.78.Monoclinic, C2lm, a L3.64(3), b 18.24(4), c 11.27(2)A, B 128.00(25)" (Galli & Gottardi L966,GalliL97l);an alternative setting is pseudo-orthorhombic, F2lm,Z = 2 .Increasing departure from the topological symmetry ofthe orthorhombic framework, Fm.rnm, tends to correlafewitl increasing content of monovalent cations@assagha et aL LWSb), which causes the framework torotate (Galli & Alberti L975a,b). However, {001}growth sectors witl appreciable Na and orthorhombicFrnmtn symmetry have been observed in crystals inwhich other isochemical sectors are monoclinico C2,lm(Akizuki & Konno 1985, Akizuki et al. L993).T\ecentrosymmet'ic space-group depends on statisticallycomplete Si,Al disorder, and the true space-group rnaybe noncenfrosymmetric (Galli 1971).

Stilbite-Ca

New name for common stilbite in which Ca is the mostabundant extra-framework cation.For tle pseudo-orthorhombic cell, F2lm, a 13.595-

13.657, b 8.201-r8.29L, c L7.775-77.842 L,8 90.0G90.91" @assaglia et al. 1.978b).

Stilbite-Na

New name: Na is the most abundant extra-frameworkcation.Proposed type-locality: Capo Pula" Qagliari, Sardinia,Italy @assaglia et al. I918b, #2L).Known examples contain significant Ca and K, andminor Mg, as well as cleady predominantNa. Ts in therange 0.73-0.78 (Passaglia et al. 1978b, Ueno &Hanada 1982,Di Renzo & Gabelica 1997).Monoclinic, C2l m. U sing the pseudo-ortlorhombicF2lm settimg, a L3.610, b L8.330, c 17.820 A, B 90.54"for type material, of composition(Nas.1sK1-Ca3"5JVlgs.e)[Alr6.62Si55.25Oraa].53.53HrO (Quartieri & Yezzalini198n.In spite of the high Na content, themotocljnic C2lmsymmetry of stilbite is retaine4 in contast to stellerite,F mmm, and barr.erite, Amma.

Tbrranoyaite

NaCa[Al:SirOqol.>7WOZ=4 TER

GaIh et al. (L997a). Tlpe locality: Mt. Adamson,Northern Victoria Land. Antarctica. Named after tleItalian Antarctic station at Terranova Bay.Tlpe material contains minor amounts of K and Mg.Tsi = 0.85.Orthorhombico Cmcm, a 9.747(7), b 23.880(2),c?-0.068(2) 4,.The framework topology is not known in other naturalor synthetic zeolites. It contains polyhedral units foundin laumontite, heulandite, and boggsite.

Thomsonite

CazNa[AlsSisOm].6I{10Z=4 THO

Brooke (1820). Tlpe locality: Old Kilpatrick, nearDumbarton, Scotland. Named after Dr. ThomasThomson (1773-1852), editor of the journal in whichthe name was published, and who contributed to theimprovement of methods of chemical analysis.Extensive variation in Na:(Ca + Sr) and Si : Al approxi-mately according to the formula Naa*,(Ca,Sr)r,[Alzo-"Sizo'Oaol.2AHzO, where r varies from about 0 to2; small amounts of Fe, Mg, Ba, and K also may bepresent @oss el a/. 1992). Tst in the range 0.5H.56.Orthorhombic, Pncn, a l3.lO43(L4), , 13.0569(18),c 13.2463(30) A (SUU et aI. 1.99O}Chains with a repeat unit of five tetrahedra occur as inthe NAI structure type, but they are cross-linked in adifferent way; Si,Al are highly ordered, but disorderincreases with increasing Si : Al (Alberti et al. I98l).

Page 21: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

Smrth et al. (1991), Boggs et al. (1993). Tlpe locality:Goble Creek, 0.2 km north of Goble, Columbia County,Oregon, U.S.A. Named after Rudy W. Tschernich,zeolite investigator of theAmerican Pacific Northwest,who discovered the mineral.Na, Mg, and K are minor but variable constituents inspecimens fromthe one known locality. T' in tle range0.744.78 (0.73, 0.80 in a tschernichite-like mineralfrom Mt. Adamson, Antarctica: Galli et al. L995).Tetragonal, possible space-group P4lmmm, a 12.880Q),c 25.020(5) A, but may consist of an intergrowth of atetragonal enantiomorphic pair with space groupsP4p2 and P\22 and a triclinic polymorph Pl. See alsoGalJi et al. (1995).This is a structural analogue of synthetic zeolite beta.

Tbchiirtnerite

Caa(Kz,CaSr,Ba):Cu:(OtI)a[AltrSitrO4].zH2O, n = 2OZ = L 6 (IZA code not

assigned)Krause et aI. (L997), Effenberger et al. (1998). Bellbergvolcano, near Mayen, Eifel, Germany. Named afterJochen Tschdrhrer, minglal collector and finder of themineral.Tsi = 0.50 &r the only known occrurence.Cubic, Fn$-m, a3l.62g) 4,.Cages in the framework include alarge super-cage with96 tetrahedra and 50 faces. A Cu,(Oll)-bearing clusteroccupies another cage. The framework density is thelowest known for a zeolite with a non-intemrptedframework.

Tbchernichite

Ca[AlrSiuO,u].-8ttO Z=8

Wairakite

Ca[AlzSiaOrz].2HzO Z=8

RECOMMENDBD NOMBNCLATT]RB FOR reOLITE MINERAI.S

BEA

ANA

The name applies to zeolites of ANA structural type inwhich Ca is the most abundant extra-frarnework cation,irrespective of the degree of order or space-groupsymmery.

\{einebeneite

Ca[B e@Oa)r(OH)r].4HrOz--4 wEI

Walter (1992). Dpe locality: vein of spodumene-bearingpegmatite 2 km west of Weinebene Pass, Koralpe,Carinthia, Austria- Named after the locality.No elements other than those in the given formula weredetected in the one known occurrence.Monoclinic, Cc, a 11.897(2), b 9.707(I), c 9.633(1) A,B 95.76(1)'.A calcium beryllophosphate zeolite witl 3-, 4-, and8-membered rings in the framework (Walter 1992).

\ilillhendersonitc

K"Cq15"a5q[Al3Si3Otr]'5H2O, where 0 <.r < 1Z=2 CHA

Peacor et al. (198a). Tlpe locality: San Venanzo qrurry,Terni, Umbria, Italy. Named after Dr. William A.Henderson, of Stamford, Connecticut, U.S.A., whonoted this as an unusual mineral and provided it forstudy.Tlpe willhendersonite conforms closely toKCa[Al3Si3O1rl.5HuO. End-member Ca1.5[A13Si3Or2].5HO and intermediate compositions are now known(Yezzallnr et al. t997a). Tsi = 0.50, 0.51.Triclinic, Pl, a 9.2O6(2), b 9.2L6(2), c 9.500(4) A,u 92.34(3)', B 92.70(3)", T 90.12(3)' @ftringerBellerberg, near Mayen, Eifel, Germany: Tillmanns etal.I98$.The framework is the same as for chabazite, which hasidealized framework topological symmetry R3m, butwith much lower Si and with Si,Al fitlly ordered. Thisreduces thelopochemical frarnework symmetry to rR3,and the nature and ordering of the extra-frameworkcations further reduce the framework symmetry to Pl.The low-K variants also have fully ordered Si,Al, butare less markedly ticlinic ({ezzalni et al. 1996).

Yugawaralite

CalAlzSieOrel.4HzO Z=2 YUGSakurai & Hayashi (1952). Tlpe localify: YugawaraHot Springs, Kanagawa Prefecture, Honshu, Japan.Named after the locality.

r59l

Steiner (1955), Coombs (1955). Wairakei, TaupoVolcanic Zone, New Zealand. Named after the locality.Most analyzed samples have Na/(Na + Ca) less than0.3, but wairakite possibly forms a continuous solid-solution series witl analcime (Seki & Oki 1969, Seki1971, Cho & Liou 1987). Other reported substitutionsare very minor. Ts1 in the range 0.65-{.69.1{ea6slinic (highly ordered), ̂I2la, a 1,3.692(3),b 1.3.643(3), c 13.560(3) A, B 90.5(1)" for(Cao.roNao.14)[Al1.e2Sia.67O12].2H2O (Tak6uchi et al.1979).Tetragonal ̂ or near-tetragonal, I41lacd, a 13.72(4), Reported compositions are close to the idealc 13.66(4) A for (Cq.eNa6.16)[AlpSq.67O pl.2.lLH2O stoichiometry, withtpta0.2 apfu of Na + K + Sr. Tsi in(Nakajima 1983). the range 0.7H.76.The fiLmework topology is similar to that of analcime, Monocinic , Pc, a 6.70il(L), b I3.g72Q), c 10.039@ A,but Al is preferentially located in a pair of tetrahedral I 111.07' (Kvick et al. 1986).sites associated with Ca, and Ca is in one specific fdslinis, Pl, by symmetry reduction ascrib€d to localextra-framework site. Smaller departures from cubic Si,Al order, has been reported on the basis of opticalsymmetry are correlated witl decreased Si,Al order. measurements (Akizuki 1987b).

Page 22: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1592

Si,Al are strictly ordered in samples from Iceland (Kerr& Mlliams 1969, Kvick a al. 1986). The partial orderreported for the Yugawa& sample (rimer & Slaughter1969) is doubttul (Gottardi & Galli 1985).

ZsourEs oF DoUBTFIL SrAf,us ANDe PossrsLEZEourE

Further work is recommended to clarify the statusof paranatrolite and tetranatrolite. Essential data forthese minerals and for tvedalite, which is possibly aberyllosilicate zeolite, are as follows.

Paranatrolite

Na2[Al2SiO1e].3H2O Z=8 NATChao (1980). Tlpe locality, Mont Saint-Hilaire,Quebec, Canada. The name recognizes its associationwith and similarity in chemical somposition tonatrolite, Na2[Al2SirO ro].zHro.Contains additional HrO relative to natrolite, alsominor Ca and K.Pseudo-orthorhombic, F***, pro^bably monoclinic, aIg.W(l),b 19.13(L), c 6.580(3) A. Gives very diffusediffraction-spots, and a powder pattern similar to thatof gonnardite (Chao 1980).Dehydrates to tefranatrolite and could be regarded asoverhydrated natroliteo tetranatrolite or gonnardite.Without firtler justification, separate species status isdebatable according to Rule 4.

