Recent Results on Polynomial Identity Testing

40
Recent Results on Polynomial Identity Testing Amir Shpilka Technion November 17, 2009 PIT Survey – Oberwolfach 1

Transcript of Recent Results on Polynomial Identity Testing

Re

ce

nt

Re

sults

on

P

oly

no

mia

l Id

en

tity

Te

stin

gP

oly

no

mia

l Id

en

tity

Te

stin

g

Am

ir Sh

pilk

a

Tec

hn

ion

No

ve

mb

er

17,

2009

PIT

Su

rve

y –

Ob

erw

olfa

ch

1

Go

al o

f ta

lk

•Su

rve

y k

no

wn

re

sults

•Exp

lain

pro

of

tec

hn

iqu

es

•G

ive

an

inte

rest

ing

se

t o

f `a

cc

ess

ible

’ o

pe

n

qu

est

ion

s

PIT

Su

rve

y –

Ob

erw

olfa

ch

No

ve

mb

er

17,

2009

2

Talk

ou

tlin

e•

De

fin

itio

n o

f th

e p

rob

lem

•C

on

ne

ctio

n t

o lo

we

r b

ou

nd

s (h

ard

ne

ss)

–K

ab

an

ets

-Im

pla

glia

zzo

–D

vir-S

-Ye

hu

da

yo

ff–

He

intz

-Sc

hn

orr

, A

gra

wa

l–

Ag

raw

al-V

ina

y

•Su

rve

y o

f p

osi

tiv

e r

esu

lts

PIT

Su

rve

y –

Ob

erw

olfa

ch

•Su

rve

y o

f p

osi

tiv

e r

esu

lts

•So

me

pro

ofs

:–

Spa

rse

po

lyn

om

ials

–P

art

ial d

eriv

ativ

es

tec

hn

iqu

e–

De

pth

-3 c

irc

uits

–D

ep

th-4

circ

uits

–R

ea

d-O

nc

e f

orm

ula

s

•C

on

ne

ctio

n t

o p

oly

no

mia

l fa

cto

riza

tio

n

No

ve

mb

er

17,

2009

3

Arith

me

tic

Circ

uits

Fie

ld: F

Va

ria

ble

s:X

1,...,X

n

Ga

tes:

+,

×

Eve

ry g

ate

in t

he

c

irc

uit c

om

pu

tes

a

PIT

Su

rve

y –

Ob

erw

olfa

ch

circ

uit c

om

pu

tes

a

po

lyn

om

ial i

n F

[X1,...,X

n]

Exa

mp

le:

(X1

⋅X

2)

⋅(X

2+

1)

Size

= n

um

be

r o

f g

ate

s

De

pth

= le

ng

th o

f lo

ng

est

inp

ut-

ou

tpu

t p

ath

De

gre

e=

ma

x d

eg

ree

of

inte

rna

l ga

tes

No

ve

mb

er

17,

2009

4

Arith

me

tic

Fo

rmu

las

Sam

e,

exc

ep

t u

nd

erlyin

g g

rap

h is

a t

ree

PIT

Su

rve

y –

Ob

erw

olfa

ch

No

ve

mb

er

17,

2009

5

Bo

un

de

d d

ep

th c

irc

uits

•Σ

Πc

irc

uits:

de

pth

-2 c

irc

uits

with

+a

t th

e t

op

a

nd

×a

t th

e b

ott

om

. Si

ze s

circ

uits

co

mp

ute

s-

spa

rse

po

lyn

om

ials

.

•Σ

ΠΣ

circ

uits:

de

pth

-3 c

irc

uits

with

+a

t th

e t

op

, ×

at

the

mid

dle

an

d +

at

the

bo

tto

m.

PIT

Su

rve

y –

Ob

erw

olfa

ch

×a

t th

e m

idd

le a

nd

+a

t th

e b

ott

om

. C

om

pu

te s

um

s o

f p

rod

uc

ts o

f lin

ea

r fu

nc

tio

ns.

I.e

. a

sp

ars

e p

oly

no

mia

l co

mp

ose

d w

ith

a

line

ar

tra

nsf

orm

atio

n.

•Σ

ΠΣ

Πc

irc

uits:

de

pth

-4 c

irc

uits.

Co

mp

ute

su

ms

of

pro

du

cts

of

spa

rse

po

lyn

om

ials

.

No

ve

mb

er

17,

2009

6

Wh

y A

rith

me

tic

Circ

uits?

•M

ost

na

tura

l mo

de

l fo

r c

om

pu

tin

g p

oly

no

mia

ls

•Fo

r m

an

y p

rob

lem

s (e

.g.

Ma

trix

Mu

ltip

lica

tio

n,

De

t) b

est

alg

orith

m is

an

arith

me

tic

circ

uit

•G

rea

t a

lgo

rith

mic

ac

hie

ve

me

nts

:

PIT

Su

rve

y –

Ob

erw

olfa

ch

•G

rea

t a

lgo

rith

mic

ac

hie

ve

me

nts

:

–Fo

urie

r Tr

an

sfo

rm

–M

atr

ix M

ultip

lica

tio

n

–P

oly

no

mia

l Fa

cto

riza

tio

n

•St

ruc

ture

d m

od

el (

co

mp

are

d t

o B

oo

lea

n

circ

uits)

P v

s.N

P m

ay b

e e

asi

er

No

ve

mb

er

17,

2009

7

Po

lyn

om

ial I

de

ntity

Te

stin

g

Inp

ut:

Arith

me

tic

circ

uit c

om

pu

tin

g f

Pro

ble

m:

Do

es

f≡0

?

