PWM Methods

download PWM Methods

of 43

Transcript of PWM Methods

  • 8/19/2019 PWM Methods

    1/100

    Switch-Mode DC-AC Inverter 

     Four quadrants of operation

  • 8/19/2019 PWM Methods

    2/100

    The most widely used control technique in power

    electronics

  • 8/19/2019 PWM Methods

    3/100

  • 8/19/2019 PWM Methods

    4/100

    Basic principles of PWM

    Similar response to diferent shape o impulseinput

  • 8/19/2019 PWM Methods

    5/100

    Application o the equal-area theorem

  • 8/19/2019 PWM Methods

    6/100

  • 8/19/2019 PWM Methods

    7/100

    The question then becomes how to change the duty

    cycle with a sinusoidal rule. The ollowing gure

    illustrates one o the methods, which is named as

    sinusoidal P! "SP!#.

  • 8/19/2019 PWM Methods

    8/100

    A list of PWM techniques

    • Triangular-wa$e sampling

    –  %atural sampling

    –  &niorm sampling

    • 'alculation

    – 'alculation based on equal-area criterion

    –  Selecti$e harmonics elimination

    • (ysteresis band control

    • Space )ector !odulation "S)!, or S)P!#

    • *andom P!

  • 8/19/2019 PWM Methods

    9/100

    Some major PWM techniques

    • Natural sampling

    • Uniform sampling

    • Selectie harmonics elimination

    • Some practical issues – Synchronous modulation and asynchronous

    modulation

     – !armonics in the PWM inerter output oltages

     – Ways to improe "# input oltage utili$ation andreduce switching frequency

     – #onnection of multiple PWM inerters

  • 8/19/2019 PWM Methods

    10/100

    Pulse%Width Modulated &S'

    • PWM Methods

    – Single Pulse-width !odulation

    – !ultiple+&niorm Pulse idth !odulation

    – sine P! "SP!#

    – !odied sine P!

    – (armonic limination Technique "S(#

    – !inimum ripple current P!

    – (ysteresis "ang-bang#

    – Space )ector P!

  • 8/19/2019 PWM Methods

    11/100

    Control circuit waveforms for a square wave PM inverter 

    a!Comparator input volta"es#

    $!Comparator output volta"e and pole volta"e

    mf  ( f c )f o  and p % mf &' % pulses&half c(cle

    M' ( Am)Ac) MI is amplitude modulation inde*) Ac pea* carrier amplitude

    and Am is pea* amplitude of modulatin" wave

    here) mf is frequency modulation inde*) f c carrier freq#) and f o output freq#

  • 8/19/2019 PWM Methods

    12/100

    +olta"e waveforms for a ,ph square wave PM inverter 

    a!)$!)c! comparator input volta"es

    d!)e!)f! pole volta"es "! pole volta"es h! line to neutral volta"e#

  • 8/19/2019 PWM Methods

    13/100

    +olta"e waveforms for a ,ph square wave PM inverter when the carrier

    wave is shifted $( one quarter-c(cle #

    a!)$!)c! comparator input volta"es

    d!)e!)f! pole volta"es "! pole volta"es

  • 8/19/2019 PWM Methods

    14/100

    .armonic content of the

    square wave PM

    volta"e as a function ofthe modulation inde/#

    a!.armonic amplitude

    relative to ma/imum

    fundamental amplitude#

    $!.armonic amplitude

    relative to actual

    fundamental amplitude#

  • 8/19/2019 PWM Methods

    15/100

    In synchroni$ed PWM the frequency of the triangle signal is an integral multiple of

    that of the reference signal # 0herefore) the "enerated PM si"nal is identical inever( c(cle of the reference si"nal# 0his ensures a sta$le volta"e output where the

    trian"le si"nal has low frequencies in order to reduce the switchin" loss of the

    power transistors#

    Asynchronous PM doesn1t ensure the relation $etween the frequencies of $oth

    si"nals# 0he method is simple $ut causes different volta"e forms in different c(cles#

    .owever) if the trian"le frequenc( is much hi"her than the reference frequenc() thisinfluence is ne"li"i$le#

  • 8/19/2019 PWM Methods

    16/100

    Triangular%wae natural sampling

    &ni-polar P! in single-phase )S

    &ni-polar sampling is used to reali/e uni-olar P!.