Tetranatrolite

(Na,Ca) 6[Al1eSi21Oso]. 1 6H2OZ=0.5 NAT

Chen & Chao (1980). Tlpe localify: Mont Saint-Hilaire, Quebec, Canada. The name indicates atetragonal analogue of natrolite. First described as"tehagonal nafrolite", from flfmaussaq, Greenland, byKroghAndersen et al. (L969).Extensive solid-solution approximating Na16_,Ca,Al1*"Siz+-9a0'16HrO, where.r varies from about 0.4 to 4, isreported by Ross et a/. (L992). Small amounts of Fek,Sr, Ba and K may replace Na and Ca. Ts in the range0.50-{.59.Tetragonal, i42d, a L3.L4I, c 6.617 A (Mont Saint-Hilaire, Quebec, Canada: I!.:oss et al. L992).The framework is of disordered natrolite type.Tefranafrolite is considered to be a product of dehydra-tion ofparanatrolite (Chen & Chao 1980, Ross et a/.1992). It differs from nafrolite in CaAl substitution forNaSi, as well as in space-group symmetry. These,however, are also characteristics of gonnardite, towhich its relationship is debatable.

Tvedalite

(Ca,Mn)aB qSi6O tr(OII)o.3H2OZ = 2

Larsen et al. (1992). Tlpe locality: Vevya quarry,Tvedalen, Vestrold County, Norway. Named after thelocality.Spot analyses show a range from (Ca3.2sNlno:zFeo.os)xto (Car.6Mn1.s6Feo.rn)20 for BqSi6O17(OII)a.3H2O, withabout 0.9 to 0.21 A1 and minor Be substituting for Si inthe generalized formula.Orthorhombic (c-centered), a 8.724(6), b 23.L4(.L), c4.e23@) L.Considered to be structurally related to chiavennite, butin the absence of an adequate determination of itsstructure, it has not been listed here as an acceptedzeolite species.

DISCREDnED, Onsorrrg, AND OIIDR NON-APPROVEDZsoLrrE NANcs

Herschelite, Ieonhardite, svetlozarite, andwellsite are discredited as nrmes of mineral species(Appendix 2).

Kehoeite was regarded by McConnell (1964) as azinc phosphate analogue of analcime, but according toWhite & Etd,(1992), type kehoeite is a heterogeneousmixture of quartz and sphalerite witl other phasesincluding gypsum and woodhouseite, or a very similarphase. No phase present bears any relationship toanalcime. It is not accepted as a valid zeolite species.

Vis6ite is shown by Di Renzo & Gabelica (1995)not to be a zeolite, as had commonly been supposed.They regard it as a defective member of the crandallitegroup, with composition CaA|@O4,SiO4)2(OID o.mH2Q.Kim & Kirkpatrick (1996) showed that a specimensxamined fy them is very disordered, with a structuresimil2l 16 that of crandallite, but contains other phasesincluding opal. Vis6ite is excluded from the list ofaccepted zeolites.

Obsolete and discredited nnmes are listed below"followed by the correct names or identifications. Thelist is based on one compiled by the late G. Gottardi,using tle following references: Hintze (1897), Dana(L9L4), Cocco & Garavelli (1958), Davis (1958), Hey(1960, 1.962), Merlino (1972), and Strunz (1978).Numerous additions and amendments have been madein the light of more recently published work and of thenotes below, and of listings in Clark (L993), in whichmuch information on the history and usages of thesenames can be found.

ahr azite = gismondine, phillipsiteacadialite = chabaziteachiardite = dachiarditeadipite = chabazite2aedelforsite = laumontite?. stilbite?aedelite (of Kirwan), aedilite = natroliteameletite = mixtures of sodalite, analcime, phillipsite,

and relict nephelineamphigdne = leucite

Page 23: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCT.ATURE FOR EOLIIE MINERAI,S 1593

analcidite = analcime granatite = leuciteanalcite = analcime grenatite (of Daubenton) = leuciteanalzim = analcime gpddeckite = gmelinite?andreasbergolite = harmotome hairzeolite (group name) = natrouteo thomsonite,andreolite, andr6olithe = harmotome mordeniteantitidrite = edingtonite harmotomite = harmotomeapoanalcite = natrolite harringtonite = tlomsonite, mesolite mixturearduinite = mordenite haydenite = chabaztte,aricite = gismondine hegauit (hOgauite) = natroliteashtonite = strontian mordenite hercynite (of Zappe) = harmotomebagotite = thomsonite herschelite = chabazite-Nabarium-heulandite = barian heulandile (unless Ba is the hiigauite = natrolite

most abundant cation) hsiang-hua-shih = hsianghualitebarytkreuzstein = harrnotome hydrocastorite = stilbite, mic4 petalite mixfurebeaumontite = heulandite hydrolite (of Leman) = gmelinitebergmannite = nabolite hydronafrolite = naholiteblItterzeolith = heulandite, stilbite hydronephelite = a. mixture, probably containingbrevicite = natrolite natrottecabasite = chabazite hypodesmine = stilbitecaporcianile = laumontite hypostilbite = stilbite or laumontitecarphostilbite = thomsonite idrocastorite (hydrocastorite) = stilbite, mica, petalitechabasie, chabasite = chabazite mixturechristianite (of des Cloizeaux) = philliFsite kali-harmotome, kalkh4aele6e = phillipsitecluthalite = analcime kalithomsonite = ashcroftine (not a zeolite)comptonite = thomsonite kalkkreuzstein = phillipsitecrocalite = natrolite karphostilbite = tlomsonitecubicite, cubizit = analcime kehoeite = a mixture including quartz, sphalerite,cubic zeolite = analcime?, chabazite gyp$um, and ?woodhouseitecuboite = analcime koodilite = thomsonitecuboizite =chabazite krokatith = naholitedesmine = stilbite kubizit = analcimediagonite = brewsterite kuboite = analcimedollanite = analcime laubanite = natrolitedoranite = analcime with tlomsonite, natrolite, and laumonite = laumontite

Mg-rich clay minerals (Ieertsta & Dyer 1994) ledererite, lederite (of Jackson) = gmeliniteechellite = natrolite lehuntite = naholiteefflorescing zeolite = laumontite leonhardite = HzO-poor laumontiteeisennatrolith = nafrolite witl otler mineral inclusions leuzit = leucileellagite = a ferriferous natrolite or scolecite? levyine, levynite, levyite = levyneepidesmine = stellerite lime-harmotome = phillipsiteepinatrolite = nafrolite lime-soda mesotlpe = mesoliteercinite = harmotome linsqlnins, lincolnite = heulanditeeudnophite = analcime lintonite = thomsoniteeuthalite, euthallite = analcime lomonite = laumontiteeuzeolith = heulandite marburgite = phillipsitefalkenstenite = probabl] plagioclase @aade 1996) mesole = tlomsonitefargite = natrolite mesoline = levyne? chahazite?fariielite = tlomsonite mesolitine = thomsonitefassaite (of Dolomieu) = probably stilbite mesotype = oatrolito, mesolite, scolecitefeugasite = faujasite metachabazite = partially dehydrated chabazttsflokite, flockit = mordenite metadesmine = partiall) dehydrated stilbitefoliated zeolite = heulandite, stilbite metaepistilbite = partially dehydrated epistilbiteforesite = stilbite + cookeite metaheulandite = partiall| dehydrated heulanditegalactite = natrolite metalaumontite = partially dehydrated laumontilegibsonite = thomsonite metaleonhardite = dehydrated "leonhardite" Qaumontite)ginzburgite (of Voloshin et al.) =roggpzaile metaleucite = leucitegismondite = gismondine metamesolite = mesoliteglottalite = cbabazite metanatrolite = partiall! dehydrated natrolite

Page 24: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

t594 TIIE CANADIAN MINERAL@IST

metascolecite, metaskolecit, metaskolezit = partiallydehydrated scolecite

metathomsonils = partially dehydrated thomsonitemonophane = epistilbitemooraboolite = natrolitemorvenite = harmotomenafrochabazite = gmelinitenaton-chabasit, natronchabazit (of Naumann) = gmelinitenaftonite (in part) = naholiteneedle zeolite, needle stone = natrolite, mesolite,

scolecitenormafin = phillipsiteorizita, oryz,rtn = epistilbiteozarkite = thomsoniteparastilbite = eprstilbitephacolite, phakolit(e) = chabazi.tppicranalcime = analcimepicrothomsonite = tlomsonitepollux = pollucitepoonahlite, poonalite = mesoliteportite = natrolite (Franzini &Perchrazn L994)potassium clinoptilolite = clinoptilolite-Kpseudolaumontite = pseudomorphs after laumontitepseudomesolite = mesolitepseudonatrolite = mordenitepseudophiJlipsite = phillipsiteptilolite = mordenitepuflerite, pufflerite = stilbitepunahlite = mesoliteradiolite (of Esmark) = natroliteranite = gonnardite (Mason 1957)reissite (of Fritsch) = epistilbiteretzitp = stilbite?, laumontite?sarcolite (of Vauquelin) = gmelinitesasbachite, saspachite = phillipsite?savite = natrouteschabasit = chabaziteschneiderite = laumontite (Franzini &Percbiaz.zi 15941schorl blanc = leucitescolesite, scolezit = scolecitescoulerite = thomsoniteseebachite = chabaziteskolezit = scolecitesloanite = laumontite?snaiderite (schneiderite) = laumontitesoda-chabazite = gmelinitesoda mesotype = natrolitesodium dachiardite = dachiardite-Nasommaite = leuqitespangite = phillipsitesphaerodesmine, sphaerostilbite = thomsonitespreustein = nafrolite (mostly)staurobaryte = harmotomesteeleite, steelit = mordenitestellerycie = stelleritestilbite anamorphique = heulanditestilbite (of many German authors) = heulandite

strontium-heulandite = strontian heulandite andheulandite-Sr

svetlozarite = dachiardite-Casyanhualite, syankhualite = hsianghualitesyhadrite, syhedrite = impure stilbite?tehaedingtonite = edingtonitetonsonite = thomsonitetriploclase, triploklase = thomsonitevanadio-laumontite = vanadian laumontitevemrcite = mesoliteVesuvian garnet = leuciteVesuvian (of Kirwan) = leucitevis6ite = disordered crandallite and other phasesweissian = scolecitewellsite = barian phillipsite-Ca and calcian harmotomewhite garnet = leucitewinchellite = thomsoniteWtirfelzeolith = analcime, chabazilezeagonits - gismondine, phillipsitezeolite mimetica = dachiarditezdolithe efflorescente = laumontite

AcKr.IowmDGEN{B,trs

Members of the present Subcommittee, whichcommenced work in L993, arc grateful to a previousSubcommittee. established in 1979 under ttreChairmanship of ProfessorW.S. Wise of the Universityof California. Santa Barbara, California, for workcontained in a draft repofi completed in 1987. Membersof the 1979 Subcommittee included L. P. van Reeuwijkand the late G. Gottardi and M.H. Hey, as well asD.S.C. and H.M. of tle present Subcommittee. J.V.Smith, W.M. Meier, R.W. Tschernich, and the late V.A.Frank-Kamenetskii were consultanls. Although recom-mendations in tle present report differ significantlyfrom those in the 1987 report, the existence of thatreport has greatly facilitated our task. Ws thank J.V.Smith and L.B. McCusker for advice, C.E.S. Arps andW.D. Birch. successive secretaries of CNMMN, formuch help, and many other colleagues for conhibutionsof time, advice, and specimens. Staff of tle ScienceLibrary, University of Otago, and others, helped traceobscure references.

