Rapid prototyping of sensors - GMEE

88
Bruno Andò, SensorLab DIEEI – University of Catania, Italy Rapid prototyping of sensors Prof. Bruno Andò DIEEI-University of Catania, Italy [email protected] Ph.D. School Italo Gorini 2020 September 9 th , 2020

Transcript of Rapid prototyping of sensors - GMEE

Page 1: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Rapid prototyping of sensors

Prof. Bruno Andò DIEEI-University of Catania, Italy

[email protected]

Ph.D. School Italo Gorini 2020September 9th, 2020

Page 2: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Transducers convert a physical quantity into an

electrical quantity, with obvious advantages…

HOW? It’s a Sensing Methodology issue!!

Transducers

Page 3: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Example #1: a Resistive Temperature Detector

Formetal sensors (RTD) :

r(t)= r(t0)(1+aDt+bDt2+…) ≈ r(t0)(1+aDt)

)1(

)1()1()(

0

00

xRR

tRtS

ltR

S

lR

DD

aar

r

The resistivity increases with temperature due to thermal agitation!

Page 4: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Example #2: a Strain Gauge

GR

R

D

0

L

dLWhere the strain is defined as:

This is a resistive sensor…so…it is

also influenced by the temperature!

Page 5: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Sensors for everything….

Page 6: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Environment

TransducerConditioning

electronic

Sensor

Auxiliary systems

Systemunder

measurement

Load/User

From the transducer…..

Page 7: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

to a Smart Sensor

Environment

Transducer Conditioning electronic

Sensor

Auxiliary systems

Systemunder

measurement

A/DSignal

processing

Local user interface

Data storage

Communication

Smart sensors are basic sensing elements with embedded intelligence (combination of a sensing element with processing capabilities provided by a microprocessor), that can perform one or more of the following function

logic functions two-way communicationmake decisions.

Page 8: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Sensor applications

Page 9: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Challenges

Needs for Low Cost, Stretchable and Disposable sensors.

Short production/prototyping times are required: design & realization.

Applications: biosensors, temperature, humidity, gas, Sensing strategy: resistive, capacitive, inductive, piezoel., photodet.

Page 10: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Printed electronics aims to create electronic devices by printing functional inks on a variety of substrates. Examples of printed devices are:- flexible keyboards, antennas, electronic skin patches, flexible screens, intelligent labels and packaging, interactive books and posters.

As the substrates grow thinner, printed materials become thin, light, and flexible enough to be integrated into existing production lines.

Main advantages of printed electronicsLow costAttractive and flexible form factorEase of productionEase of integration

ChallengesInksMaterials for substrate

Printed Electronics

Page 11: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Printed vs Conventional Electronics

Page 12: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Printed Electronics Technology can be exploited to realize sensors

•Flexible•Stretchable•Thin•Transparent•Low cost•Disposable•Organic•…

Page 13: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

CHEMICAL AND GAS PHYSICAL MONITORING OTHERS

CO2 sensor Humidity sensor Lab-on-a-chip system

CO sensor Strain gauges Antennas

Ethanolo sensor Pressure sensor TAG, Smart Labels

NO sensor Temperature sensor Passive microwavecircuitry

Glucose biosensor Magnetic/Acousticactuator

Touch sensor forinteractive packaging and display

Printed Sensors: Applications

Page 14: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Market trends for printed sensors

Page 15: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Printed Electronics

Thick Film Tech.

Inkjet printing Wearable electronics (Active clothing)

Smart Labels (RFID+sensors)

Disposable devices (biomedical) …

Low Costs/Good Performances

Flexible substrates

Printing technologies for “Flexible and Wearable Sensors”

T. Morrison, J. Silver and B. Otis, "A single-chip encryptedwireless 12-lead ECG smart shirt for continuous healthmonitoring," 2014 Symposium on VLSI Circuits Digest ofTechnical Papers, Honolulu, HI, 2014, pp. 1-2.

InkJet Printing

Page 16: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

SOTA on “Flexible and Wearable Sensors”

The BioStamp Research Connect: inertial sensors and a gyroscope to monitor movement, as well as chips to monitor the electrical activity of your muscles and heart.

Page 17: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Integrate sensor design into an everyday objects: sensor arrays on flexible electronics.

http://designmind.frogdesign.com/2014/04/uncommon-sense-the-new-role-of-sensing-in-design-research/

http://www.pbs.org/wgbh/nova/next/tech/wearable-health-sensors/

https://www.packworld.com/trends-and-issues/smartactive-packaging/putting-power-printed-electronics-packaging

T. Morrison, J. Silver and B. Otis, "A single-chip encryptedwireless 12-lead ECG smart shirt for continuous healthmonitoring," 2014 Symposium on VLSI Circuits Digest ofTechnical Papers, Honolulu, HI, 2014, pp. 1-2.

Flexible Sensors Needs & Applications

Page 18: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Designing “target-specific shapes” for different sensing targets!