  • 8/19/2019 PWM Methods

    17/100

    In symmetric PWM) the positie +or negatie, pulse of ever( PM c(cleis located in the middle of the c(cle period) while in the asymmetric PWM-

    the pulses are usuall( aligned to the start or end of the PM c(cle#

    Practicall() asymmetric methods are relativel( easier to realise) $ut

    symmetric methods evo*e fewer harmonics# 0herefore) s(mmetric PM

    should $e used when possi$le#

    Symmetric and Asymmetric PWM

  • 8/19/2019 PWM Methods

    18/100

  • 8/19/2019 PWM Methods

    19/100

    S(mmetric and As(mmetric PM

  • 8/19/2019 PWM Methods

    20/100

    Dead time

    0he insertion of the dead time in ever( PM c(cle distorts the output volta"es#

    In accurate motor control) this ne"ative effect will $e compensated $(

    prolon"in" some of the pulses#

  • 8/19/2019 PWM Methods

    21/100

  • 8/19/2019 PWM Methods

    22/100

  • 8/19/2019 PWM Methods

    23/100

  • 8/19/2019 PWM Methods

    24/100

    Triangular%wae uniform sampling

    asier toreali/e by

    computercontrol!odulationactor

  • 8/19/2019 PWM Methods

    25/100

    i-polar sampling is usedto reali/e bi-polar P!.

    i-polar P! in single-phase )S

  • 8/19/2019 PWM Methods

    26/100

  • 8/19/2019 PWM Methods

    27/100

  • 8/19/2019 PWM Methods

    28/100

  • 8/19/2019 PWM Methods

    29/100

    'n .%phase &S'

    Three-phasebridge in$erter

    can only reali/e bi-polar P!thereore shouldbe controlledby bipolarsampling.

  • 8/19/2019 PWM Methods

    30/100

    Ways to improe utili$ation of "# input oltage

    and reduce switching frequency

    2se trape3oidal waveform as modulatin" si"nal instead of sinusoidal

  • 8/19/2019 PWM Methods

    31/100

    &se 01 order harmonics biasin the modulating signal

    4eference si"nal of third-harmonic PM

  • 8/19/2019 PWM Methods

    32/100

    Concept of si/t(-de"ree PM

    Si*ty%degree PWM

     The sixty-degree PWM is an extension of third-harmonic PWM. It

    is also implemented in the same manner as SPWM. It is based

    on the consideration that not only third harmonic b!t also allnon-e"en triplen harmonics are #ltered o!t by the delta

    connected motor $indings. Adding all these harmonics $ith the

    f!ndamental together a f!nction $ith %at segments is obtained

    as sho$n in the #g!re. The period of the %at part co"ers &'(

    signal phase

    The modulation inde* of this method also reaches /0

  • 8/19/2019 PWM Methods

    33/100

    P!rpose)– *xpand o!tp!t po$er rating– +ed!ce harmonics

    'onnection o multiple P!in$erters

  • 8/19/2019 PWM Methods

    34/100

    PWM techniques with feed1ac2 control

    • Current h(steresis control

    • +olta"e h(steresis control

    • 0rian"ular-wave comparison 5samplin"!with feed$ac* control

  • 8/19/2019 PWM Methods

    35/100

     Si*%Step three%phase &oltage Source 'nerter 

    3ig0 / Three%phase oltage source inerter0

    '0 &oltage Source 'nerter +&S',A0 Si*%Step &S'

  • 8/19/2019 PWM Methods

    36/100

     4ating signals- switching sequence and line to negatie oltages

    3ig0 5 Waeforms of gating signals- switching sequence- line to negatie oltages

    for si*%step oltage source inerter0

    '0 &oltage Source 'nerter +&S',

    A0 Si*%Step &S'

  • 8/19/2019 PWM Methods

    37/100

    &oltage Source 'nerter +&S', Si*%Step &S' /677 operation

    •  Switching Sequence8

    •  9:/ +&/, → :/5 +&5, → /5. +&., → 5.; +&;, → .;9 +&9, → ;9: +&:, → 9:/ +&/,

    where- 9:/ means that S9- S: and S/ are switched on

    3ig0 . Si* inerter oltage ectors for si*%step oltage source inerter0

  • 8/19/2019 PWM Methods

    38/100

    ,-ph 6rid"e

    Inverter outputvolta"e waves

    in square wave

    5or Si/ Step!