C

f(x 1

,...,x

n)

PIT

Su

rve

y –

Ob

erw

olfa

ch

Ra

nd

om

ize

d a

lgo

rith

m [

Sch

wa

rtz,

Zip

pe

l, D

eM

illo

-Lip

ton

]: e

va

lua

te f

at

a r

an

do

m p

oin

tG

oa

l: d

ete

rmin

istic

alg

orith

m

x 1x 2

x n

No

ve

mb

er

17,

2009

8

Bla

ck B

ox

PIT

≡ ≡≡≡Exp

licit H

ittin

g S

et

Inp

ut:

A B

lac

k-B

ox

circ

uit c

om

pu

tin

g f

.P

rob

lem

:D

oe

s f=

0? P

IT S

urv

ey –

Ob

erw

olfa

ch

Cf(

x 1,...,x

n)

(x1,...,x

n)

Go

al:

de

term

inis

tic

alg

orith

m (

a.k

.a.

Hittin

g S

et)

S,Z,

DM

-L: ∃

sma

ll H

ittin

g S

et

(no

t e

xplic

it)

No

ve

mb

er

17,

2009

9

Mo

tiva

tio

n

•N

atu

ral a

nd

fu

nd

am

en

tal p

rob

lem

•St

ron

g c

on

ne

ctio

n t

o c

irc

uit lo

we

r b

ou

nd

s

•A

lgo

rith

mic

imp

ort

an

ce

:

–P

rim

alit

yte

stin

g [

Ag

raw

al-K

aya

l-Sa

xen

a]

–P

ara

llel a

lgo

rith

ms

for

fin

din

g m

atc

hin

g

PIT

Su

rve

y –

Ob

erw

olfa

ch

–P

ara

llel a

lgo

rith

ms

for

fin

din

g m

atc

hin

g

[Ka

rp-U

pfa

l-W

igd

ers

on

, M

ulm

ule

y-V

azi

ran

i-V

azi

ran

i]

No

ve

mb

er

17,

2009

10

Po

lyn

om

ial I

de

ntity

Te

stin

g

D

efin

itio

n o

f th

e p

rob

lem

•C

on

ne

ctio

n t

o lo

we

r b

ou

nd

s (h

ard

ne

ss)

–K

ab

an

ets

-Im

pla

glia

zzo

–D

vir-S

-Ye

hu

da

yo

ff

–H

ein

tz-S

ch

no

rr, A

gra

wa

l

–A

gra

wa

l-V

ina

y

PIT

Su

rve

y –

Ob

erw

olfa

ch

–A

gra

wa

l-V

ina

y

•Su

rve

y o

f p

osi

tiv

e r

esu

lts

•So

me

pro

ofs

:–

Spa

rse

po

lyn

om

ials

–P

art

ial d

eriv

ativ

es

tec

hn

iqu

e

–D

ep

th-3

circ

uits

–R

ea

d-O

nc

e f

orm

ula

s

•C

on

ne

ctio

n t

o p

oly

no

mia

l fa

cto

riza

tio

nN

ove

mb

er

17,

2009

11

Ha

rdn

ess

: P

IT ≡

low

er

bo

un

ds

[Ka

ba

ne

ts-I

mp

ag

liazz

o]:

•2

Ω(n

)lo

we

r b

ou

nd

fo

r P

erm

an

en

t ⇒

PIT

in n

po

lylo

g(n

)tim

e

•P

IT ∈

P ⇒

sup

er-

po

lyn

om

ial l

ow

er

bo

un

ds:

B

oo

lea

nfo

r N

EX

P, o

r a

rith

me

tic

for

Pe

rma

ne

nt

[Dvir-S

-Ye

hu

da

yo

ff]:

(alm

ost

) sa

me

as

K-I

for

PIT

Su

rve

y –

Ob

erw

olfa

ch

[Dvir-S

-Ye

hu

da

yo

ff]:

(alm

ost

) sa

me

as

K-I

for

bo

un

de

d d

ep

th c

irc

uits

[He

intz

-Sc

hn

orr

,Ag

raw

al]

: P

oly

no

mia

l tim

e B

lac

k-

Bo

x P

IT ⇒

Exp

on

en

tia

l lo

we

r b

ou

nd

s fo

r a

rith

me

tic

circ

uits

Less

on

: d

era

nd

om

izin

gP

IT e

sse

ntia

lly e

qu

iva

len

t to

pro

vin

g lo

we

r b

ou

nd

s fo

r a

rith

me

tic

circ

uit

No

ve

mb

er

17,

2009

12

No

n B

lac

k-B

ox

P.I.T

. ⇔

Low

er

Bo

un

ds

[K-I

]

[Va

lian

t,To

da

,Im

pa

glia

zzo

-Ka

ba

ne

ts-W

igd

ers

on

]:

NE

XP

⊆P

/P

oly

Pe

rm

is

NE

XP

-co

mp

lete

K-I

: P

erm

ha

s p

oly

siz

e a

rith

. c

irc

uit ⇒

Pe

rm in

NP

PIT

Ide

a:g

ue

ss c

irc

uit f

or

Pe

rm.

ve

rify

co

rre

ctn

ess

u

sin

g s

elf r

ed

uc

ibili

ty a

nd

PIT

.

PIT

Su

rve

y –

Ob

erw

olfa

ch

usi

ng

se

lf r

ed

uc

ibili

ty a

nd

PIT

.

⇒:If

NE

XP

⊆P

/Po

ly a

nd

Pe

rm h

as

po

ly s

ize

c

irc

uits

an

d P

IT in

Pth

en

NE

XP

in N

P⇒

Oth

er

dire

ctio

n f

ollo

ws

by u

sin

g a

rith

me

tic

ve

rsio

n

of

N-W

ge

ne

rato

r a

nd

Ka

lto

fen

’sfa

cto

riza

tio

n

the

ore

m.