Flexible Sensors Needs & Applications

A Paper-Based Electrochemical Sensor Using Inkjet-Printed Carbon Nanotube Electrodes, ECS J. Solid State Sci Technol.

2015 volume 4, issue 10, S3044-S3047

htt

ps:

//w

ww

.pd

dn

et.c

om

/new

s/2

01

3/1

0/p

ho

tos-

da

y-in

kjet

-p

rin

ted

-an

ten

na

s

T. Vuorinen, J. Niittynen, T. Kankkunen, T. M. Kraft, M. Mäntysalo,Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane SubstrateScientific Reports 6, Article number: 35289 (2016)

Sensing chemical quantities.Sensing elements (e.g. carbon nanotubes).

Multimodal near surface sensing (pressure, touch, folding, proximity sensing).

Sensing antennas

Page 19: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

M Kaltenbrunner et al. Nature 499, 458-463 (2013) doi:10.1038/nature12314

Imperceptible electronic foil

- Thin large-area active-matrix sensor with 12 × 12 tactile pixels.

- Ultrathin plastic electronic foils are extremely lightweight, virtually unbreakable.

- At 2 μm thickness, devices are ultraflexible and can be crumpled like a sheet of paper.

Flexible Sensors Needs & Applications

Page 20: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Electronic Skin“A surface embedding a dense sensor network, inspired from biological skin”

http

://w

ww

.des

ign

bo

om

.co

m/d

esig

n/l

esia

-tru

ba

t-e-

tra

ces-

ba

llet-

sho

es-p

ho

ne-

ap

p-1

0-2

4-2

01

4/

http://www.businessinsider.com/flexible-thin-electronics-breakthrough-2013-7?IR=T

Flexible Sensors Needs & Applications

Page 21: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

ElectronicsEngineering

Chemistry

Printed Electronics: Required Skills

Physics

MEMS & NEMS Technologies

Inks

PrintingSytems

Substrates

C

H

A

L

L

E

N

G

E

S

Before entering the market various technological improvements are still needed.

Page 22: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Technology …..

Page 23: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Università Degli Studi di Catania

Dip

arti

men

tod

iIn

gegn

eria

Elet

tric

a, E

lett

ron

ica

e d

eiSi

stem

i

Thick Film Fabrication Techniques: Screen Printing

Keywell Table Sliding Screen Printing Machinewww.keywell-printer.com

+ Many commercial inks are available+ High throughput+ Thick layers can be easily obtained+ Many different materials can be easily printed even with high viscosity- Requires high costs masks.- Ink waste.

Page 24: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

•Well-suited to mass-production

•Chemical Etching required

•Time and cost involved are at odds with the rapid iteration inherent in research

•Online PCB production services require at least a couple of days

•Lab-based PCB fabrication machines: expensive, fiddly to set up and maintain

•Up to day producing flex-PCB prototypes in the lab has not really been feasible

Fabrication Techniques: PCB

PCB Fluxgate (SensorLab@DIEEI, University of Catania, Italy

Page 25: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

•Rapid prototyping of circuit boards in a lab setting.

•Remove areas of copper from a copper-clad sheet of rigid PCB material to create pads, signal traces and conductive structures.

•Compared with conventional fabrication methods based on a chemical etching process, PCB milling machines are relatively fast and convenient.

•It is very difficult to mill flexible substrates.

http://www.lpkfusa.com/products/pcb_prototyping/machines/s_series/compare/

Fabrication Techniques: PCB Milling

Page 26: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Fabbrication Techniques

• Direct writing (inkjet, laser, mechanical pressure)

Page 27: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Technology Advantages Drawbacks

Mas

kB

ase

d Screen Printing several materialscomplex multilayer

maskslow resolutiontime consuminghigh cost production

PCB based techniques

mass productiongood resolution

development timeshigh cost production

Dir

ect

wri

tin

g

Low cost inkjet printing

good resolutionno masksrapid prototypinglow cost systemlow cost production

restricted kinds of materials

Professional inkjet printing

high resolutionseveral materialsrapid prototypinglow cost production

high cost production

Mixed screen & inkjet printing

good resolutionseveral materials

maskstime consuminghigh cost production

Fabbrication Techniques: a restricted benchmark

Page 28: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Technology Advantages Drawbacks

Mas

kB

ase

d Screen Printing several materialscomplex multilayer

maskslow resolutiontime consuminghigh cost production

PCB based techniques

mass productiongood resolution

development timeshigh cost production

Dir

ect

wri

tin

g

Low cost inkjet printing

good resolutionno masksrapid prototypinglow cost systemlow cost production

restricted kinds of materials

Professional inkjet printing

high resolutionseveral materialsrapid prototypinglow cost production

high cost production

Mixed screen & inkjet printing

good resolutionseveral materials

maskstime consuminghigh cost production

Fabbrication Techniques: a restricted benchmark

•Viscosity•Surface tension•Volatility•Particle size

Page 29: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Technology Advantages Drawbacks