REFERENCES

Arrzrn<r, M. (1985): The origin of sector 6vinning inharmotome. Ara Mineral. 70. 822-828.

(1986): Al-Si ordering and twinning in edingtonite.Am- Mineral. 7t. l51Ul5L4.

(1987a): Crystal symmetry and order-disorderstructue of brewsterite. Ara Mineral. 72. @5-&8.

(1987b): An explanation of optical variation inyrgawaralite. Mineral, Mag. 51, 615-620.

Page 25: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCI,ATT'RE FOR reOLITE MINERAI.S 1595

& Foy, H. (1994): Gobbinsite from Magheramornequarry, Northern lr:eland, MfurcraL Mag. 58, 615-620.

(1975b): Sodium-rich dachiardite from Alpe diSiusi, Italy. Contrib. Mineral. Petrol. 49,63-66. -, Gotr*ot, G., RNALDI, R., Sarow,Y., Honruqu,

H., Ys, J., Seweoe, H., Tarexe, M. & Tororem, M.

CnucnNl G. & Deunu, I. (1995): Order-disorder (1987): A single crystal dif&action study of the naturalzeolite cowlesite, Photon Factory, National Inboratoryfor High Energy Physics, Activity Rep.198i1,316.

in natrolite-group minerals. Ear: J. Minzral. T, 501-508.

_, Ger-u, E. & Vnzam.n, G. (1985): Epistilbite: anacenhic zeolite wilh domain structure. Z Kristallngr 1.il3, & Kvrc& A. (1SSO): Synchrotron X-ray Rietveld257-265. study of perlialite, the natural counlerpart of synthetic

zeolite-L. Eun J. Mineral. 2, 7 49-7 59.Passecua, E. &ZNtAZz,,

P.F. (1982a): Position of cations and water molecules RnrALDr, R., Kvrcr, A. & Surnr, J.V. (1986b):in hydrated chabazite. Natural and Na-, Ca-, Sr- and Neutron dilfraction strucfl[e refinement of t]e zeoliteK-exchanged chabazites. kolites 2, 303-309. gismondine at 15 K. fuolites 6, 36L-366.

Ilalrscng., G. & VszAr.;Nr, G. (1979): Amicite, SMffH, J.V. & KucK, A. (1984): Neuton dilffiaction

& Kottro, H. (1985): Order-disorder structure andthe internal texture of stilbite. Ara Mineral. 70,8l+821.

KuDou, Y. & Kurusavesm, T. (1996): Crystalstructures ofthe {0ll}, {610}, and {010} growth sectorsin brewsterite. Am" Mineral.81. 150l-1506.

& Saros, Y. (1993): Crystal shucture ofthe orthorhombic {001} growth sector of sttJblte.Eun J.Mineral.5, 839-843.

ALBERT, A. (L972): On the crystal structure of the zeoliteheulandite. Tscher'maks Mineral. Petrogr. Mitt, lE,129-146.

-Onsa): The crystal strucfire of two clinoptilolites.Tschermala Mineral. Petrogr Mitt. X2,25-3'7.

a new natural zeolite. Neues lahrb. Mineral., Monatsh.,481-488.

Poxcnuppr, D. & Vnzzamu, G. (1982b): Thecrystal chemistry of natrolite, mesolite and scolecite.Neuzs Jahrb. Mineral.. Abh. 143. 231-248.

& Sansnt, C. (1987): Statistical and truesymmetry of ferrierite: possible absence of straightT-G-T bridEirg bonds. Z Kristallogr 178,249-256.

_ & Vnzzer-nu, G. (1979): The crystal structure ofamicite, a z,enlate, Acta Crystallogr. R35, 2866-2869,

& - (1981a): A partially disorderednatrolile: relationships between cell parameters and Si-Al&stribution. Acta Crystallogn 837, 781-788.

- & - (1981b): Crystal energies and coordi-nation of ions in partially occupied sites: dehydratedmaznts. Bull. Mindral lM,5-9.

Gar,u, E. & Querrmr, S. (1996): Thecrystal structure of gottardiite, a new natural zeolite. Err:J. Mineral.E.69-75.

& T szzor.r, Y. (198 l): Thomsonite: adetailed refinement with cross checking by crystal energycalculations. Zolites l.9l-97 .

Ar.Ern, A. (1972): Polymorphism and crystal-chemistryof heulandites and clinoptilolites, Am. Mineral. 57,1448-1462.

AnvsnusrEn, T. (1993): Dehydration mechanism ofclinoptilolite and heulandite: single-crystal X-ray studyof Na-poor, Ca-, K-, Mg-rich clinoptilolite at lm K.Arr.Mineral.7E.260-2@.

& Kom*en, T. (1992): Re- and dehydration oflaumontite: a single-crystal X-ray study at 100 K. NeuesJahrb. Mineral.. Monatsh.. 385-397.

Aarror,I, G. (1992): The crystal structure of garronite. Arz.Mineral. TT,189-196.

study of natrolite, NarA12Si3O16.2H"O, at 20 K. ActaC ryst aIIo g n Cfi , 1658-1662.

& PLUTIT, J.J. (1986a): X-ray sffucturerefinement of me solite. Acta Crystallogn C{2, 937 '942.

& SrAttU K. (1993): Fully hydrated laumontite: astucture study by flat-plate and capillary powder diffrac-tion tecbniques. Tzolites 13, 249-255,

- & ToRRF.s SALVADoR, M.R. (1991): Characterizationof the natural zeolite gonnardite. Sffucture analysis ofnatural and cation exchanged species by the Rietveldmethod. Materi.al Science Forum 79-82, M5-850.

BARTL, H. (1970): Strukturverfeinerung von Leonhardit,Ca[AlzSiOu].3Hro, mittels Neutronenbeugung. lVeaesJahrb. Mineral., Monatsh., 298-310.

Baun, W.H. (1964): On the cation and water positions infaujasite. Ane Mineral. 49, 697 -7 M.

BEcER, R.M. (1969): The crystal structure and chemicalcomposition of polluciie. Z. Kristallagn 129, 280'302,

BBRGERuoFF, G., Beun, W.H. & Nowecrc, W. (1958): Uberdie Kristallstrutrtur des Faujasis. Neucs Jahrb. Mbrcral.,Monatsh.,193-200.

Page 26: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1596 THB CANADIAN MINERALOGIST

Brus, A.A. (1960): Geochemistry of Berylliunr. and theGenetic Tlpes of Berylliunt Deposits. Akademii Nauk,SSSR, Ltst. minspl., geokhim., i kristallochim. redkithelementov, 1-329 (i:r Russian). Abstract in Am, Mfu.eral.46.2M.

BIEI\uoK, A., Joswo, W. & Baun, W.H. (1996): A study ofpaulingites: pore filliag by cations and water molecules.Neues Jahrb. Mineral., Abh. l7l, ll9-134.

BIssERr, G. & LTEEAU, F. (1986): The crystal structure of atriclinic bikitaite, LilAlSi2O6l.HrO, with ordered AVSidistribution. Ne ues Jahrb. MineraL, Monatsh..'241-252

Blacr<runn, W'.H. & Ds.weu, W.H. (1997): Encyclopedia ofMinerals N"mes. Cah Mineral, Spec. PubL l.

BLutvIENBAcHs, J.F. (1791): Auszuge und Kezensioneitbergmanischer und mineralogischer Schriften.B e rgxnnnis che s J, 2, 489 -500,

Boccs, R.C., Howeno, D.G., Surrs, J.V. & Kr,sN, G.L.(1993): Tschernichite, a new zeolite from Goble,Columbia County, Oregon. Am- MineraL TS,822-826.

Bolrs, J.R. (1972): Composition, optical properties, celldimensions, and thermal stability of some heulanditegroup zeolites. An . Mineral. 57, 1463-1493.

Boranor, M. (1979): Composition of type dachiardite fromElba: a re-examin aton. Mineral, Mag. 43, 548-549.

Ronnnrs, A.C. & Sasnre, A.P. (1981): Sodium-rich dachiardite from the Francon quarry, Montreal Islan4Quebec. Can. Mineral. 19, 285-289.

Bornr, M., Grurml, W.L., Marrrolr, V. & Morrale, A.(1983): Chiavennite, CaMnBqSi5o,r(oH)2.2H2o, a newmineral from Chiavenna (Italy). Am. Mineral. 6E,623-6n.

Bosc D'AMrc, L. (1,792): M6moire sur la chabazie. Ld'Histoire Naturelle 2, l8l-184,

Bnumatrr, A. (1846): Pollux. (Poggendoff's) Awulen derPhysik und Chzmie 69,439.

BREwsrER, D. (1825a): Description of gmelinite, a newmineral species . Ed.inburgh J. Sci. 2,262-257 .

(1825b): Description of levyne, a new nineralspcies. Edinburgh J. Sci. 2, 332-334.

Bnooru, H.J. (1820): On mesotype, needlestone, andthomsonite. Anrals of Philosoplty L6, 193-194.

(1822): On the comptonite of Vesuvius, thebrewstedte of Scotland, the stilbite and the heulandite.Edinburgh Philos. J. 6, ll2-115.

Casu,rl, R., LuccuErrr, G., PALs{zoN!, A., Quamml S. &Vpzzamu, G. (1993): First occurrence of a Ba-dominanrbrewsterite: structural features. Ear J. Mitu<al. 5,353-360.

C:mrf, p. (1974): The present status of the analcime-polluciteseies. Can, Mineral, 12. 33+341,

- Rl.teml, R. & SURDAM, R.C. (1977): Wellsite andits status in the phillipsite - harmotome glottp. NeuesJahrb. Mineral., Abh. PA,3L2-32O.

_ & SnrsoN, F.M. (1978): The Tanco pegmatite atBernic Lake, Manitoba. X. Pollucite. Can, Mineral. 16,325-333.

Cs,lo, G.Y. (1980): Paranatrolite, a new zeolite from MontSt-ltilaire, Qu6bec. Can. Minzral. 18,85-88.

CmN, T.T. & Cseo, G.Y. (1980): Tetranatrolite from MontSt-Hilaire, Qudbec. Can. Mineral. LE, 77 -84.

Cso, M. & Ltou" J.G. (1987): Prehnite-pumpellyite togreenschist facies tansition in the Karmutsen metabasites,Vancouver Island, B.C. J. Petrol. 2.8,417443.