    mode

  • 8/19/2019 PWM Methods

    39/100

    '0 &oltage Source 'nerter +&S',

    A0 Si*%Step &S' 

  • 8/19/2019 PWM Methods

    40/100

    '0 &oltage Source 'nerter +&S',

    A0 Si*%Step &S'

    dcdcdc V78.0V

    6

    2

    V4

    2

    3)   ≈==

    π π 

    (rms)(V 1ab

     Amplitude of line to line oltages +&a1- &1c- &ca, 3undamental 3requency #omponent +&a1,/

     !armonic 3requency #omponents +&a1,h

      8 amplitudes of harmonics decrease inersely proportional to

      their harmonic order 

    3,.....)2,1,(n16nhwhere,

    V78.0

    dcab

    =±=

    =h

    (rms))(V h

  • 8/19/2019 PWM Methods

    41/100

    Pulse%Width Modulated &S'

     >1jectie of PWM #ontrol of inerter output oltage

     ?eduction of harmonics

     "isadantages of PWM

     'ncrease of switching losses due to high PWM frequency

     ?eduction of aaila1le oltage

     @M' pro1lems due to high%order harmonics

  • 8/19/2019 PWM Methods

    42/100

     Pulse%Width Modulation +PWM,

    3ig0 9 Sinusoidal Pulse%width modulation0

  • 8/19/2019 PWM Methods

    43/100

    Pulse%Width Modulated &S'

     'nerter output oltage

     When control  tri- &A7 ( &dc )5

     When control  tri- &A7 ( %&dc )5

     #ontrol of inerter output oltage

     PWM frequency is the same as the frequency of tri

     Amplitude is controlled 1y the pea2 alue of control

     3undamental frequency is controlled 1y the frequency of 

      control Modulation 'nde* +m,

    A01A0

    10

    Vof componentfrequecnyfundamenta!)(Vwhere,

    ,2"

    )(

    dc

     A

    tri

    control 

    V of   peak 

    v

    vm   ==

  • 8/19/2019 PWM Methods

    44/100

    PWM M@T!>"S Sine PWM

     Amplitude modulation ratio +ma,

    A01A0

    10

    Vof componentfrequecnyfundamenta!)(Vwhere,

    ,2"

    )(dc

     A

    tri

    control a

    V V of  value peak 

    vof  amplitudevof  amplitude peak m   ==∴

     3requency modulation ratio)inde* +mf ,

    frequencyfundamentaf andfrequency#$%f where,, 1&1

    === f  

     f  m   s f  

     mf  should 1e an odd integer 

     if mf  is not an integer- there may e*ist su1hamonics at output oltage if mf  is not odd- "# component may e*ist and een harmonics are

    present at output oltage

     mf  should 1e a multiple of . for three%phase PWM inerter 

     An odd multiple of . and een harmonics are

    suppressed

    PWM M@T!>"S

  • 8/19/2019 PWM Methods

    45/100

    PWM M@T!>"SSine PWM

     Three%phase inerter 

    3ig0 : Three%phase Sine PWM inerter0

  • 8/19/2019 PWM Methods

    46/100

  • 8/19/2019 PWM Methods

    47/100

  • 8/19/2019 PWM Methods

    48/100

    P! !T(23S i P!

  • 8/19/2019 PWM Methods

    49/100

    P! !T(23S sine P!