Mas

kB

ase

d Screen Printing several materialscomplex multilayer

maskslow resolutiontime consuminghigh cost production

PCB based techniques

mass productiongood resolution

development timeshigh cost production

Dir

ect

wri

tin

g

Low cost inkjet printing

good resolutionno masksrapid prototypinglow cost systemlow cost production

restricted kinds of materials

Professional inkjet printing

high resolutionseveral materialsrapid prototypinglow cost production

high cost production

Mixed screen & inkjet printing

good resolutionseveral materials

maskstime consuminghigh cost production

Fabbrication Techniques: a restricted benchmark

Page 30: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Technology Advantages Drawbacks

Mas

kB

ase

d Screen Printing several materialscomplex multilayer

maskslow resolutiontime consuminghigh cost production

PCB based techniques

mass productiongood resolution

development timeshigh cost production

Dir

ect

wri

tin

g

Low cost inkjet printing

good resolutionno masksrapid prototypinglow cost systemlow cost production

restricted kinds of materials

Professional inkjet printing

high resolutionseveral materialsrapid prototypinglow cost production

high cost production

Mixed screen & inkjet printing

good resolutionseveral materials

maskstime consuminghigh cost production

Fabbrication Techniques: a restricted benchmark

Page 31: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Technology Advantages Drawbacks

Mas

kB

ase

d Screen Printing several materialscomplex multilayer

maskslow resolutiontime consuminghigh cost production

PCB based techniques

mass productiongood resolution

development timeshigh cost production

Dir

ect

wri

tin

g

Low cost inkjet printing

good resolutionno masksrapid prototypinglow cost systemlow cost production

restricted kinds of materials

Professional inkjet printing

high resolutionseveral materialsrapid prototypinglow cost production

high cost production

Mixed screen & inkjet printing

good resolutionseveral materials

maskstime consuminghigh cost production

Which is the right IJP Tech?

Application contexts• labscale prototype

• research laboratories

• educational activities

• customized devices

Fabbrication Techniques: a restricted benchmark

Page 32: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

SOTA on “Inkjet printed sensors”

A All InkJet Printed B-Field sensor(SensorLab@DIEEI, University of Catania, Italy

Thinfilm Strain Sensor (SensorLab@DIEEI, University of Catania, Italy)

Page 33: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

• Continuos Printing• DropOnDemand (smaller drop size, higher placement accuracy)

• Thermal DOD (needs water thus restricting possible inks)• Piezoelectric DOD (can be suited for a variety of solvents)

Fabbrication Techniques: Direct writing-Inkjet Printing

Page 34: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Inkjet Printing Systems

Desktop printersDimatix DMP 2800

www.dimatix.com

Microdrop inkjet systemwww.microdrop.de

Litrex M-Series inkjet systemwww.litrex.com

One Printing system for each application

context!!!

High precision and accuracy Throughput/speed and productivityMaintenance and reliabilityCompatibility with electronic fluids (inks) Compatibility with several substrates

Page 35: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Inkjet Printing Systems: Inks guidelines

Dimatix DMP 2850www.dimatix.com

Page 36: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Substrates

Substrate Material FeaturesPET (PolyEthylene Terephtalato) Flexible structure, high impact strength

PEN (PolyEthylene Naphtalato) Good dielectric properties

SEMIFLEX Good thermal resistance

POLYIMIDE Good mechanical and electrical properties

PAPER Low costs, high flexibility, versatile, and

recyclable

GLASS Good thermal capability, good dimensional

stability and chemical durability

CERAMICS High price, use is limited to the most

demanding of applications where rigid, high

temperature or high frequency behavior is

needed

Page 37: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Inks

Conductors: electrical conducting polymers for structures of electrodes

Semiconductors: electrical semi conducting polymers for transistors and diodes

Dielectrics: electrical insulating polymers (between semi-conducting and conducting layers)

Metallic: polymers containing metal particles as copper, silver, gold and nickel for electrodes

Functional: polymers whose properties are function of some physical quantities of interest

Oxide: electrical semi conducting sol-gel containing metal particles as zinc, tin and copper

•Suitable Resistivity•Functional layers

•High conductivity•Nozzle occlusion problem

PEDOT:PSS PANI

FunctionalInks

ConductivePolymers

Metal ParticleInks

Gold, Silver, Copper CNT, Graphene

•Transparent•High conductance

Page 38: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Conductive polymers: PEDOT:PSS

PEDOT:PSS or Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)

is a polymer mixture of two ionomers. One component in this mixture is made up of sodium polystyrene sulfonate which is a sulfonated polystyrene. Part of the sulfonylgroups are deprotonated and carry a negative charge. The other component poly(3,4-ethylenedioxythiophene) or PEDOT is a conjugated polymer and carries positive charges and is based on polythiophene. Together the charged macromolecules form a macromolecular salt.

Page 39: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

The PEDOT:PSS in “our” language! It is an organic polymer that conduces electricity It is commercially available as a dispersion in water (typically at 1-3% wt. solids)

(Sigma Aldrich/H.C. Starck/Bayer/AGFA etc.)