CLARK, A.M. (1993): Hey's Mineral Index. Chapman & Hall,London, U.K.

Cocco, G. & Garurvs.l t, C. (1958): Riesame di alcune zeolitielbarc. Atti Soc. Toscana Sci. Naturali 65, 262-283.

CooMBs, D.S. (1955): X-ray observations on wairakite andnon-cubic analcime. Mineral. Mag 30, 699:7 08,

& WIs"ITEN, J.T. (1967): Composition of analcimefrom sedimentary and burial metamorphic rocks. Geol,Soc. Am., Bull. 78, 269-282.

CnoxsrsDt, A.F. (1756): Observation and description of anunknown kind of rock to be named zeolites, Kongl.Vetenskaps Acad. Handl. Stockhobn 17, l2O-123 (nSwedish).

D'AcrnemI, G. (1906): Zeobtt del filone della Speranzapresso S. Piero in Campo @lba). Atti Soc. Toscana Sci.NaturaliXL, 15G165.

DAMouR, M. (1842): Description de la faujasite, nouvelleesplce mindrale , Annales des Mincs , Sdr 4, l, 395-399 .

DANA, E.S . (1914): A System of Mtuuralogy of J.D. Dana (6thed., with Appendices I and IT). John Wiley & Sons, NewYorlq N.Y.

DANA, J.D. (1868): A System of Mbrcralogy (5th ed.). JohnWiley & Sons, New York, N.Y.

DAvrs, R.J. (1958): Mordenite, ptilolite, flokite, and arduinite.Mineral. Mag. 3t, 887-888.

DE GETINARo, M. & FRANco, E. (L976): La K-chabazite dialcuni "Ttrfi del Vesuvio". Rend. Accad. Naz. Lincei 40,490497.

Dnarutrruarur, J.-C. (1795): Th6orte de la Tbne l. ChezMaradaq Paris, Fra:rce.

Dsia VncruRA, G., Per.opr, G.C. & Bunnececo, F. (1993):New data on merlinoite and related zeolites. Rend. LinceiSci. Fisichz Naturali, Ser. 9, 4, 303-312.

Page 27: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCLATT]RE FOR UOLTIE MINERALS L597

Dt Fnerco, S. (L942): Mineralagia Emea.Zw*arc1ls &,rzn,Catania, Italy (158-161).

Dr Rmvzo, F. & GesElrce, Z. (1995): New data on thestructure and composition of the silicoaluminophosphatevisdite and a discreditation of its status as a zeolrte. InNatural Zeolites '93: Occurrence, Properties, Use @.W.Ming & F.A. Mumpton, eds.). Intemational Committee onNatural Zeolites, Brockport New York, N.Y. (173-185).

from Kuiu and Kupreanofislands, Alaska. Can. Mineral.35,691-698.

Duwr, P.J., hacon, D.R., NEWBERRY, N. & RArflK, R.A.(1980): Goosecreekiten a new calcium sluminum silleafshydrate possibly related to brewsterite and epistilbite.Can. Mineral. 18, 3X-3n .

Earc:e, A.S. (1898): Erionite, a new zeolite. Am. J. Sci. 156,66-68.

EBERLv, P.E., JR. (1964): Adsorption properties of naturallyoccurring erionite and its cationic-exchanged forms.,4LnMincral. 49.3040.

Errrrrrncrn, H., Gresr:en, G., Krausn, W. & Bnnmnnor,H.-J. (1998): Tschiirtnerite, a copper-bearing zeolite fromtle Bellberg volcano, Eifel, Germary. Am. Mineral.83,607-617.

ENceI-, N. & YvoN, K. (1984): The crystal structure ofparth6ite. Z. Kristallogr. 169, 165-17 5.

Ewclano, B.M. & Osrwar.o, J. (1979): Levyne - offretiteintergrowtls from Tertiary basalts in the Merriwa distictHunter Valley, New South Wales, Australia- Aust. Mineral.25, ll7-r19.

ERcrr, T.S. & VeN VsLTnurroN,I. (1994): Gaultite, a newzeolite-like mineral species from Mont Saint-Hilaire,Quebec, and its crystal structure. Can. Mineral, 32,855-863.

Frnsrraen, A.E. (1908): Materialien zur Untersuchung derZpolrthe Russlands. I. Leonhardit und Laumontit ausder Umgebung von Simferopol (Krim). Trav. du Musde96ol. Pierre le Grand pn l'Acad, hnp. de ScienceSt Pdtersbourg 2, lO3-L50 (abstr. ia Z. Kristallogn 50,75-76\.

FIScHER., K. (1966): Untersuchung der Kristallstruktur vonGmelinit..tVeaes Jahrb. Mineral., Monatsh., l-13.

gismondite, a detailed refinement. /n Molecular SieveZ,eobtes. Am. Chem. Soc., Adv. Chem. Ser. l0l,250-258.

Fhalla{, M. & Pnncrtraa, N. (1994): Portite discredited =natrolite and new data on "schneiderite" (= laumontite).Eur J. Mineral. 6, 351-353.

Fucss, J.N. (1816): Ueber die Zeolitle. (Schweigger's) J.Chem. and Phys.18, l-29.

Garr-r, E. (1971): Refiaement of the crystal structure ofstilbite. Acta Crystallagr. Bn, $3-841.

(1975): Crystal structure refilement of mazz7le.Rend Soc. It. Mineral. Petrol.3l,599-6L2.

-(1976): Crystal structure refinement of edinglonite.Acta Cry s t aIIo g r. B.32, | 623 -l 627 .

& ABERrl, A. (1975a): The crystal structure ofstelleita. BuIl. Soc. fr Minlral. Crisnllogn 98, 11-18.

& - (1975b): The crystal stnrcture ofbalreite. BuIl. Soc. fr, MindraL Cristallogr. 9E,331-3N.

-& GotrenoI, G. (1966): The crystal structure ofstibits. Mineral. Petogn Acta (Bolngn) 12, l-l0.

& PoNGILUPPL D. (1979): The crystalstructure of the zeolite merlinoite.lveaes Jahrb, Mineral.,Monatsh." L-9.

& Loscm Gnnrom, A.G. (1972): The crystalchemistry of phillipsites. Az. Mineral, 57, ll25-LL45.

Passecua, E,, PoNGu,uPPI, D. & RNALDI, R.(1974):M;azzl:tB" a new mineral, the natural counterpafiof the synthetic zeolite Q. Contrib. Mineral. Petrol, 45,99-105.

& Z^N^z,n, P.F. (1982): Gmelinite:structural refiaements of sodium-rich and calcium-richnatural crystalg. Neues Jahrb. Mineral., Monatsh.,145-155.

Quanrnnr, S., VEzzeu.u, G. & AI-BERTI, A.(1995): Boggsite and tschernichite-g4te zeolites from MlAdamson, Northern Victoria Land (Antarctica). Ean J.Mtureral.7. L029-1032-

Gottardiite, a new high-silica zeolite fromAntarctica: thenatural counterpart of synthetic NU-87 . Ear J. Mineral. E,687-693.

-&Fharau,M.(1997a'): Terranovaite from Antarctica: a new 'pentasil'

zenhte. Am. Mineral. 82,423429.

& R-trlAr-DI, R. (1974): The crystal chemistry ofepistilbites. Am" Mineral. 59, 1055-1061.

& Mopwe, C. (1981): Crystal chemistry

YEzzALrNr, G., Quarrrenr, S., Ar-SERTI, A. &Fnen'a.n, M. (1997b): Mutinaite, a new zeolite fromAntarctica: the natural counterpart of ZSM-5. Zeolites19,31,8-322.

Gano, J.A. & Tarr, J.M. (1972):T\e crystal structure of thezeolite offretite, K1.1Ca1.1Mg6.7[Si12.sAl5rO36]'1 5.2H2O.Act a C ry s tallo gn 828, 825 -834.

- (1980): The crystal structure of roggianite, azeolite-like silicate. hoc. 5th Int. Conf. on Zeolites

& _ (1997): Barrerite and other zeolites (L.V.C. Rees, ed.). Heyden, London, U.K. (205-213),

& Scnnamr, V. (1970): Crystal structure of oflevytes. Zzolites l, L57-L60,

Page 28: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1598 THE CANADIAN MINERALOGIST

Getn:eN, A.F. & Fucus, J.N. (1813): UeberWerner's Zeolith,Hatiy's Mesotype und Stilbite. (Schweigger's) J, Chem.und Phys.8, 353-366.

Gtsuouor, C.G. (1817): Osservazioni sopra alcuni fossiliparticolari de' contomi di Roma. Giornnle Enciclopedicodi Napoli, Anno Xl, 2, 3-15.

GrusEppE'nr, G,,MAzn, F., Talnrn, C. & Gar-lr, E. (1991):The revised crystal structure of roggianite:CarfBe(OII)rAlrSiOrrl<2.5HrO. r'feues Jahrb. Mineral.,Monatsh..3O7-314.

Gottlteno, F. (1890): Sur 1'oft6tite, esp&e min6rale nouvelle.C.R. Acad. Sci., Paris 111, 1002-1003.

GonooN, E.K., Savsox, S. & Ka,D, W.B. (1966): Crystalstructure of the zeolite paulingite. Science 154,1004-1007.

Gomenor, G. & Ar-ennrr, A, (1974'l: Domain structure ingarronite: a hypothesis. MlzeraL Mag,39, 898-899.

& Garrt, E. (1985): Natural Zeolites. Springer-Verlag, Berlin, Germany.

& Mrmn, W.M. (1963): The crystal structure ofdachrardrte. Z Kristallo gr. ll9, 53-fu ,

Gnaqau, R.P.D. (1918): On ferrierite, a new 2solitig minsral,from British Columbial with notes on some other Canadiauminerals. T?ans. R. Soc, Can., Sen 3, t2,185-201.

Gnau;or-I\4m., R., GRArtrLrcH, V. & MEER, W.M. (1985):The crystal structure of the monoclinic variety offerrierite.A Mineral, 70.6L9-623.

Hanmorn, W. (1825): Description of edingtonite, a newmineral species. Edinbargh J. Sci. 3,316-320.

Hanena, K., Iwauoro, S. & Kruna, K. (1967): Erionite,phillipsite and gonnardite i:r the amygdales of alteredbasalt from Maz6, Niigata Prefecture, Iapan. Am. MincraL52,1785-1,794.

Hassan, I. (1997): Feldspathoids and tleir relationships tozeolites. Ktwait J. Sci. Engineertng A, rc3-n7.

IIAtIr, R.-J. (1797): Analcime. J. des Mines 5,n8-n9.

- (1801): Traitd de min4ralagre 3. Chez Louis, Paris,France.

(18O9): Tableau Comparatif des R€sulta* deCrisallagraphie et de l'Arnlyse Chfunique Relativement dla Classification des Mindraax, Courcier, Paris, France.