No

ve

mb

er

17,

2009

13

Bla

ck-B

ox

P.I.T

. ⇒

Low

er

Bo

un

ds

[He

intz

-Sc

hn

orr

,Ag

raw

al]

: B

lac

k-B

ox

P.I.

T fo

r si

ze s

circ

uits

in t

ime

po

ly(s

) (i

.e.

po

ly(s

)si

ze

hittin

g s

et)

imp

lies

exp

on

en

tia

l lo

we

r b

ou

nd

s fo

r a

rith

me

tic

circ

uits:

Giv

en

H=

pi,

fin

d n

on

-ze

ro lo

g(|

H|

)+1-v

aria

te

po

lyn

om

ial f

suc

h t

ha

t f(

p)=

0 f

or

all

i.

PIT

Su

rve

y –

Ob

erw

olfa

ch

i

po

lyn

om

ial f

suc

h t

ha

t f(

pi)=

0 f

or

all

i.

⇒f

do

es

no

t h

ave

siz

e s

circ

uits

Giv

es

low

er

bo

un

ds

for

fin

PS

PA

CE

Co

nje

ctu

re[A

gra

wa

l]:

H=

(y

1,…

, y

n)

: y

i=y

kim

od

r, k,r

< s

20

is a

hittin

g

set

for

size

sc

irc

uits

No

ve

mb

er

17,

2009

14

Imp

ort

an

ce

of

ΣΠ

ΣΠ

circ

uits

[Ag

raw

al-V

ina

y,R

az]

: Exp

on

en

tia

l lo

we

r b

ou

nd

s fo

r

ΣΠ

ΣΠ

circ

uits

imp

ly e

xpo

ne

ntia

l lo

we

r b

ou

nd

s fo

r g

en

era

l circ

uits.

Pro

of:

1. D

ep

th r

ed

uc

tio

n a

-la

P=

NC

2[V

alia

nt-

Skyu

m-

Be

rko

witz-

Ra

cko

ff]

2.

Bre

ak t

he

circ

uit in

th

e m

idd

le

an

d in

terp

ola

te e

ac

h p

art

usi

ng

ΣΠ

circ

uits.

PIT

Su

rve

y –

Ob

erw

olfa

ch

an

d in

terp

ola

te e

ac

h p

art

usi

ng

ΣΠ

circ

uits.

Co

r[A

gra

wa

l-V

ina

y]:

Po

lyn

om

ial t

ime

PIT

of

ΣΠ

ΣΠ

circ

uits

giv

es

qu

asi

-po

lyn

om

ial t

ime

PIT

fo

r g

en

era

l c

ircu

its.

Pro

of:

By [

He

intz

-Sc

hn

orr

,Ag

raw

al] p

oly

no

mia

l tim

e

PIT

⇒e

xpo

ne

ntia

l lo

we

r b

ou

nd

s fo

r Σ

ΠΣ

Πc

ircu

its.

[A

gra

wa

l-V

ina

y]

⇒e

xpo

ne

ntia

l lo

we

r b

ou

nd

s fo

r g

en

era

l circ

uits.

No

w u

se [

K-I

].

No

ve

mb

er

17,

2009

15

Po

lyn

om

ial I

de

ntity

Te

stin

g

D

efin

itio

n o

f th

e p

rob

lem

C

on

ne

ctio

n t

o lo

we

r b

ou

nd

s (h

ard

ne

ss)

K

ab

an

ets

-Im

pla

glia

zzo

D

vir-S

-Ye

hu

da

yo

ff

H

ein

tz-S

ch

no

rr, A

gra

wa

l

A

gra

wa

l-V

ina

y

PIT

Su

rve

y –

Ob

erw

olfa

ch

A

gra

wa

l-V

ina

y

•Su

rve

y o

f p

osi

tiv

e r

esu

lts

•So

me

pro

ofs

:–

Spa

rse

po

lyn

om

ials

–P

art

ial d

eriv

ativ

es

tec

hn

iqu

e

–D

ep

th-3

circ

uits

–R

ea

d-O

nc

e f

orm

ula

s

•C

on

ne

ctio

n t

o p

oly

no

mia

l fa

cto

riza

tio

nN

ove

mb

er

17,

2009

16

Ra

nd

om

ize

d a

lgo

rith

ms

for

PIT

Sch

wa

rtz,

Zip

pe

l,De

Mill

o-L

ipto

n:

Ev

alu

ate

Ca

t a

ra

nd

om

inp

ut

Giv

es

err

or-

ran

do

mn

ess

tra

de

off

Ch

en

-Ka

o: tr

ad

e t

ime

fo

r e

rro

r o

ve

r R

:

πi=

±p

i,1…

±p

i,r ,

fo

r d

iffe

ren

t p

rim

es,

ra

nd

om

sig

ns

The

n C

≡0

iff

C(π

1,π

2,…

,πn)

= 0

PIT

Su

rve

y –

Ob

erw

olfa

ch

The

n C

≡0

iff

C(π

1,π

2,…

,πn)

= 0

Tru

nc

atin

g a

fte

r t

dig

its

giv

es

err

or

O(1

/t)

Intu

itio

n: ra

nd

om

co

nju

ga

te w

on

’t v

an

ish

mo

d 2

-t

For

mu

ltili

ne

ar

po

lyn

om

ials

, C

-Ku

se n

ran

do

m b

its

for

1/p

oly

err

or,

S-Z

-DM

-Lu

se n

log

(n)

bits

for

err

or .

Lew

in-V

ad

ha

n: g

en

era

lize

d C

-Kto

fin

ite

fie

lds:

irr

ed

uc

ible

po

lyn

om

ials

↔p

rime

s,

po

we

r se

ries

↔sq

ua

re r

oo

ts. Tr

un

ca

tio

n m

od

xt .