It is compatible with inkjet printing after simple pre-processing (dilution/filtering)

Baytron P from Bayer main Characteristics:

Solid content 1.2 – 1.4 %Viscosity 60 – 100 mPa*s (olive oil = 81 mPa*s) It probably needs to be diluted (20 mPa*s)

pH-value 1.5 – 2.5Conductivity max 10 S/cm (depending on the type of coating formulation)Density at 20 °C 1.003 g/cm^3Mean particle size approx. 80 nm (filtering to avoid nozzles clogging)Surf. tension at 20 °C 71 mN/m (that will determine the adhesion)

3cm

0.2cm0.1mm

RPEDOT:PSS = 150 Ω RCOPPER = 0.25 μΩ

Conductive polymers: PEDOT:PSS

Page 40: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

PANI or Polyaniline

- conducting polymer- high electrical conductivity

Sigma Aldrich (650013) – PANI main propertiesConcentration: 2-3 wt % (dispersion in xylene)Particle size: < 400 nmConductivity: 10-20 S/cm (film)Viscosity: 3 mPa*s Density: 0.9 g/ml @ 25 °C

Acid/base doping response: allows PANI to be used in chemical vapor sensors.

Conductive polymers: PANI

Page 41: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

•Metalon® JS-B15P Water-based nano-Silver ink specially formulated for (desktop) piezo inkjet printing methods.

-High conductivity -Compatible with porous substrates (PET)

•Printable through a commercial printer

•Post-processing (curing)

Metal Particle Ink

Resistivity 48 cm

Sheet Resistance 1600 m/

Viscosity 1-5 cps

Ag content 15%

Page 42: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Metal Particle Ink

Page 43: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

•Printing of conductive tracks.

•Compared to inks based on nanoparticle suspensions they do NOT contain any solids tending to agglomeration.

•Since no surfactants are necessary to stabilize the organometallic precursors, they can easily be converted into conductive material at moderate conditions.

•The reduction of organometallic precursors is achieved either chemically, thermally, photochemically by UV-light or via combined processes.

•Suitbale for InkJet Printing: inks can easily be adjusted to the physical and rheological requirements of printing processes.

Electrical resistivity of printed silver lines from a commercial silver ink with 20 wt% of silver as a function of sintering time and temperature.J. Perelaer, C. E. Hendriks, A. W. M. de Laat and U. S. Schubert, Nanotechnology, 2009, 20, 165303

Organometallic Inks

Page 44: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Conductive Polymers Vs Metal Particle Inks

Features Conductive Polymers Metal particle inks

Price 400 €\kg 5000 – 10000 €\kg

Conductivity Low (10 S/cm typical) High (> 10 kS/cm)

Cure temperature Low (50 – 100 °C) High (300 – 500 °C)

Preprocessing Dilution/Filtering None

Adhesion Medium-Low Very good

Compatibility Good performances even with common desktop printer printheads

Only dedicated Piezoelectric Printheads

Availability Few general purpose dispersions

Many different commercial inks application specific

Page 45: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

•Many printed inks are not initially conductive and require a heat treatment for reduction.•E.g silver nanoparticles have a polymer shell which prohibits agglomeration while in suspension.Once deposited, the ink must be sintered in an oven at more than 150°C for several hours in order to form mutual connections among the metal particles.

•E.g. copper nanoparticles (https://www.nature.com/articles/srep08832)Processing much more demanding than that of silver or gold due to high rate of oxidation and the higher melting point of copper compared to silver and gold. Copper oxides are non-conductive and therefore the oxidation of copper during sintering processes prevents the formation of electrically functional structures. This puts significant requirements for the processing speed of the sintering process or for the ambient atmosphere.

Needs for curing

Page 46: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Curing techniques- Thermal curing (hot plate, convection Oven) • High temperature (not compatible with cost-effective polymers e.g. PET);• reduces the prototyping speed.

- Laser curing (absorption of emitted photonic energy by the IJP nanoparticle)• high energy sintering • small spot size laser (high spatial resolution, area selective)• high energy density on a fixed wavelength

- IPL Curing (absorption of emitted photonic energy by the IJP nanoparticle)• rapid and high energy sintering• xenon flash lamp emitting light over a wide wavelength spectrum• larger areas at once in comparison to laser sintering, better suited for larger

patterns

Needs for curing

Page 47: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

The challenge“sintering the printed inks with simultaneously low heat input to the substrate.”

Intensive pulsed light (IPL) Curing

R&D System for sintering silver, copper and other functional inks.http://www.polytec.com/eu/products/lighting-systems/xenon-uv-flash-lamps/photonic-sintering-of-printed-electronics/sinteron-2000/

•Due to the short time interval (milliseconds) of the light pulses, the nanoparticles can be sintered without damage to the underlying substrate layer.

Appropriate for use with PET film and paper for flexible printed electronic applications.

•Intense Pulsed Light (IPL) generated from a xenon lamp source can be used to sinter nano-copper ink particles under ambient conditions.