HAa!{, R.M. & Fnqcnn, L.W. (1979): Polyhedral tilting: acornmon type ofpure displacive phase transition and itsrelationship to analcite at high pressue. Phase Tfansitionsl, t-22.

H NEy, P.J. & Vr,rur, D.R. (1990): A high-temperaturestudy of the low-high leucite phass hansition using thetransmission electron microscope. Am. Mineral. 75,46+476.

Ilssss, K.-F. (1983): Refinement of a partially disorderednatolite, Na2Al2Si3O16.H2O. Z Kristallogr 163, 69-74.

tfuv, M.H. (1930): Studies on the zeolites. I. General review.Mineral. Mag. XL, 422437.

(1960): Glottalite is chabaate. Mineral. Mag.32,421422.

-(1962} An Indzx of Mineral Species andVarietiesAnanged Chemically (2nded., andAppendices, 1963 and1974). British Museum, Irndon, U.K.

Hnfire, C. (1897): Handbuch der Mineralogia 2. Von Veit,I*ipag, Germany.

Honr, H., Necasnnae, K., Yaveoa, M., Mrvawerr, R. &MARUBASm, T. (1986): Ammonioleuciten a new mineralfrom Tatarazaw4 Fujiok4 lapat Am Mineral. Tl,1022-Lon.

How, H. (1864): On mordenite, a new mineral from the trapof Nova Scotia. J. Chern. Soc. l7 (new sen),17, 100-1M.

HowARD, D.G. (1994): Crystal habit and t$"inning of gaxronitefrom Fara Vicentina" Yrcenza (Italy). Neues Jahrb.Mine ral,, M onats h., 9 l-96.

TscnaRNrcH, R.W., Surm, J.V. & KLSN" G.L.(1990): Boggsite, a new higb-silica zeolite from Goble,Columbia County, Oregon, Arn. Mineral. 75, l20O-12M.

HuANc, WEr.{-Hu, Tu, SnAo-HuA" WANG, K'uNc-HAl CnAo,Grul-Ln:l & Yu, Cnwc-Gm (1958): Ilsiang-hua-shib anew beryllium mineral . Ti-chih-yueh-k'an 7 , 35 (abstr. inAm. Mineral. 44, 13217 -1328; 6, 244).

HURLBUT, C.S., Jn. (1957): Bikitaite, LiAlSirOu,HrO, a newmineral from Southern Rhodesia. Am. Mineral. 42.792-797.

IsRAItnr4, K. & IIeu., A. (1995): New occurrences ofdiagenetic faujasite in the Quaternary tuffs of north-eastJordan. Eun J. Mturcral.7. 1129-1135.

IIJITaA, A. & HARADA, K. (1969): Authigenic zeolites inzeolitic palagonite tuffs on Oahu, Hawaii. Am. Mineral.54, 182-197.

JArEsoN, R. (1805): System of Mineralogy II. Bell andBradfirte, Edinburgh, U.K. (539).

Joswrc, W., Barn-, H. & FuBss, H. (1984): Structure refine-ment of scolecite by neufron diffraction. Z. Kristallogrt66,219-223.

KAIi,B, W.B. & Orq W.C. (1960): Paulingite, anew zeolife, inassociation with erionite and filiform pynte. Aru Mineral.45.79-91.

KAwAHARA, A. & Curuw, H. (1969): La structure cristallinede l'6rionite. Bull. Soc. fn Mindral. Crtstallogn 92,250-256.

KERR, I.S. & Wu.nus, D.J. (1969): The crystal strucfire ofyugawaralite. Acta Crystallogn 825, 1183-1190.

Page 29: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCLATURE FOR 4OLME MD{ERAI,S L599

KHoMrAKov, A.P., CHEREprvsKAyA, G.Ys., Kunove, T.A. &KAprsov, V.V. (1982): Amicite, K2Na2AlaSiaO16.5H2O,frst find in the USSR. Dokl. Akad. Nauk SSSR 263.978-980 (in Russ.).

Sar.rpom.sraya, S.M. & MALNoVSKI, Yu.A.(1980): Kalbonite, K6BAI4Si6O4(OH).C1, a new minetal.Dokl. Akad- Nauk SSSR 252, 1465-L468 (in Russ.).

KrM, Y. & Krnrcarnrcr, R.J. (1996): Application of MASNMR spectroscopy to poorly crystalline materials: vis6ite.Mineral. M ag. 60, 957 -962.

KLAPRofiI, M.H. (1803): Chemische Untersuchung desNatroliths. Ges. Naturforschender Freunde zu Berlin,N e ue S c h rift e n 4, 243 -248.

Koctrrar, V., Garr, R.I. & RucKr.pcs,J. (L974): The crystalstructure of bikitaite, Li[AlSirO6].I{rO. An Mineral, 59,7t-78.

Koraua, K. & TerGucr, Y. (1977): Clinoptilolite: the distri-bution ofpotassium atoms and its role in thermal stability.Z. Kristallogr. 145, 216-239.

Knauss, W., BRNHARDT, H.-I., EFFB{BERGER, H. & GIEsrR"G. (1997): Tschdrtnerite, a copper-bearing zeolite from theBellberg volcano, Eifel, Germany. Ber Deutsch, Miwral,Ges. 1,205 (abstr.).

KnmsArnmsml, E., DANo, M. & Psrm.sw, O.V. (1969): Atetragonal natrohte. Medd- om Gr4nland l.8|, l-19.

Kvrcr, A., ARrroLL G. & Srrnrn, J.V. (1936): Neutrondiffraction study of tle zeolite yugawaxalite at 13 K. Z,Kristalla g n l7 4, 265-281.

SrAru., K. & Surm, J.V. (1985): A neutrondiffuaction study of the bonding of zeolitic water inscolecite at 20 K. Z. Kristallogn 171,l4l-154.

Lecnox, A. (1 896): Sur la gonnndrte. Bull. Soc. fn Mindral.19,426429.

LANcHoF, J. & Holsreu, D. (1994): Boron-bearingchiavennite and otler late-stage minerals of tleProterozoic litiium-pegoatites of Utii, Stockholm,Sweden. Int. Mineral. Assoc., l6th Gen. Meet. (Pisa),Abstr.232.

LARSBN, A.O., Asrsnr, A., Raaos, G. & TAFro, J. (1992):Tvedalite, (CaMn)aBqSi6O,r(OlDa.3HzO, a new mineralfrom syenite pegmatite in the Oslo region, Norway. An.Mineral. 77. 438443.

LEn/c& H.W. & Sr.aucrnr,n, M. (1969): The determinationand refinement of the crystal structure of yugawaraJite. ZKristallogr 130, 88-111.

LENGAUER, C.L., Gmsrsn, G. &TnnaarNs, E. (1997): Min-eralogical characterization of paulingite from ViaarickdHora, Czech Repablic, Mineral. Mag. 61, 591-606.

voN LBoNITARD, K.C. (1817): Die Zeagonig ein neues Mineralvom Capo do Bove bei Rom. Taschenbuch frtr die

gesamnte Mineralogie mit Hinsicht auf die neuestenEntdeckungen ll, 164-168 (extracted from Gismondi1817).

(1.82L): Handbuch der Oryktognosie. Mohr &Mnter, Heidelberg, Germany (448).

LsvnrsoN, A.A. (1966): A system of nomenclature forrare-earth minerals, Am. Mineral, 51, 152-158.

Ldw, A. (1825): Descriptions of two new minerals. fumals ofPhilosophy, new ser.10, 361-363.

Lo, H.-J. & Hsnn, Y.-L. (1991): Iligh potassium naturalmordenite and the chemical variation of mordenite. Proc.Geol. Soc. China (Taiwan) 34, 305-312.

SoNc, S.-R. &WaN, S.-8. (1991): Highpotassiummordenite in the andesite from the Coastal Range, eastemTaiwaa. Proc. Geol. Soc, China (Taiwan) 34, 293-3M.

Luccmru, G., Messa, B. & PsNco, A.M. (1982): Strontianheulandite from Campegli (eastern Ligurian ophiolites,Italy). Neaes Jahrb. Mineral,, Monatsh,, 541-550.

MAln{ovsKrr, Yu.A. (1984): The crystal structure ofK-gmelinite. Kistallagrafirya 29, 426430 (in Russ.).

& BBLov. N.V. (1980): Crystal structure oflVaat S,S,Sft 252. 611'-615kalborsite. Dokl. Akad..

(in Russ.).

MAsoN, B.H. (1957): Gonnardite (ranite) fromLangesundsfiord . Norsk geoL TId*skr 37, 435437 .

M-wt"F. & GAII, E. (1978): Is each analcime differcnt? Am-Mineral. 63,448460.

& -(1983): The tetrahedral framework ofchabazite. Neues Jahrb. Mincral, Monatsh. 461-480.

& GorreroI, G. (1976): The crystalsfucture of tetragonallelrcite. Am. Mineral. 6L, L08-115,

& - (1984): Crystal structurerefinement of two teffagonal ediaglonites. News Jahrb.Mfurcral, M onatsh., 37 3-382.

LARSEN, A.O., GorrARDI, G. & GAul, E. (1986):

Gonnardite has the tetrahedral framework of natrolite:experimental proof with a sample from Norway. lfeaasJahrb. Mirral,, Monatsh., 2L9-228,

McCoNNELL, D. (1964): A zinc phosphate analogue ofanalcime: kehoerte. MineraL Mag. 33, 7 99-803.

McCusGR, L.8., BaBnr-oclrnn, C. & Nawez, R. (1985):fuetveld refinement of the crystal structure of the newzeolite miaeral gobbinsite. Z. Kristallogr. l7l, 281-289,

Mrten, W.M. (1961): The crystal sffucture of mordenite(ptitolite). Z. Kristallo gn ll5, 439 450.

OLsoN, D.H. & BeeRrccffi, C. (1996): Atlas ofzeolite structure types. kolites t7, L-23O.

Page 30: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1600 THE CANADIAN MINERALOGIST

MrN'snxov, Yu.P. (1984): Perlialite, Krl.{a(Ca,Sr)[AlrzSizorr]'15Hro, a new potassian zeolite from tleKhibina Massrf. Zap. Vses. Mineral. Obshchest. ll3,6M-612.

- DBr.usov, A.P., UsFElsKAyA, E.I. & Lparova, E.A.(1973): Lovdarite, a new hydrous beryllosilicate ofalkd;s. Dokl. Akad.lVazl SSSR 213 , M9432 (in Russ.).

MeRxLs, A.B. & Suucurug M. (1968): Derermination andrefinement ofthe stucture ofheulaadite. Am. Mineral. 53-1120-1138.

Mnru,nro, S. (1972): Orizite discredited (= epistilbite). Arz.Mineral. 57,592-593.

(1974): The crystal structure of wenkite. ActaC ry s t allo g n 830, 1262- 1268.