No

ve

mb

er

17,

2009

17

Ra

nd

om

ize

d a

lgo

rith

ms

for

PIT

Ag

raw

al-B

isw

as:

Ob

serv

e:

C ≡

0iff

C(y

,yD,y

D2,…

, y

Dn)

≡0

Pro

ble

m:

de

gre

e t

oo

larg

e

A-B

giv

e a

“sm

all”

se

t o

f p

oly

no

mia

ls

f i(y)

s.t

. C

≡0

iff

∀iC

(y,y

D,y

D2,…

, y

Dn)

≡0

mo

df i(

y)

−Si

mila

r id

ea

use

d in

prim

alit

yte

st o

f A

-K-S

PIT

Su

rve

y –

Ob

erw

olfa

ch

−Si

mila

r id

ea

use

d in

prim

alit

yte

st o

f A

-K-S

−U

ses

less

ra

nd

om

bits

tha

nS-

Z-D

M-L

−N

on

bla

ck-b

ox

Ag

raw

al’s

co

nje

ctu

re:

(y

1,…

, y

n)

: y

i=y

kim

od

r,k

,r<

s20

is a

hittin

g s

et

for

size

sc

irc

uits

No

ve

mb

er

17,

2009

18

De

term

inis

tic

alg

orith

ms

for

PIT

•Σ

Πc

ircu

its

(a.k

.a.,

spa

rse

po

lys)

[B

en

Or-

Tiw

ari,

G

rigo

riev

-Ka

rpin

ski,

Kliv

an

s-Sp

ielm

an

,…]

–B

lac

k-B

ox

in p

oly

no

mia

l tim

e

•N

on

-co

mm

uta

tiv

e f

orm

ula

s [R

az-

S]

–N

on

-Bla

ck-B

ox

in p

oly

no

mia

l tim

e

•Σ

ΠΣ

(k)

circ

uits

[Dv

ir-S,

Ka

ya

l-Sa

xen

a,A

rvin

d-

Mu

kh

op

ad

hya

y,K

arn

in-S

,Sa

xen

a-S

esh

ad

ri,K

aya

l-Sa

raf]

PIT

Su

rve

y –

Ob

erw

olfa

ch

Mu

kh

op

ad

hya

y,K

arn

in-S

,Sa

xen

a-S

esh

ad

ri,K

aya

l-Sa

raf]

Bla

ck-B

ox

in q

ua

si-p

oly

no

mia

l tim

e*

–N

on

-Bla

ck-B

ox

in t

ime

nO

(k)

•Su

m o

f k R

ea

d-o

nc

e f

orm

ula

s [S

-Vo

lko

vic

h]

–B

lac

k-B

ox

in n

O(lo

g(n

) +

k)

–N

on

-Bla

ck-B

ox

in t

ime

nO

(k)

•M

ultili

ne

ar

ΣΠ

ΣΠ

(k):

[Ka

rnin

-Mu

kh

op

ad

hya

y-S

-Vo

lko

vic

h]

–B

lac

k-B

ox

in q

ua

si-p

oly

no

mia

l tim

e

No

ve

mb

er

17,

2009

19

Wh

y s

tud

y r

est

ric

ted

mo

de

ls

•[A

gra

wa

l-V

ina

y]

PIT

fo

r Σ

ΠΣ

Πc

irc

uits

imp

lies

PIT

fo

r g

en

era

l de

pth

.

•G

ain

ing

insi

gh

t to

mo

re g

en

era

l qu

est

ion

s:

Intu

itiv

ely

:lo

we

r b

ou

nd

s im

ply

PIT

Mu

ltili

ne

ar

form

ula

s: s

up

er

po

lyn

om

ial b

ou

nd

s

PIT

Su

rve

y –

Ob

erw

olfa

ch

Mu

ltili

ne

ar

form

ula

s: s

up

er

po

lyn

om

ial b

ou

nd

s [R

az]

bu

t n

o P

IT a

lgo

rith

ms

No

t e

ve

n f

or

De

pth

-3 m

ultili

ne

ar

form

ula

s!

Sum

of

RO

Fs,

de

pth

-3,4

mu

ltili

ne

ar

form

ula

s re

laxa

tio

ns

of

the

mo

re g

en

era

l pro

ble

m

•In

tere

stin

g r

esu

lts:

Str

uc

tura

l th

eo

rem

s fo

r Σ

ΠΣ

(k)

an

d Σ

ΠΣ

Π(k

) c

irc

uits.

No

ve

mb

er

17,

2009

20

Po

lyn

om

ial I

de

ntity

Te

stin

g

D

efin

itio

n o

f th

e p

rob

lem

C

on

ne

ctio

n t

o lo

we

r b

ou

nd

s (h

ard

ne

ss)

K

ab

an

ets

-Im

pla

glia

zzo

A

gra

wa

l

D

vir-S

-Ye

hu

da

yo

ff

A

gra

wa

l-V

ina

y

PIT

Su

rve

y –

Ob

erw

olfa

ch

A

gra

wa

l-V

ina

y

Su

rve

y o

f p

osi

tiv

e r

esu

lts

•So

me

pro

ofs

:–

Spa

rse

po

lyn

om

ials

–P

art

ial d

eriv

ativ

es

tec

hn

iqu

e

–D

ep

th-3

circ

uits

–R

ea

d-O

nc

e f

orm

ula

s

•C

on

ne

ctio

n t

o p

oly

no

mia

l fa

cto

riza

tio

nN

ove

mb

er

17,

2009

21

Pro

ofs

–ta

ilore

d f

or

the

mo

de

l

Pro

ofs

usu

ally

use

`w

ea

kn

ess

’ in

he

ren

t in

mo

de

l•

De

pth

2: fe

w m

on

om

ials

. Su

bst

itu

tin

g y

aito

xiw

e

ca

n c

on

tro

l `c

olla

pse

s’ o

f d

iffe

ren

t m

on

om

ials

.