•IPL delivers a quick burst of intense near-UV energy to the printed surface.

Page 48: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

•Inkjet printing of semiconducting polymers to develop Organic Thin Film Transistors (OTFTs) is still far from operation in the GHz frequency range.

•Integration of off-the-shelf active electronic components onto flexible substrates provides an exciting alternative.

Integration of COTS components on Flexible substrates #1

Challenges•Bonding rigid components to flexible substrates•Bonding flexible components to flexible substrates•Conductive connection between substrates

Page 49: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Integration of COTS components on Flexible substrates #2

An exampleActive paper-based RFID tag for wireless temperature sensor platforms utilizing both battery and energy harvesting techniques to carry out sensing function over long ranges and lifespan.

S. Kim, A Georgiadis, A Collado, and M. M. Tentzeris, "A InkjetPrinted Solar-Powered Wireless Beacon on Paper for Identification and Wireless Power Transmission Applications", IEEE Transactions on Microwave Theory and Techniques, vo1.60, no.12, pp. 4178-4186, Dec. 2012.

Page 50: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Y. Kawahara, H. Lee, M. M. Tentzeris, "SenSprout: inkjet-printed soil moisture and leaf wetnesssensor," Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp '12), New York, 2012.

Integration of COTS components on Flexible substrates #3

Page 51: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Conventional soldering techniques are not suitable for connecting components to inkjet circuits because solder typically melts at a much higher temperature (e.g. 180) than is tolerated by the substrate.

Bonding COTS components on Flexible substrates

Electrically Conductive Adhesive Transfer Tapes It is designed for attaching Flexible Printed Circuits (FPC) to traditional PCBs.

3M Electrically Conductive Transfer Tape 9707

Two components, silver conductive epoxy adhesiveFast fixture time at room temperatureThe conductivity increases as the epoxy cures. Suggested curing at 65 °C for 15 minutes.Alternatively, 12 hours at room temperature.

Soldering with low-temperature Solder PasteSolder Paste with an eutectic point of 138°C (lower than the PET melting point ~260°C). This technique is suitable for copper, while it is not for Silver nanoparticles.

http://www.sra-solder.com/sra-low-temperature-lead-free-solder-paste-t3-50-gram-jar-4520

CHEMTRONICSCW2400

Page 52: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly Examples…

InkJet Printed Sensors

Page 53: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Printed Electronics: Inkjet Printed Sensors SOTA Review 1/3

Printer: Epson Stylus color 480 Plates: PEDOT:PSS (Bayer -Baytron P)Dielectric: PBPDA-PD from Aldrich (PI after heating)R = 17 MΩC = 50 pFτ = 0.85 ms

All-polymer capacitor fabricated with inkjet printing techniqueYi Liu, Tianhong Cui *, Kody Varahramyan

Institute for Micromanufacturing, Louisiana Tech University, 911 Hergot Avenue, P.O. Box 10137, Ruston, LA 71272, USAReceived 17 November 2002; received in revised form 28 January 2003; accepted 31 January 2003

Page 54: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Printed Electronics :Inkjet Printed Sensors SOTA Review 2/3

Printer: MicrodropInk: PEDOT:PSS (Clevios PH 500)

Inkjet Printing of MicrosensorsHussein Al-Chami, Student Member, IEEE and Edmond Cretu, Member, IEEE

Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Page 55: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Printed Electronics: Inkjet Printed Sensors SOTA Review 3/3

Process: Screen printing for the electrodes and inkjet (Dimatix) for the PANIInk: Silver nanoparticles (Acheson) + custom prepared PANI ink

Fabrication of chemical sensors using inkjet printing and application to gas detection Karl Crowley, Aoife Morrin, Malcolm R. Smyth, Anthony J. Killard

Sensors and Separations Group, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland

Evolution of inkjet printed droplet ofnanoPANIsolution over time.

Page 56: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Smart sensing• Customized IMU• User Tracking&Localization• Inertial navigation systems• Assistive systems• Active Ageing & Well Being• Hazards monitoring• Volcanic monitoring• Structural monitoring

Sensing• E-B Field sensors• ()Fluidics• Bio-receptor enhanc.• Rapid prototyping (IJP)• FF inertial sensors/actuators• Nano-MEMS

x

yz

•Sensor data fusion

•Sensor Networks

•SR&Dithering

•Noise shaping

•Advanced signal

processing

•Non Linear Harvesting

•PCB

•MEMS/NANO

•Rapid prototyping

•Flexible sensors

•INK JET

•WSN

•Smart Sensors

•Piezoelectrics

•Ferroelectrics

•Multiferroics

•Ferrofluids

•-metal

•INKS

•Polimers

Methodologies Technologies Materials

SensorLab@DIEEI-UNICT

Energy-Harvesting• IJP Snap Through Buckling• Double Piezo

App

licatio

ns

Contact: Prof. Bruno Andò[email protected]

Page 57: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

x

yz

InkJet Printing sensing system Microsensors

Measurement station for sensor characterization

A microcontroller architecturebased multisensor system

-Micro&Nano sensors-Bio-sensors-InkJet Printed Sensors-Polymeric Sensors-Metrological characterization of sensors-Smart multi-sensor systems-Systems for the monitoring of people (ActiveAgeing and Well Being) and the environment(pollutions and seismic activity)

Research Activities at the SensorLab@DIEEI-UNICT

Non Linear Energy Harvesting

Page 58: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Rapid prototyping@ SensorLab@DIEEI-UNICT

LPKF Protomat S103

CNC Milling Machinefor the rapidprototyping of PCBand micro-patterningmaterials.