(1990): Lovdarite, I!Na12(BesSioOT2)'1 8H2O, azeolite-like mineral: structural features and OD character.Eun J. Mineral. 2, 809-817.

Gau,r, E. & Alrrnn, A. (1975): The crystalstructure of levyne. Tschermaks Mineral. Petrogr. Mitt.22, rt7-129.

MnIAro, H. & Tararo, T. (L964): An occurrence ofpotassium clinoptilolite from ltaya, Yamagata hefecture,Japan. J. CIay Sci. Soc, Japan 4,12-22 (in Japanese withEnglish absn ).

MIzorA, T., Surrure, G., Snnraezu, M. & TaxssHnA, Y.(1974): Mineralogical studies on levyne and erionite fronJapan. Geol. Soc. Japan, Mem.11,283-290.

Monoznwrcz, J. (1909): Uber Stellerit, ein neuesZeolithmineral. Bull. International de I'Acaddmie desSciences de Cracovie. 34+359.

Mutup.roN, F.A. (1960): Clinoptilolite redefined. Am. Mineral,45.35t-369.

Narernae, W. (1983): Disordered wairakite from Hikihara,Haga Town, Hydgo Prefecture. BuIl. Faculty of Educa-tion, Kobe Univ. 70,3946.

NAIryAz, R. (1983): New data on gobbinsile and garronite.Mineral. Mag 47, 567-568.

- (1984): New data on cowlesite from NorthernIreland,. Mineral, Mag 48, 565-566.

& Melowe, J.F. (1982): Gobbinsite, a new zeolitemineral from Co. Antrim, N. heland. MineraL Mag.46,365-369.

NICKEL, E.H. & MANDARI{o, J.A. (1987): Proceduresinvolving the IMA Commission otr New Miaerals andMineral Names, ald guidelines on mineral nomenclature.Can. Mineral. 25, 353-377 .

NoRNBERG, P. (1990): A potassium-rich zeolite in soildevelopment on Daaian chet. Mineral. Mag 54, 9l-94,

Ocurane, S. & IIrntA, A. (1990): Exceptionally K-richclinoptilolite - heulandite group zeolites from tlreeoffshore boreholes off northern Japaa. Eutr J. Mineral. 2,819-826.

PAssAcuA, E, (1969a): Le zeoliti di Albero Bassi (Vicenza).Pen Mineral. 38, 237 -243.

(1969b): Roggianite, a new silicate mineral. ClnyMinerals 8.107-lll.

(1970): The crystal chemistry of chabazites. An.Mineral. 55, 1278-1301.

(1975): The crystal chemistry of mordenites.Contrib. Mineral. Petrol. 50, 65-77.

ARrrou, G. & Gualruru, A. (1998): The crystalchemistry of the zeolites erionite and ofhetite. Arz.Mineral. 83,57'7-589.

& CamlBveq R. (1995):Diagenetic mordenite from PonzqItaly. Eur J. Mineral.7,429438.

GALLT, E., LsoNr, L. & Rossr, G. (1978b): Thecrystal chemistry of stilbites and stellerites. BrrlL Minlral.101. 368-375.

& Rntar-ot, R. (1974): Levynes anderionites from Sardinia, Italy. Contrib. Mineral. Petrol.43,253-259.

& PoNcnuppr, D. (1974): Sodian stellerite fromCapo I'nla, Sardegna. Lithas 7, 69-73.

& _ (1975): Barrerite, a new naturalzeohte, Mine ral. Mag. 40, 208.

& Rnqapl R. (1977): Merlinoite, a newmineral of the zeolite gtoup. Neres Jahrb. Mineral.,Motuztsh..355-36l,

& VBzzamu, G. (1978a): The crystalchemistry of gmelinites. Neues Jahrb. Mineral., MonatslL,3t0-324.

& SeceRDou, M . (1982): Crystal structural refine-ment of Na-exchanged stellerite. Bull. MindraL 105,338-342.

& Tlcr,ravnu, A. (1994): Chabazite - offretiteepitaxial overgrowths in cornubianite from Passo ForcelRosso, Adamello,Italy. Eur J. Mineral, 6,397405.

& VBzzar.nu, G. (1985): Crystal chemistry ofdiagenetic zeolites in volcanoclastic deposits of Italy.Contrib. Mineral. Petrol. N. 190-198.

formula201-206.

- (1988): Roggianite: revised chemicaland zeolitic properties. Mineral. Mag. 52,

Page 31: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

& CanNevALI, R. (1990): Diageneticchabazites and phillipsites in ltaly: crystal chemistry andgenesis. Ean J. Mineral, 2, 8n -$9.

Psacon, D.R. (1968): A high temperature single crystaldifhactometer study of leucite, (K,Na)AlSi2O6. z,Krt s t allo g r l?:1, 21,3 -224.

Dr.rm, P.J., SndMoNs, W.B., TnuaNNs, E. &FIscItER, R.X. (1984): Willhendersonite, a new zeoliteisostructural with chabazite, fun, Mineral.69. 186-189.

- Wrcrs, F.J. & RATDSFP, M.(1988): Maricopaite, a new hydrated Ca-Pb, zeolite-likesilicate from Arizotu Can. Mineral. 26. 309-313.

PBKov, I.V. & CnureNov, N.V. (1996): New data onkalborsite. fup, Vses. Mineral. Obshchest. 125(4),55-59(in Russ.).

Prnnorra, A.J. (1967): The crystal structure of epistilbite.Mineral. Mag. 36, 480490.

& SIImH, J.V. (1964): The crystal structureof brewsterite, (Sr,Ba,Ca)z(AlaSit0rS.1gl1r6. O"roC ry stalla gn 17, 857 -862.

hssoN, L.V. (1890): On mordenite . An" J. Sci. 140,232-237 .

Pnrnr, J.J. & Slurm, J.V. (1990): Crystal structure ofboggsite, a new high-silica zeolite with the frstthree-dimensional channel system bounded by both 12-and lO-rings. Am Mineral.7s, 501-507.

Howano, D.G. & TscnsRNrcg, R.W.(1989): Boggsite; the first tlree-dimensional channelsystem with both l2-and l0-rings. /z Zeolites for theNineties, Recent Research Reports (J.C. Jaasen, L.Moscou & M.F.M. Posl eds.). Eighth Int. Zeolite Conf.(Amsterdam), I I 1-1 12 (abstr.).

Querrcru, S. & VszALru, G. (1987): Crystal chemistry ofsfilbites: structure refinements of one nornal and fourchemically anomalous samples. kolites 7, 163-170.

& Ar-anu, A. (1990): Dachiardite fromHokiyadake: evidence of a new tspology Eur J. Minzral,2.187-193.

RaalB, G. (1996): Minerals originally described fromNorway. Including notes on type material. NorstB e r gv e rksmus e ums Slrift s e rie ll.

-, Artu,r, R., Mr,aoscr, M.H., Dw, V.K., LansBr,A.O. & Asnsu, A. (1983): Chiavennite from syenitepegmatites ir the Oslo region, Norway. Am. Mineral. 68,628-633.

RAsrsvETAEvA, R.K., Rrreu,ova, O.Y., ArronraNov, V.I. &MALD.rovsK[, Yu.A. (1991): Crystal structure ofhsianghualite. Dokl. Akad. Naaft ,ISSR 316, 62+628(in Russ.).

Rwar,or, R. (1976): Crystal chemistry atrd structural epitaxyof of&etite - erionite from Sasbach. Kaiserstuhl. iVeuesJahrb. MineraL, Mottntsh., 145-156.

RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERAIJ

of pahasapaite,distorted zeolitetr95-1202.

Pnrnr, J.J. & Surrl J.V. (1974): Zeolites of thephillipsite family. '[efinement of the crystal structuresof phillipsite and harmotome. Acta Crystallogr. D.30,2426-2433.

e -(975b): Crystal structureof maz.zite dehydrated at 600"C. Acta Crystallogn R31,1603-1608.

SIvnru, J.V. & JuNc, G. (1975a): Chenistry andparagenesis of faujasite, phillipsite and offretite fromSasbach, Kaiserstuhl, Germany. Neues Jahrb. Mineral.,Monatsh..433443.

& VBzemu, G. (1985): Gismondhe; the detailedX-ray structure refinement of two natural samples.In Zeolr:teq' Synthesis, Structure, Technology andApplication (8. Daj, S. Hodevar & S. Pejovnik, eds.).Elsevier, Amsterdam" The Netherlands (481492).

RoBnIso\ G.W & GRIcE, J.D. (1993): The barium analog ofbrewsterite from Harrisville, New York Con Minzral.3L,687-690.

Rosn, G. (1826): Ueber den Epistilbit eine neue zur Familieder Zeolithe gehtirige Mineralgattung, (Poggendodf 's)

Amalender Physikund Chemie 6, 183-190.

Ross, C.S. & Ssamqon, E,Y. (1924): Mordenite and associ-ated minerals from near Challis, Custer County, Idalo.Proc. U.S. Nat Museum @(19), L-19.

Ross, M., Flom., M.J.K. & Ross, D.R. (1992): Crystallinesolution series and order-disorder within the mtrolitemineral goup. A;rz, Mineral. 77 , 685-703.

Rouse, R.C., Dr-Dw, P.J., Gnrce, J.D., SCHI.EI.II{BR, J.L.& rlrccn{s, J.B. (1990): Montesommaite,(K,Na)qAlqSiBO64'10H2O, a new zeolite related tomerlinoite and the gismondine group. Am. Mineral.75,r4L5-1420.

-& PBAcoR, D.R. (1986): Crystal structure of thezeolite mineral goosecreekite, CaAlrSi6O16.5H2O. AnMineral. Tl. I49+I5OL.

& - (1994): Maricopaie, an unusual leadcalcium zeolite with an interrupted mordenite-likeframework and intrachannel Pbo tetrahedral clusters. AraMineral.79.175-lU.

DUNN, P.J., CArvtr'Bpr I., T.J., RoBERts,W.L., WIcKs, F.J. & NswBURv, D. (1987): Pahasapaite, aberyllophosphate zeolite related to synthetic zeolite rho,from the Tip Top pegmatite of South Dakota. NeaesJ ahrb, MineraL, M onatsh, 433444.

1601

& Mm.Lnco, S, (1989): Crystal structurea beryllophosphate mineral with arho framework. Am. Mineral. 74,

RoDNosR, 8., Ttrluexr.rs, E. & HsN'IscIfiL, G. (1993):Bellbergite - a new mineral with the zeolits sfructre typeF'AB. Mineral. Petrol. 4E,147-152.

Page 32: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1602

Saxuner, K. & Heyasm, A. (1952): "Yugawaralite", a newzeolite. Jci. Rep., Yokolwma NaqUniu, Ser.II,l,69-77 .