•N

on

Co

mm

uta

tiv

e f

orm

ula

s: P

oly

no

mia

l ha

s fe

w

line

arly

ind

ep

en

de

nt

pa

rtia

l de

riva

tiv

es

[Nis

an

].

Ke

ep

tra

ck o

f a

ba

sis

for

de

riva

tiv

es

to d

o P

IT.

PIT

Su

rve

y –

Ob

erw

olfa

ch

Ke

ep

tra

ck o

f a

ba

sis

for

de

riva

tiv

es

to d

o P

IT.

•Σ

ΠΣ

(k):

se

ttin

g a

lin

ea

r fu

nc

tio

n t

o z

ero

re

du

ce

s to

p f

an

-in

. If k

=2

the

n m

ultip

lica

tio

n g

ate

s m

ust

be

th

e s

am

e. C

alls

fo

r in

du

ctio

n.

•M

ultili

ne

ar

ΣΠ

ΣΠ

(k):

in s

om

e s

en

se `

co

mb

ina

tio

n’

of

spa

rse

po

lyn

om

ials

an

d m

ultiln

ea

ΠΣ

(k).

•R

ea

d-O

nc

e-F

orm

ula

s: s

ub

fo

rmu

las

of

roo

t c

on

tain

½

of

va

riab

les.

No

ve

mb

er

17,

2009

22

De

pth

2 (

ΣΠ

)c

irc

uits

f(x 1

,…,x

n)

= M

1+

…+

Mm

sum

of

md

eg

ree

dm

on

om

ials

Ide

a: re

pla

ce

xib

y y

aiso

th

at

all

mo

no

mia

ls m

ap

u

niq

ue

ly, in

terp

ola

te r

esu

ltin

g p

oly

no

mia

l.

Pro

ble

m: a

i–s

ne

ed

to

gro

w f

ast

(g

ive

s h

igh

de

gre

e)

[Kliv

an

s-Sp

eilm

an

]: f

or

larg

e p

rime

p,k ≤

p s

et

ai=

ki-1

mo

d p

. Ev

alu

ate

at

np

+1

diffe

ren

t y-s

.

PIT

Su

rve

y –

Ob

erw

olfa

ch

i

mo

d p

. Ev

alu

ate

at

np

+1

diffe

ren

t y-s

.

x 1e

1⋅x

2e

2⋅…

⋅x n

en

ma

pp

ed

to

y^

(e1+

e2k+

…+

enk

n-1

) =

yE(k

)

mm

on

om

ials

de

fin

e m

po

lyn

om

ials

E1(k

), …

,Em

(k).

Th

ey a

re m

ap

pe

d 1

-1 if

kis

no

t ro

ot

of

an

y E

i-Ej.

Ho

lds

for

a la

rge

fra

ctio

n o

f th

e k

’s.

Be

tte

r c

on

stru

ctio

ns

are

kn

ow

n

No

ve

mb

er

17,

2009

23

No

n c

om

mu

tative

fo

rmu

las

Spe

cia

l ca

se:

set-

mu

ltili

ne

ar

de

pth

-3 c

irc

uits

X =

X1⊔

X2⊔

…⊔

Xd

, X

i=x

i,1,…

,xi,n

Mu

ltip

lica

tio

n g

ate

: M

i=

Li,1

(X1)

⋅…

⋅L i

,d(X

d)

C =

M1

+ …

+ M

s

Ma

in o

bse

rva

tio

n:

dim

en

sio

n o

f p

art

ial d

eriva

tive

s o

f C

ac

co

rdin

g t

o X

,…,X

(an

yk)

is a

t m

ost

s

PIT

Su

rve

y –

Ob

erw

olfa

ch

Ma

in o

bse

rva

tio

n:

dim

en

sio

n o

f p

art

ial d

eriva

tive

s o

f C

ac

co

rdin

g t

o X

1,…

,Xk

(an

yk)

is a

t m

ost

s

(sp

an

ne

d b

y L

i,k+

1(X

k+

1)⋅

…⋅L

i,d(X

d)

i=1…

s)

Alg

orith

m [

Ra

z-S]

: c

om

pu

te a

ba

sis

for

all

de

riva

tive

sa

cc

ord

ing

to

X1,…

,Xk

sta

rtin

g f

rom

k=

1 t

ok=

d. C

≡0 if

at

the

en

d a

ll b

asi

s e

lem

en

ts

are

0

Sam

e id

ea

als

o in

th

e g

en

era

l ca

seN

ove

mb

er

17,

2009

24

De

pth

-3 c

irc

uits

(ΣΠ

Σ(k

) c

irc

uits)

L =

Σt=

1...n

at⋅x t

+ a

0,

Mi=

Πj=

1...d

iL i,j,

C =

Σi=

1...k

Mi

De

fin

itio

n:

C s

imp

leif n

o li

ne

ar

fun

ctio

n a

pp

ea

rs in

all

the

Mi-s

C m

inim

ali

f n

o s

ub

set

of

mu

lt. g

ate

s su

ms

to z

ero

Ma

in t

oo

l [D

vir

S]:

If C

≡0

sim

ple

an

d m

inim

al

PIT

Su

rve

y –

Ob

erw

olfa

ch

Ma

in t

oo

l [D

vir

S]:

If C

≡0

sim

ple

an

d m

inim

al

the

n d

im(s

pa

n(L

i,j))

≤ R

an

k(k

,d)

= (

log

(d))

k*

Less

on

: If C

≡0

the

n it

is v

ery

str

uc

ture

d

No

n B

lac

k-B

ox

Alg

orith

m:

fin

d p

art

itio

n t

o s

ub

-c

irc

uits

of

low

dim

en

sio

n (

aft

er

rem

ova

l of

g.c

.d.)

an

d b

rute

fo

rce

ve

rify

th

at

the

y v

an

ish

.