Page 59: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Rapid prototyping at SensorLab@DIEEI-UNICT

Page 60: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

IJP Sensors at SensorLab@DIEEI-UniCT

Page 61: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

PrintingTechnologies

ConductiveINKS

FunctionalINKS

Costs Time consuming

Screen printing

Yes Yes High Yes

Low cost inkjet printer

YesYes with restriction

Low No

Professional inkjet printer

Yes Yes High No

Silver nano-particles Inks

PEDOTPANI

Feasibility of IJP sensors by low cost equipment

IJP Sensors at SensorLab@DIEEI-UniCT

Page 62: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

IJP Sensors at SensorLab@DIEEI-UniCT

Page 63: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

IJP Sensors at SensorLab@DIEEI-UniCT

Page 64: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Epson WF2010W printer Metalon JS-B25 silver ink

Square coils Circular coils Resistors InterdigitsLayouts with strain gauges

PET substrateCartridge

IJP Sensors at SensorLab@DIEEI-UniCT

Page 65: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Strain Gauges (SensorLab@DIEEI-UniCT)

Dev

ice

Leg

ht

Tracks Width

Track Spacing

LAYOUT

SG1 SG2 SG3

Track Width (m) 200 200 200

Spacing (m) 300 300 300

Length (cm) 1,0 1,5 2,0

Resistance R0 266,0 1,9% 563,2 2,8% 862,8 2,2%

Gage Factor 21 17 15

Uncertainty band ±1.17 10-4 ± 1.50 10-4 ±2.40 10-4

Resolution() 1.2 1.4 1.9

Repeatibility(%) 2.70 10-3 2.67 10-3 3.04 10-3

Metalon® JS-B15P

Page 66: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Electron microscopy (SEM) inspection of electrodes with a track width of 200 m.

A spacing of 150m does not assure tracks insulation.

Below 200 μm

Electrodes analysis

Over 200 μm

Electron microscopy (SEM) images of the silver layer deposited on the device.The silver layer is quite homogeneous.An approximated thickness of 1.90 µm has been estimated.

Page 67: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Resonant Mass Sensor (SensorLab@DIEEI-UniCT)

1.9 cm

4.6

7 cm

0 0.05 0.1 0.15 0.2 0.25 0.3 0.355.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Mass (g)

Fre

quency (

Hz)

Frequency trend (B3 fixed)

fr B3 I1

fr B3 I2

fr B3 I3

fr B3 I4

fr B3 I5

0 0.5 1 1.5 2 2.5 3 3.5 4-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Time (s)

Voltage (

V)

Filtered impulse response (B1 I5 M0)

Impulse response operation

1 2 3 4 5

Current I

(mA)

20 30 40 50 60

Magnetic

field B (G)

2799 1606 945

Page 68: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

PEDOT PANI GRAPHENE ZnO

Cl2 X

CH4 X X

CO X X

CO2 X X

H2 X

H2S X

NO X

NO2 X X X

NH3 X X X

IJP NH3 sensor (SensorLab@DIEEI-UniCT)

Pedot based NH3 sensor

IDT Silver Inkthickness: 200nm

PET Substratethickness: 200um

PHCV4-TQ Layerthickness: 12um

Page 69: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

PEDOT PANI GRAPHENE ZnO

Cl2 X

CH4 X X

CO X X

CO2 X X

H2 X

H2S X

NO X

NO2 X X X

NH3 X X X

IJP CO2 sensor (SensorLab@DIEEI-UniCT)

Pedot/Graphene based CO2 sensor

Supply & conditioning

Characterization chamber

DAQ

CO2

USB

Valve Flow switch

Functiongenerator

USB/GPIB

LM35

Humiditysensor

CO2

referencesensor

CO2 sensingsystem

FAN

0 1000 2000 3000 4000 50000.09

0.095

0.1

0.105

0.11

0.115T=50°C

CO2 Concentration [ppm]

dR

/R

0 1000 2000 3000 4000 50000.095

0.1

0.105

0.11

0.115

0.12T=60°C

CO2 Concentration [ppm]

dR

/R

Page 70: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

APPLICATION POINTS

1

2

3

4

5

1

2

3

4

5

0

5

10

15

20

25

30

distribuzione interpolata 3D

0

5

10

15

20

25

30

Testing the reliability ofmaterials and prosthesyshealth,by monitoring theTibio-Femoral stress.