Sanp, H., Dsm.Ne, J., Bzouann, H. & LnsIctr, B.W. (1979):La parthdite, CaAl2Si2Os.2!12O, un nouveau silicatenaturel d'aluminium et de calcium. Schweiz Mineral.Petrogr Mitt.59,5-L3.

ScHAI,I.R" W.T. (1923): ftilolite and related zeolites. /n hoc.Societies @.T. Wherry, ed.). AnL MilrcraL8,93-94.

(1932): The mordenite - ptilolite group;clinoptilolite, a new species. Arn Mineral. YI,128-134.

Scru,Buren, J.L., PLUrs, J.J. & St"trll I.Y. (1977a):Refinement of the crystal structure of brewsterite,Bas5SrlsAlaSirro32.lOHrO. Acta Crystallogn E.33,2907-29tO.

_ & (1977b): Dehydratednatural erionite with stacking faults of the offretite type.Acta C ry s tallo gr 833, 3265 -3268.

Scrfi.OpFBR, L. & Joswrc, W. (1997): Structure analyses of apartially dehydrated synthetic Ca-garronite single crystalunder differentT, pHrO conditions. Eun J, Mineral.9,53-65.

SBxr, Y. (1971): Wairakite - analcime solid solution as anindicator of water pressures in low-grade metamorphism.J. Geol. Soc. Japan17,667-674.

& Ort, Y. (1969): Wairakite - analcime solidsolutions from low-grade metamorphic rocks of theTanzawa Mountains, central Japan. Mineral. J. 6,3645.

SnsFpARD, R.A. & Fn-aarnrcr, J.J. (1989): Phillipsite fromsilicic tuffs in saline, alkaline-lake deposits. Clays CLayMinerals 37.243-247.

& GIDE,AJ.,Itr (1969a): Diagenesis of tuffs intheBarstow Formation, Mud Hills, San Bernardiao County,Califomia. U.S. Geol. Surv., Prof. Pap, 6A,l-35,

& - (1969b): Chemical composition andphysical properties of tle related zeolites offretiteand erionite. Arz. Mbrcral.54. 875-886.

& Grurrn, J.J. (1970): Chemical com-position and physical properties ofphillipsite from thePacific and Indian oceans. Ar?. MfueraL 55.2053-2062.

& MuNsoN, E.L. (1965): Chemicalcomposition of diagenetic zeolites from tuffaceous rocksof the Mojave Desert and vicinity, California. Arz.Mineral. 50.24+249.

Stvrrnr, J.V. (1988): Topochenristry of zeolites and relatedmaterials. 1. Topology and geometry. Chem. Rev, 8E,149-t82.

KNAwE6, C.R. & Rnt.llpr, R. (1964): Crystalstructures with a chabazite framework. Itr. HydratedCa-chabazite at +20 and -150oC. Acta Crystallogn 17,374-3U.

PLurH, J.J., Boccs, RC. & Howenp, D.G. (191):Tschernichite, the mineral analogue of zeolite beta. J.Chem- Soc., Chem. Commun.,363-3il.

SrAru K., Kvrcr, A. & Surnr, J.V. (1990): Thomsonite, aneul:ron diffraction study at 13 K. Acta Crystallogr C46,t370-1373.

SrsnvsR, A. (1955): Wairakite, the calcium analogue ofanalcime, a new zeolite mineral. Mineral. Mag. 3O,691-698.

Srnuvz, H. (1956): Die Zeolithe Gmelinit, Chabasil Levyn(Phakolith, Herschelit, Seebachit, Offrett). Neues Jahrb.Mineral., Morwtsh., 25U259.

(L978): Mineralogische Tabellen (7th ed.).Akademische Verlagges., Leipzig, Germany.

Srucr<mlsc}nr,mr,8., FuFss, H. & Kvrcr<, A. (1990): Investi-gation of the structure of harmotome by X-ray (293 K,100 K) and neutron ditraction (15 K). Ear. J. MirwraL 2,861-874.

TAx€ucrfl, Y., MAzzt,F., Haca, N. & Gau,t, E. (1979): Thecrystal sfiucture of wairakite. Ar?. Mineral.64, 993-1001.

TAyLoR, W.H. (1930): The structure of analcite(NaAlSirO6'HrO). Z Krtstuilogn 74, l-19.

& JAcKsoN, R. (1933): The structure ofedinglonite.Z. Krtstallagn 86, 53-64.

Tezorr, V., Dolrmrecnrrrr, M.C., MAz, F. & Camun o, E.(1995): The crystal structure of chiavennite. Ear J.Mineral. T,1339-13M.

TmrsrRA, D.K. & dERNf, P. (1995): Firstnatural @curencesof end-member pollucite: a product of low-temperaturereequilibration. Eur J. Minzral. 7, LL37-1148.

& DvsR, A. (1994): The informal discreditation of"doranite" as the magnesium analogue of analcime.kolites 14.411413.

Srm.rurp,8.L., Xu, Zrtr & CTERNf', P. (1994): MASand DOR NMR study of Al-Si order in the analcine -pollucite series. Can Mineral, 32, 69-80.

TsuGLrr, S.J. (1933): O ptylocie z Mydzka na Wolyniu - Surla ptilolite de Mydzk en Volhynie. Arch. Mindral., Soc.Sci. Varsovie 9, 99-102 (Polish), 103-lM @renchr6sum6). (Mineral. Absn 6, 129).

Tuuar.rxs, E., FrscHBR, R.X. & Beun, W.H. (1984):Chabazite-type framework in the new zeolitewillhendersonite, KCaAl3Si3Orz.SHzO. Neues Jahrb.Mine ral,, M onatsh., 547 -558.

Tsctmmqr, R.D. & W$q W.S. (1982): Paulingite: variationsin conposition. Atn, Mineral. 67, 7 99-803,

UENo, T. & Haraoa, K. (1982): Chemical conpositions andgeneses of zeolites from Tsuyazaki, Fukuoka hefecture,Iapar J. Mineral. Soc. Japan15,259-n2 (in Japanese,with English abstr.).

Page 33: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCI.ATI.'RE FOR reOIJTE MINERAI.S 1603

VAUGHAN, P.A. (1966): The crystal structure of the zeoliteferrieito Acta Crystallogr 21, 983-990.

VBzzem.u, G. (1984): A refirement of Elba dachiardite:opposite acentric domains simulating a centric structure.Z Krtstuilogr16,63-71.

Anrror4 G. & Quarnrru, S. (1992): The crystalchemistry of cowlesite, Mturcral. Mag. 56,575-579.

& OBERTI, R. (1984): The crystal chemistry ofgismondines: the non-existence of K-rich gismondines.Bull. Mind ral. 1117, 805-812.

Quamruru, S. & Gar-lr, E. (1996): Relazionistrutturali nelle zeoliti con topologia CHA alla luce delritrova:nento di una Ca-willhendersonite. XXVI CongressoNazianale dclla Associazione ltaliana di Cristallo grafi.a(Ale s sandria), 9 I (abstr.).

Ar-sERn,A., Cnuqaq C. &Kvrcr, A. 9997b): Crystal sffucture of the zeolitemutinaite, the natural analogue of ZSM-S. Zeolites19.323-325.

structure of a K-rich natural g'nelinite and comparisonwith the other refined gmelinite samples. Neues Jahrb.Mineral., Monatsh., 504-5 16.

Vnl.annoal-, H.S. (1983): Sobre la existencia de otrasvariedades de estellerita y una forma de reconocerlas.Anais Aca.demia Brasileira d.e Ciercias 55,87-91.

Wru-rnn, G.P.L. (1962): Garronite, a new zeolite, fromIreland and lcelard. Mineral, Mag.33, 173-186.

Warrm, F. (1992): Weinebeneite, CaBq@O)r(OtlAIlrO, anerv minetal species: mineral data and crystal structure.Eur J. Mineral. 4, ln 5-Q83.

Wnqr, H.-R. (1973): The structure of wenkite. Z Kristallogr\37,t13-t26.

Wnrrs. J.S. & Enp, R.C. (1992): Kehoeite is rot a validspecies. Minzral. Mag, 56, 256-258.

Wrse, W.S. (1982): New occrurence of faujasite insoutleastern Californa. kn MineraL 67, 7 9+7 98.

& Tscsrnrqcu, R.W. (1975): Cowlesite, a new& -(1997a): Occu:rence and Ca-zenhte. Am- Mincral, 60. 951-956.

crystal structure of a Ca-pure willhendersonite. kolites& - (1976): Chemical comPosition of19,75-79.

& PAssAcLrA, E. (1990): Crystal

fefieri&. ArL Mineral. 61, 60-66.

Wvem, J. (1938): ftude surlaleucite. Bull. Soc.fr Mindral.61.228-238.

Yerc, Pnvc & AnvmRusrtsR, T. (1996): (010) disorder, partialSi,Al ordering, and Ca distribution in triclinic (Cl)epistilbite. Ear J. Mineral. 8, 2$-n l.

Received December 3, 1997.

Page 34: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

L604 TTIE CANADIAN MINERALOGIST

Aprnxpx 1. Norss on rm Dnrrnrnon or ^l Znolttr

Is more than 50Vo substitution of elements other thanSi and Al pennissible in tetrahedral sites?

There was complete agteement in the Subcommitteethat some substitution of elements such as P and Be forSi and Al in tetahedral sites must be permitted in thedefinition. Discussion in this context focussed onwhether a5OVo rule should be applied. The so-called50Vo rule (Nickel L992) is normally applied to split abinary solid-solution series into two species at tlehalf-way point according to the predominant cationsconcerned, but not to separate members of a solid-solution series into two separate classes of minerals,as could happen if applied in the present context.Proponents of. a 50c/o rule argued tlat the definitionof zeolites should be on grounds of both structureand composition, zeolites being aluminosilicates orpossibly Al-free silicates. The confiary opinion is thatwhere structures are topologically equivalent and otheressentially identical zeolitic characteristics prevail,irrespective of Si and Al contents in tetrahedral sites,any restrictions based on specific Si and Al contentswould be arbitrary and undesirable. The Subcommitteevoted by a substantial majority for this view. Theberyllosilicates lovdarite and chiavennite, like tlezincosilicate gaultite, have more than 50Vo tetrahedralsites occupied by Si, and are here accepted as zeolitesin spite of having little if any Al. Also included are theberyllophosphates pahasapaite and weinebeneite,which have neither Si norAl, but have typically zeoliticsructures and other zeolitic characteristics. They canbe regarded as end-member examples of Si-freezeolites or zeolite phosphates.

A compositional factor is included in the adopteddefinition in that the framework consists essentially ofoxygen atoms togetier with cations that enter intotefi?hedml co-ordination with oxygen.

Is thc presence of H2O and of exta-frameworkcations essential?