Imp

rove

d nO(k)a

lgo

rith

m b

y [

Ka

ya

l-Sa

xen

a].

No

ve

mb

er

17,

2009

25

Bla

ck-B

ox

PIT

fo

r Σ

ΠΣ

(k)

Bla

ck-B

ox

alg

orith

m [

Ka

rnin

-S]:

re

stric

t C

to a

low

d

im s

ub

spa

ce

su

ch

th

at

the

dim

en

sio

ns

of

an

ysu

b-c

irc

uit is

no

t re

du

ce

d b

y t

oo

mu

ch

.

Ide

a: su

ch

ma

p p

rese

rve

s st

ruc

ture

of

C

Cla

im: C

|V

≡0

iff

C ≡

0

Ca

n f

ind

po

ly s

et

of

V-s

of

dim

en

sio

nR

an

k(k

,d)

PIT

Su

rve

y –

Ob

erw

olfa

ch

Ca

n f

ind

po

ly s

et

of

V-s

of

dim

en

sio

nR

an

k(k

,d)

Giv

es:

po

ly(n

)⋅d

O(R

an

k(k

,d))

tim

e a

lgo

rith

m[S

axe

na

-Se

sha

dri]:

fin

iteF

, R

an

k(k

,d)

< k

3lo

g(d

)

[Ka

ya

l-Sa

raf]

: o

ve

r Q

,RR

an

k(k

,d)

< k

k

Imp

rove

[D

vir-S

] a

nd

[K

arn

in-S

] (p

lug

an

d p

lay)

To s

ee

th

e p

roo

fs c

om

e t

o t

he

PIT

se

ssio

n!

No

ve

mb

er

17,

2009

26

Bla

ck-B

ox

PIT

fo

r m

ultili

ne

ar

ΣΠ

ΣΠ

(k)

[Ka

rnin

-Mu

kh

op

ad

hya

y-S

-Vo

lko

vic

h]

C =

Σi=

1...k

Mis.

t.M

i=

Pi1

⋅…⋅P

id, P

ijis

siz

es

mu

ltili

ne

ar

ΣΠ

circ

uit. P

i1,…

,Pid

va

ria

ble

dis

join

t

Ob

serv

e:

in e

ac

h M

i, a

t m

ost

po

lylo

g(n

)P

ij-s

ha

ve

m

ore

th

an

n/p

oly

log

(n)

va

ria

ble

s.

⇒M

i=

Ai⋅B

i, A

i=

qu

asi

-po

ly s

pa

rse

an

d

PIT

Su

rve

y –

Ob

erw

olfa

ch

⇒M

i=

Ai⋅B

i, A

i=

qu

asi

-po

ly s

pa

rse

an

d

Bi=

pro

du

ct

of

spa

rse

Pijo

n n

/po

lylo

g(n

) va

rs

Cla

im:

∃p

oly

log

(n)

va

rsth

at

aft

er

de

ria

va

tin

go

r su

bst

itu

tin

g z

ero

es

to t

he

m,

C’

= Σ

i=1...k

B’ i

≠0

Pro

of:

ea

ch

op

era

tio

n r

ed

uc

es

by h

alf t

he

n

um

be

r o

f m

on

om

ials

of

som

e A

i

No

ve

mb

er

17,

2009

27

Bla

ck-B

ox

PIT

fo

r m

ultili

ne

ar

ΣΠ

ΣΠ

(k)

C’

= Σ

i=1...k

B’ i

≠0

s.t.

Bi=

pro

du

ct

of

spa

rse

, va

ria

ble

dis

join

t, P

ij–s

on

n/p

oly

log

(n)

va

rs

Cla

im: C

’c

on

tain

s n

on

-ze

ro m

ultili

ne

ar

ΣΠ

Σ(k

)c

irc

uit

Pro

of:

ra

nd

om

ly f

ix a

ll va

rsa

pp

ea

rin

g w

ith

x1…

PIT

Su

rve

y –

Ob

erw

olfa

ch

1

Ca

n d

era

nd

om

ize

usi

ng

PIT

fo

r sp

ars

e p

oly

s.

Co

nc

lusi

on

: n

ee

d a

bla

ck-b

ox

wa

y o

f `i

sola

tin

g’

po

lylo

g(n

) va

ria

ble

s w

hile

ap

ply

ing

a s

pa

rse

-PIT

fo

r th

e r

em

ain

ing

va

rs.

[S-V

olk

ovic

h]:

ge

ne

rato

r fo

r re

ad

-on

ce

-fo

rmu

las

ha

vin

g t

his

pro

pe

rty.

No

ve

mb

er

17,

2009

28

Re

ad

-On

ce

fo

rmu

las

(RO

Fs)

A f

orm

ula

wh

ere

eve

ry v

aria

ble

lab

els

at

mo

st

on

e le

af.

Pre

pro

ce

sse

d R

OF:

ca

n r

ep

lac

e

ea

ch

xiw

ith

Ti(x i

)

Sum

of

RO

Fs:

PIT

Su

rve

y –

Ob

erw

olfa

ch

Sum

of

RO

Fs:

F =

F1

+ F

2+

+ F

k

ea

ch

Fiis

a (

P-)

RO

F

Re

sult:

Bla

ck-B

ox

PIT

fo

r su

m o

f k

(P)R

OFs

in t

ime

nO

(lo

g(n

) +

k)

No

ve

mb

er

17,

2009

29

X3

Ge

ne

rato

r fo

r R

OFs

A=

α

1,

α2,

α3,

…,

αn ⊆F

Let

ui(x)

be

su

ch

th

at

ui(a

j) =

δ(i

,j)

De

f: F

or

eve

ry i

∈[n

] a

nd

k ≥

1:

Gi k(y

,z) ≜

ui(y

1)·

z 1+

ui(y

2)·

z 2+

… +

ui(y

k)·z

k

G(y

,z) ≜

(G1

, G

2, …

,G

n)

PIT

Su

rve

y –

Ob

erw

olfa

ch

Gk(y

,z) ≜

(G1k,

G2k

, …

,G

nk)

Cru

cia

l Pro

pe

rty:

Gk|

(yk

= α

m)

=G

k-1

+ z

k·ē

m

Gk(y

,z)

en

ab

les

iso

latio

n o

f a

ny k

’≤k

va

ria

ble

s

In a

dd

itio

n, G

k(y

,z)

is g

en

era

tor

for

2k

spa

rse

po

lyn

om

ials

(n

ee

de

d f

or

ΣΠ

ΣΠ

PIT

)

No

ve

mb

er

17,

2009

30

PIT

fo

r R

OFs

The

ore

m: L

et

Pb

e a

no

n-z

ero

RO

P t

he

n

P(G

log

(n)+

1)

≠0

. M

ore

ov

er,

if P

is a

no

n-

co

nst

an

t p

oly

no

mia

l th

en

so

is

P(G

log

(n)+

1)

Pro

of

ide

a: in

du

ctio

n o

n s

tru

ctu

re o

f fo

rmu

la.

PIT

Su

rve

y –

Ob

erw

olfa

ch

Pro

of

ide

a: in

du

ctio

n o

n s

tru

ctu

re o

f fo

rmu

la.

If t

he

to

p g

ate

is ×

the

n b

y in

du

ctio

n w

e

are

ok. If t

op

ga

te is

+, th

en

on

e s

on

ha

s fe

w v

aria

ble

s.

Ca

n k

ee

p a

va

ria

ble

th

at

be

lon

gs

to s

ma

ll so

n ‘

aliv

e’.

No

ve

mb

er

17,

2009

31

Sum

of

RO

Fs

F =

F1

+ F

2+

+ F

k

Ide

a: P

IT f

or

RO

Fs g

ive

s a

just

ifyin

g s

et

for

an

y k

R

OFs

of

size

nO

(lo

g n

)

Just

ifyin

g s

et:

co

nta

ins

at

lea

st o

ne

inp

ut

(a1,…

,an)

suc

h t

ha

t if F

id

ep

en

ds

on

xm

the

n

PIT

Su

rve

y –

Ob

erw

olfa

ch

(a1,…

,an)

suc

h t

ha

t if F

id

ep

en

ds

on

xm

the

n

F i(a

1,…

,am

-1,x

m,a

m+

1,…

,an)

de

pe

nd

s o

n x

m.

By c

ha

ng

ing

xi←

x i+

aia

ssu

me

th

at

all

the

Fi-s

a

re 0

-ju

stifyie

d.

I.e.

ass

ign

ing

ze

ros

to a

ll va

ria

ble

s b

ut

x ike

ep

s d

ep

en

de

nc

e o

n x

i

No

ve

mb

er

17,

2009

32

Ha

rdn

ess

of

rep

rese

nta

tio

n

Ha

rdn

ess

of

rep

rese

nta

tio

n:

no

su

m o

f k <

n/3

0-ju

stifie

d R

OFs

ca

n c

om

pu

te x

1·x

2·…

·xn

Pro

of

Ide

a:

By in

du

ctio

n o

n k

. B

y t

akin

g p

art

ial

de

riva

tive

s a

nd

ma

kin

g s

ub

stitu

tio

ns,

ca

n

rem

ove

so

me

of

the

RO

Fsb

ut

pre

serv

e t

he

st

ruc

ture

s o

f F

an

d x

1·x

2·…

·xn.

PIT

Su

rve

y –

Ob

erw

olfa

ch

stru

ctu

res

of

Fa

nd

x1·x

2·…

·xn.

The

ore

m:

Let

Fb

e a

su

m o

f k

0-ju

stifie

dR

OFs

. Le

t A

be

a s

et

of

all

ve

cto

rs in

0,1

no

f H

am

min

g w

eig

ht

≤ k

.Th

en

F ≡

0 ⇔

F|A

0.

Ide

a: Fo

r n

≤ k

cle

ar.

Fo

r la

rge

n,

set

x i=

0.

Ind

uc

tio

n im

plie

s x i

| F

. H

en

ce

x1·x

2·…

·xn

| F

No

ve

mb

er

17,

2009

33

Po

lyn

om

ial I

de

ntity

Te

stin

g

D

efin

itio

n o

f th

e p

rob

lem

C

on

ne

ctio

n t

o lo

we

r b

ou

nd

s (h

ard

ne

ss)

K

ab

an

ets

-Im

pla

glia

zzo

D

vir-S

-Ye

hu

da

yo

ff

H

ein

tz-S

ch

no

rr, A

gra

wa

l

A

gra

wa

l-V

ina

y

PIT

Su

rve

y –

Ob

erw

olfa

ch

A

gra

wa

l-V

ina

y

Su

rve

y o

f p

osi

tiv

e r

esu

lts

So

me

pro

ofs

:

Spa

rse

po

lyn

om

ials

P

art

ial d

eriv

ativ

es

tec

hn

iqu

e

D

ep

th-3

circ

uits

R

ea

d-O

nc

e f

orm

ula

s

•C

on

ne

ctio

n t

o p

oly

no

mia

l fa

cto

riza

tio

nN

ove

mb

er

17,

2009

34

PIT

an

d F

ac

torin

g

fis

composed

if f

(X)

= g

(X|

S)⋅

h(X

|T)

wh

ere

Sa

nd

T

are

dis

join

t

[S-V

olk

ovic

h]:

PIT

is e

qu

iva

len

t to

fa

cto

rin

g t

o

decomposable

fac

tors

.