MUX

IJP sensors for Bio-medical App. (DIEEI-UniCT, DIE-UniBS)

Page 71: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

IJP Inclinometer (SensorLab@DIEEI-UniCT)

0 1 2 3 4 5 6 7-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (s)

Ou

tpu

t V

olt

ag

e (

V)

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7

8

Tilt (°)

Ou

tpu

t V

olt

ag

e (

V)

experimental data

linear model

Page 72: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

IJP B-Field sensor (SensorLab@DIEEI-UniCT)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.0350

0.5

1

1.5

2

2.5

3

3.5x 10

-4

Magnetic Field [T]

DR

/R

Driving current (mA)@9.1 Hz 20 30 50 90

Responsivity [(Ω/Ω)/T] 0.009 0.011 0.017 0.024

Resolution [mT/(Ω/Ω)] 1.20 0.46 0.40 0.37

Actuation coil

Strain Gauge

Page 73: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

IJP Accelerometer (SensorLab@DIEEI-UniCT)

101

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Ma

gn

itu

de

(d

B)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

0

0.1

0.2

0.3

0.4

0.5

Vout (V)

Ac

ce

lera

tio

n (

g)

2 4 6 8 10 12 14

x 10-3

0

0.1

0.2

0.3

0.4

0.5

Vout (V)

Ac

ce

lera

tio

n (

g)

Calibration diagrams at (top) 10 Hzand (bottom) 35 Hz.

Page 74: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Flexible touch sensor: realization (SensorLab@DIEEI-UniCT)h1

h2

h3

Polymer substrate

Support rubber layer

Functional Layer

Applied force/pressure

S S S SG G G

λ

b

d

l

λ

Functional Layer

Support Rubber IDC sensor

The technology adopted makes use of a silver

nano-particles solution, the “Metalon® JS-

B15P” by Novacentrix [22], and the printer

Epson WorkForce WF 2010W for the

realization of the conductive patterns. The

adopted substrate is the Novele™ IJ-220

Printed Electronics Substrate by Novacentrix

Page 75: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Flexible touch sensor: characterization (SensorLab@DIEEI-UniCT)

Page 76: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

5,5

6,0

6,5

7,0

7,5

8,0

8,5

9,0

9,5

2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0

CID

C(p

F)

Funtional Layer thickness, h3 (mm)

Experim

Kim model

Model (11)

Average responsivity: 0.140 pF/mm; Resolution: 0.36 mm

Flexible touch sensor: characterization (SensorLab@DIEEI-UniCT)

Page 77: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Flexible touch sensor: modeling (SensorLab@DIEEI-UniCT)h1

h2

h3

Polymer substrate

Support rubber layer

Functional Layer

Applied force/pressure

S S S SG G G

λ

𝐶1 = 𝜖0𝜖1𝐾 𝑘1

𝐾 𝑘1

𝐶2 = 𝜖0 𝜖2 − 𝜖1𝐾 𝑘2

𝐾 𝑘2

𝐶3 = 𝜖0𝜖3𝐾 𝑘3

𝐾 𝑘3

𝐶𝐼𝐷𝐶 = 𝐶1 + 𝐶2 + 𝐶3

K(ki) is the complete elliptic integral of the first kind

with modulus ki

𝑘𝑖′ = 1 − 𝑘𝑖

2

𝑘𝑖′ =

𝑠𝑖𝑛ℎ𝜋𝑏

4ℎ𝑖

𝑠𝑖𝑛ℎ𝜋

2ℎ𝑖

𝑏

2+𝑑

𝑠𝑖𝑛ℎ2𝜋

2ℎ𝑖

𝑏

2+𝑑+𝑎 −𝑠𝑖𝑛ℎ2

𝜋

2ℎ𝑖

𝑏

2+𝑑

𝑠𝑖𝑛ℎ2𝜋

2ℎ𝑖

𝑏

2+𝑑+𝑎 −𝑠𝑖𝑛ℎ2

𝜋𝑏

4ℎ𝑖

𝐾 𝑘𝑖

𝐾 𝑘𝑖′ ≅

2

𝜋𝑙𝑛 2

1−𝑘𝑖

1+𝑘𝑖𝑓𝑜𝑟

2

2≤ 𝑘𝑖 ≤ 1

Τ𝜋 2

𝑙𝑛 21+𝑘𝑖′

1−𝑘𝑖′

𝑓𝑜𝑟 0 ≤ 𝑘𝑖 ≤2

2

b

d

Page 78: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Flexible touch sensor: modeling (SensorLab@DIEEI-UniCT)h 1

h 2h 3

Polymer substrate

Support rubber layer

Functional Layer

Applied force/pressure

S S S SG G G

λ

Page 79: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

IJP Actuator (SensorLab@DIEEI-UniCT)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

1

2

3

4x 10

-4

Id [A]

FB

[N

]

BDC

=98.8 mT

BDC

=70.6 mT

BDC

=37.1 mT

FB

=2.56e-3*Id

FB

=1.30e-3*Id

FB

=0.57e-3*Id

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

1

2

3

4

5

6

7x 10

-3

Id [A]

Bea

m d

efle

ctio

n D

y [

m]

BDC

=98.8 mT

BDC

=70.6 mT

BDC

=37.1 mT

Dy=43.5e-3*Id

Dy=19.5e-3*Id

Dy=28.3e-3*Id

Page 80: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Claims:• Low cost• Autonomous• Embedded signal

processing• Low power budget• Easy of use and wear

Smart Unit

SENSORS

WirelessCommun.