Reversible dehydration is a characteristic feature ofzeolitic behavior, but how much I{2O must be presertfor a mineral to be considered a zeolite? Polluciteforms a continuous series with analcime, the HzOcontent declining progressively *i1tr iaslsaging Cscontent such that fhe Na-free, Cs member is essentiallyanhydrous. It seems unnecessary, impractical, andillogical to prescribe some arbihary HrO contentbelowwhich pollucite (or other mineral) would be defined asanhydrous, and no longer az,eolrte. Furthermore, it isnot inconceivable that some typical zeolite might bereversibly dehydrated under natural conditions withoutessential loss of stnrcture. If so, it has not ceased to be azeolite. Although zeolites typically are hydrous, it is inex-pedient to specify the presence of H2O in the definition.

Natural zeolites are known with up to 88Vo oftetrahedral sites occupied by Si, as in mutinaite, andthere is no theoretical reason why this figure cannot boexceeded. If the site occupancy of tetrahedra by Siapproaches lffiVo, the exfra-framework cation contentwill approach zero, even though the structure and othercharacteristics may remain typically zeolitic. It is againconsidered inexpedient to word the definition so as toexclude such a hypothetical end-member case from thezeolite category. Melanophlogiteo a low-density SiO2phase with large cages in its framework, would bea possible example, but is otlerwise excluded bythe adopted definition because it lacks appropriatechannels for the passage of guest species.

REIERm{CE

Ntcrcr., E.H. (1992): Solid solutions in mineral nomenclature.Can. Mine ral. 30, 23 | -234.

Appnmrx 2. Drscnnortatroxs

H ers chelite is chab azite -Na

Herschelite, Na[AlSiOo].3HrO, was named byI-6vy (1825) from material broughl to him 6y Herschelfrom "Aci Reale" (nowAcireale), on the flanks of Mt.Etna in Sicily. Contemporary literature and present-dayexposrues suggest that the actual occurrence may havebeen in basaltic lavas at Aci Castello, nearby. L6vydescribed herschelite as tabular crystals of hexagonaloutline that contain 'silex, atumina, and potash". It waslater identified with chabazite (e.g., Hausmann 1847)and relegated to synonymy, altlough shown to beNa-rich, not K-rich. Strunz (1956) confirmed thatherschelite and chabazite give essentially identicalX-ray powder patterns. Mason (1962) proposed revali-dation on the bases of a supposed compositional gapbetween herschelite and'onormal" Ca-rich chabazite,the distinctive habit and lower indices of refraction.

Passaglia (1970) demonstrated a continuum ofcompositions from Ca- to frfu-deminant gpes, extendinginto the field of K-dominance in a ternary series; thereis no discernible gap in composition. The lower indicesof refraction reflect the Na-rich composition. Variantcrystal habit is not an accepted basis for speciesstatus for minerals, and some examples of stronglyNa-dominant chabazite have rhombohedral, not tabularhabit as in the case of micrometer-scale crystals aggre-gated into flin ragged plates, illushated by Sheppard eral. (1978).

In view of its chequered history and the aboveconsiderations, tle name herschelite is suppressed andtle name chabazite-Na is to be applied to thosemembers of the chabazite series in which Na is tlemost abundant extra-framework cation. Herschelitemay retain some use as a term for a distinctive habit.

Page 35: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

RECOMMENDED NOMENCI.{IT'RE FOR ZEOLITE MINERAI.S 1605

Leonhardite is H2o-poor laumontite

Ironhardite Caa[AleSiteOar]. -L II'O was describedby Blum (1843) for a mineral closely related tolaumontite Caa[A\Si16Oa].1 8HrO, but with differentmorphology. The type locality was near Schemnitz,nowadays Banska Stiavnica, tlen in Hungary, now inSlovakia. Delffs (1843) showed that type-localityleonhardite has less H2O (ca. 13 molecules of H2O performula unit) than laumontite. Doelter (1921) agreedtlat leonhardite is identical in composition tolaumontite, apart from its lower content of H2O. Thename has continued to be used widely for a materialthat forms rapidly and reversibly by partial dehydrationof laumontite under ambient conditions. This happensupon exposure in tle field and in the laboratory as afunction of H2O vapor pressure or by soaking in watergiving a readily observable change in extinction angleand cell dimensions (e.9., Coombs 1952, Annbruster &Kohler 1992).

Fersman (1908) introduced the term ooprimary

leonhardite" for a variety from Kurtsy (nowadaysUkrainka), Crimea, witl 14 molecules of HrO, whichneither dehydrates nor rehydrates under ambientconditions. In it, (K,Na)z substitutes for Cao altloughCa is still dominant (Pipping 1966).

Tlpe leonhardite of Blum from Schemnitz cata-logued in the Museum of Natural History Vienna, in1843 and type '?rimary leonhardite" of Fersmanobtained from the Fersman Mineralogical Museum inMoscow are shown by Wuest & Armbruster (1997) andStolz & Armbruster (1997), respectively, to have thesame Si.Al ordered framework of tetrahedra aslaumontite. The low H2O content of "primaryleonhardite'o is attibuted to space limitations resultingfrom the introduction of additional cations of largersize.

In conformity with Rule 4, leonhardite is discreditedas the name of a separate species. It is an H2O-poorvariety of laumontite. "Primary leonhardite" isH2O-poor sodian potassian laumontite.

Sv etlo zarite is dnchiardite - C a

Svetlozarite was described by Maleev (1976) asa high-silica zeolite occurring as spherulites inchalcedony veinlets in brecciated andesites west ofZvesdel, eastern Rhodopes, Bulgaria. Analysis showedCa > Na > K, and minor Fe and Mg. From X-raypowder-diffraction studies, Maleev suggested anorthorhombic symmetry, with a c-axis repeat of 7.5 A,which is characteristic of the mordenite group, to whichhe attributed the mineral.

Gellens et al. (1.982) concluded from powder andsingle-crystal X-ray and transmission electronmicroscopy (IEM) studies, tlat svetlozarite, spacegroup Ccma (?), is related to tle ideal dachiarditestructure by irregular periodic twinning and stacking

faults, and that it is not a topologicatly distinct memberof the mordenite family. Its composition is within therange of other samples of dachiardite. It is regarded asa multiply twinned and highly faulted dachiardite(dachiardite-Ca), and is discredited as a separatespecies.

Wellsite is barian phillipsite-Ca and calcianharmotome

The mineral named wellsite by hatt & Foole (1897)has been shown by Galli (L972) and Galli & LoschiGhittoni (1.972)to be isostuctural with phillipsite andharmotome, and dernf et al. (1977) have shown thatzoning in crystals of wellsite covers most of the rangefrom Ca-rich phillipsite to potassian calcianharmotome. Wellsite is discredited. Most examples ofwellsite are barian phillipsite-Ca and others are calcianharmotome.

RmsnnNcss

Aru,mnusrm, T. & Kon m, T. (1992): Re- and dehydration oflaumontite: a single-crystal X-ray study at 100 K. NeaesJahrb, Mineral., Monatsh., 385-397.

BLUM, J.R. (1843): Leonhaxdit, ein neues Mineral.(Poggendorffb) Annalen'der Physik und Chemie 59,336-339.

GnrV, p., RnqamI, R. & Sunoarra, R.C. (1977): Welsite andits status in the phillipsite-harmotome group. lfeaesJahrb. Mineral.. Abh. 128. 31'2-320.

Coours, D.S. (1952): Cell size, optical properties andchemical composition of laumontite atrd leonhardite. Arn.Mineral.37,812-830.

DEITFFs, W. (1843): Analyse des Leonhardits. (Poggendorff's)Annalen der Physikwtd Chemie 59,339-342.

DoELTER, C. (192L): Handbuch der Mineralchemie fr,3.Verlag Theodor Steinkopff, Dresden, Gemmny.

FsnsMAN, A.E. (1908): Maxerialien zur Untersuchung derZeolithe Russlands. I. Leonhardit und Laumontit ausder Umgebung von Simferopol (IGim). ?rar. du Musde96ol. Pierre le Grand. pn l'Acad. Imp. de ScienceSt Pdtersbourg 2, 103-150 (abstr. in Z. Kristallogn 50,75:76).

Gerr.r, E. (1972): La phillipsite barifera ("wellsite") di M.Calvarina (Verona). Per. Mturcral, 41, 23-33.

& Loscrn GnroM, A.G. (1972): The crystalchemistry of philripsites. Anr- Mfueral. 57 , 1125-1'145.

Gsr-r-s rs, R.L., PnrcB, G.D. & SMrH, J.V. (1982): Thestructual relation between svetlozarite and dachiardite.Mineral. Mag. 45, 157 -161.

Page 36: RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: … · Dipartimento di Ingegneria dei Materiali e della Prod.azionc, Universitd Fedcrico II di Napoli, Piazzple V Tecchio, 80, I-80125

1606 THB CANADIAN MINERALOGIST

HAUSMANN, J.F.L. (1847): Handbuch der Mineralogie(2nd ed.). 2,1600.

LEw, A. (1825): Descriptions of two new minerals. Annals ofPhilosophy, ns-w ser, 10, 361.-363.

Merwv, M.N. (1976): Svetlozarite, a new high-silicazeohte,7ap. Vses. Mineral. Obshchest, 105,449453 (in Russ.).

MAsoN, B. (1,962): Herschelite - a valid species? AntMineral. n.985-987.

Passeclre, E. (1970): The crystal chemistry ofchabazites.Am^ Mineral. 55. 1278-1301.

PFFD{c, F. (1966): The dehydration and chemical compositionof laumontte. Mbzeral. Soc. India, IMAVol.,1.59-166.

PRATT, J.H. & Foorn, H.W. (1897): On wellsite, a newmineral. Am. "/. Sci. 153. M3-448.

Snrrreno, R.A., GUDB, A.J. & Eosor.t, G.M. (1978): Bowiezeolite deposit, Cochise and Graham Counties, Arizona.1z Natural Zeolites - Occurrence, Properties and Use(L.8. Sand & F.A. Mumpton, eds.). Pergamon, oxford,u.K. (319-328).

Srorz, J. & AnMsnusrER, T. (1997): X-ray single-crystalstructure refinement of a Na,K-rich laumontite, originallydesignated "primary leonhardite"'. lfeues Jahrb. Mineral.,Monatsh. I3L-I34.

Srmrxz, H. (1956): Die Zeolithe Gmelinit, Chabasit, Levyn(Phakolith, Herscheli! Seebachit, Ofuetit). Neues Jahrb.M ineral., M onatsh., 250-259,

Wuesr, T. & AnvsRusrsn, T. (1997): Tlpe localityleonhardite: a single-crystal X-ray study at 100K, kolite'97, 5th Int, Conf. on the Occurrence, Properties, andUtilization of Nanral Zeolites (Ischia, Italy), ProgramAbsn.327-328.