⇐: f

≡0 if

ff+

y⋅z

ha

s tw

o d

ec

om

po

sab

le f

ac

tors

.

PIT

Su

rve

y –

Ob

erw

olfa

ch

⇐: f

≡0 if

ff+

y⋅z

ha

s tw

o d

ec

om

po

sab

le f

ac

tors

.

⇒: C

laim

: If w

e h

ave

a (

BB

or

NB

B)

PIT

fo

r a

ll c

irc

uits

of

the

fo

rm C

1+

C2⋅C

3,

wh

ere

Ci∈

M

the

n g

ive

n (

BB

or

NB

B)

C ∈

Mw

e c

an

de

term

inis

tic

ally

ou

tpu

t (B

B o

r N

BB

) a

ll d

ec

om

po

sab

le f

ac

tors

of

C.

No

ve

mb

er

17,

2009

35

De

co

mp

osa

ble

fa

cto

rin

g u

sin

g P

IT

Cla

im: If w

e h

av

e a

(B

B o

r N

BB

) P

IT f

or

all

circ

uits

of

the

fo

rm C

1+

C2⋅C

3, w

he

reC

i∈

Mth

en

giv

en

(B

B o

r N

BB

) C

∈M

we

ca

n d

ete

rmin

istic

ally

ou

tpu

t (B

B o

r

NB

B)

all

de

co

mp

osa

ble

fa

cto

rs o

f C

.

Ide

a: U

sin

g P

IT f

ind

a ju

stifyin

g a

ssig

nm

en

t a

for

PIT

Su

rve

y –

Ob

erw

olfa

ch

Ide

a: U

sin

g P

IT f

ind

a ju

stifyin

g a

ssig

nm

en

t a

for

C. Se

t x n

= a

na

nd

fa

cto

r (r

ec

urs

ive

ly).

Ass

um

e S

1,…

, S k

is t

he

pa

rtitio

n o

f [n

-1].

For

eve

ry S

ic

he

ck w

ea

the

r C

(a)⋅

C ≡

C(X

Si←

aSi)⋅

C(X

[n]\

Si ←

a[n

]\Si)

If y

es,

ad

d S

ito

th

e p

art

itio

n. A

t th

e e

nd

pu

t a

ll th

e r

em

ain

ing

va

rs in

a n

ew

se

t.N

ove

mb

er

17,

2009

36

PIT

an

d f

ac

torin

g

•D

ete

rmin

istic

de

co

mp

osa

ble

fa

cto

rin

g is

e

qu

iva

len

t to

low

er

bo

un

ds:

–D

ete

rmin

istic

fa

cto

rin

g im

plie

s N

EX

Pd

oe

s n

ot

ha

ve

sm

all

arith

me

tic

circ

uits

–Lo

we

r b

ou

nd

s im

ply

De

term

inis

tic

de

co

mp

osa

ble

fa

cto

rin

g

PIT

Su

rve

y –

Ob

erw

olfa

ch

fac

torin

g

•P

IT ≡

fac

torin

g f

or

mu

ltili

ne

ar

po

lyn

om

ials

•D

ete

rmin

istic

de

co

mp

osa

ble

fa

cto

rin

g f

or

de

pth

-2,

ΣΠ

Σ(k

), s

um

of

rea

d-o

nc

e…

•O

pe

n p

rob

lem

: is

PIT

eq

uiv

ale

nt

to g

en

era

l fa

cto

riza

tio

n?

No

ve

mb

er

17,

2009

37

Sum

ma

ry o

f ta

lk

D

efin

itio

n o

f th

e p

rob

lem

C

on

ne

ctio

n t

o lo

we

r b

ou

nd

s (h

ard

ne

ss)

K

ab

an

ets

-Im

pla

glia

zzo

D

vir-S

-Ye

hu

da

yo

ff

H

ein

tz-S

ch

no

rr, A

gra

wa

l

A

gra

wa

l-V

ina

y

PIT

Su

rve

y –

Ob

erw

olfa

ch

A

gra

wa

l-V

ina

y

Su

rve

y o

f p

osi

tiv

e r

esu

lts

So

me

pro

ofs

:

Spa

rse

po

lyn

om

ials

P

art

ial d

eriv

ativ

es

tec

hn

iqu

e

D

ep

th-3

circ

uits

R

ea

d-O

nc

e f

orm

ula

s

C

on

ne

ctio

n t

o p

oly

no

mia

l fa

cto

riza

tio

nN

ove

mb

er

17,

2009

38

Som

e `

ac

ce

ssib

le’

op

en

pro

ble

ms

1.

Giv

e a

Bla

ck-B

ox

PIT

alg

orith

m f

or

no

n-

co

mm

uta

tive

fo

rmu

las

2.

Solv

e P

IT f

or

de

pth

-3 c

irc

uits

3.

Solv

e P

IT f

or

mu

ltili

ne

ar

de

pth

-3 c

irc

uits

4.

Bla

ck-B

ox

PIT

fo

r se

t-m

ultili

ne

ar

de

pth

-3

PIT

Su

rve

y –

Ob

erw

olfa

ch

4.

Bla

ck-B

ox

PIT

fo

r se

t-m

ultili

ne

ar

de

pth

-3

circ

uits

5.

Po

lyn

om

ial t

ime

PIT

fo

r (s

um

of)

RO

Fs

6.

P.I.

T. f

or

de

pth

-4 w

ith

re

stric

ted

fa

n-in

7.

P.I.

T. f

or

rea

d-k

fo

rmu

las

(ca

n d

o it

fo

r k=

2)

8.

Is P

IT e

qu

iva

len

t to

ge

ne

ral f

ac

toriza

tio

n?

No

ve

mb

er

17,

2009

39

Tha

nk Y

ou

!

No

ve

mb

er

17,

2009

40