• CAREGIVERS• PARENT• SERVICE CENTER

SignalProcessing

Wireless Commun.Manag.

Data Acquisition

Wireless Commun.

ZigbeeWSN

GPRS

Bluetooth

The smart sensor concept…

Page 81: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly Smart Unit

SignalProcessing

Wireless Commun.Manag.

Data Acquisition

Wireless Commun.

ZigbeeWSN

GPRS

Bluetooth

IJP Sensors

Fully LOW COST Inkjet Printed Electronics

WirelessCommun.

Electronics

P

O

W

E

R

Page 82: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Claims:• Low cost• Autonomous• Embedded signal

processing• Low power budget• Easy of use and wear

Smart Unit

SignalProcessing

Wireless Commun.Manag.

Data Acquisition

Wireless Commun.

ZigbeeWSN

GPRS

Bluetooth

IJP Sensors

WirelessCommun.

Electronics

P

O

W

E

R

Fully LOW COST Inkjet Printed Electronics

Page 83: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

InkJet Printed– Snap Through Buckling Harvester

X

Y

ΔX

ΔY/2

Stable state

Stable state

ΔY/2

F

t

Proof mass

Z

A real challenge!!!

Page 84: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

1 c

m

10 cm

Sub

stra

teID

Tel

ectr

od

es

Act

ive

Mat

eria

lPZ

T

InkJet Printed– Snap Through Buckling Harvester

A PZT layer has been screen printed to convert strains due to the beam switches (induced by external vibrations) between its two stable states into an output voltage.

Page 85: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

InkJet Printed– Snap Through Buckling Harvester

MassIJP STB HarvesterClamping System

Substrate IJP electrodes PZT Clamping System

The STB beam is implemented via a PET (PolyEthyleneTerephthalate) substrate

Page 86: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Investigations of dynamic performance of the IJP-STB harvester

0 0.5 1 1.5 2 2.5 3 3.5 4-15.9

-7.95

0

7.95

15.9

time [s]

Dis

pla

ce

me

nt

[mm

]

0 0,5 1 1,5 2 2,5 3 3,5 4-19.05

-9.52

0

9.52

19.05

time [s]

Acce

lera

tio

n [

m/s

2]

laser

accelerometer

0 1 2 3 4

-12.9

0

12.9

time [s]

Dis

pla

ce

me

nt

[mm

]

0 1 2 3 4-47.62

-23.81

0

23.81

47.62

time [s]

Acce

lera

tio

n [

m/s

2]

laser

accelerometer

ΔY= 1 mm ΔY= 3 mm

laser

accelerometer

PSD of the laser output signal

Example of time series of signals output in case of sinusoidal solicitation at 6Hz with the strength close to the minimum value assuring the beam switching between its stable states

Page 87: Rapid prototyping of sensors - GMEE

Bruno Andò, SmartSensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.00

0.005

0.01

0.015

0.02

0.025

AccRMS

[m/s2]

VR

MS

norm

[V

]

0.0 7.9 15.9 23.9 31.9 36.6 40.1 43.6 51.2

Accmax

[m/s2]

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

AccRMS

[m/s2]

VA

v P

ea

k [V

]

0.0 7.9 15.9 23.9 31.9 36.6 40.1 43.6 51.2

Accmax

[m/s2]

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.00

0.02

0.04

0.06

0.08

0.1

0.12

0.14

AccRMS

[m/s2]

VR

MS

norm

[V

]

0.0 8.5 16.9 25.4 33.9 36.4 43.6 46.8 49.9 53.4 59.3

Accmax

[m/s2]

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AccRMS

[m/s2]

VA

V P

eak

[V]

0 8.5 16.9 25.4 33.9 36.4 43.6 46.8 49.9 53.4 59.3

Accmax

[m/s2]

ΔY= 1 mm

ΔY= 3 mm

norm

RMSVAvPeakVand

values as a function of the accelerations applied to the device for the two values of the pre-compression

Electrical Behavior of the IJP - STB Harvester

6 Hz8 Hz

10 Hz

12 Hz14 Hz

6 Hz8 Hz 10 Hz

12 Hz

Powers in the order of 102 nW have been experimentally estimated

Page 88: Rapid prototyping of sensors - GMEE

Bruno Andò, SensorLab

DIE

EI –

Un

ive

rsit

y o

f C

atan

ia, I

taly

Rapid prototyping of sensors

Prof. Bruno Andò DIEEI-University of Catania

[email protected]