           V       A

           0

           V

           B       0

           V       C       0

           V       A

           B

           V       B       C

           V       C       A

    t

    3ig0 C Waeforms of three%phase sine PWM inerter0

    tri controlDA controlDB controlD#

     Three%phase sine PWM waeforms

     3requency of tri and control

     3requency of tri ( f s

     3requency of control ( f /

    where- f s ( PWM frequency  f / ( 3undamental frequency

     'nerter output oltage

     When control  tri- &A7 ( &dc )5

     When control  tri- &A7 ( %&dc )5

    where) &AB ( &A7 E &B7

      &B# ( &B7 E

      A (  E &A7

  • 8/19/2019 PWM Methods

    50/100

           V

           A

           0

           V       B       0

           V       C       0

           V       A

           B

           V       B       C

           V       C       A

    t

  • 8/19/2019 PWM Methods

    51/100

  • 8/19/2019 PWM Methods

    52/100

    PWM M@T!>"S Modified sine PWM

    Improves short comin"s of sine PM techniques) while

    retainin" its merits#

    For 7 connected load +an % +d&' and +an8% '+d&9 % #:,:+d

    Correspondin" fundamental rms line to line volta"es are

      +a$8 % ;#:8+d for SPM technique and ;#ection sine PM technique

  • 8/19/2019 PWM Methods

    53/100

    ?ffect of 6lan*in"

    0ime

    • 4esults in nonlinearit(

  • 8/19/2019 PWM Methods

    54/100

    ?ffect of 6lan*in" 0ime

    • +olta"e >ump when the current reverses direction

  • 8/19/2019 PWM Methods

    55/100

    ?ffect of 6lan*in" 0ime

    • ?ffect on the output volta"e

    Pro"rammed .armonic ?limination 5S.?!

  • 8/19/2019 PWM Methods

    56/100

    " 5 !

     An"les $ased on the desired output

    9th and Cth harmonic elimination

  • 8/19/2019 PWM Methods

    57/100

  • 8/19/2019 PWM Methods

    58/100

    • 0he "eneral fourier seriesof the wave is "iven as

    • here)

    • For quarter c(cles(mmetr(

    ∑∞

    =+=

    1

    )&'nco&()(n

    nn   t nbt nat v   ω ω 

    t d t nt vb

    t d t nt va

    n

    n

    ω ω 

    π 

    ω ω π 

    π 

    π 

    ∫ 

    ∫ 

    =

    =

    2

    0

    2

    0

    &'n)(1

    co&)(1

    ∫ =  π  

    ω ω 

    π  

    2

    0  &'n)(

    40   t d t nt vband a nn

     Assumin" that the wave has unit amplitude i#e# +t, ( F /)

    1n can $e e/panded as

    4

  • 8/19/2019 PWM Methods

    59/100

    t d t nt d t nt d t nbn   ω ω ω ω ω ω π 

    α 

    α 

    α 

    α 

    α 

    ∫ ∫ ∫    −+−++=   32

    2

    1

    1 &'n)1(&'n)1(&'n)1(4

    0

    &'n)1(&'n)1(....2"

    1

    1

    t d t nt d t nk 

    k ω ω ω ω 

    π 

    α 

    α 

    α    ∫ ∫    ++−++ −−

    )co&(co&1

    &'n 212

    1

    θ θ ω ω θ 

    θ   nnn

    t d t n   −=∫ 2sin" the relation

    8st and the last terms

    are

    ∫    −=+1

    0   1)co&1(

    1&'n)1(

    α 

    α ω ω    nn

    t d t n

    k n

    nt d t n

    α  ω ω π  

    α  co&1&'n)1(2"∫    =+

    Inte"ratin" the other components of the a$ove ?qn and su$stitutin" 

    ∑=

    −+=

    +−+−+=

    k k 

    k n

    nn

    nnnn

    b

    1

    21

    co&)1(21(4

    )co&.......co&co&(214

    α 

    π  

    α α α 

    π  

     A$ove eqn has * varia$les and needs * simultaneous eqns to solve their

    values

    ?/ample@ Sa( we need to eliminate th B

  • 8/19/2019 PWM Methods

    60/100

    ?/ample@ Sa() we need to eliminate th B

  • 8/19/2019 PWM Methods

    61/100

      Programmed

    !armonic

      @limination

      Method

      An"les $ased on

      the desired output

  • 8/19/2019 PWM Methods

    62/100

  • 8/19/2019 PWM Methods

    63/100

    +s 8 ' ,

    , ; 8#E ''#;,

    E ; 8:#8< '8#:

    ; 8:#E8 ';#=:

    : ; 8:#== ';#,

    < ; 8

  • 8/19/2019 PWM Methods

    64/100

    S.? t(pical waveform at = output

  • 8/19/2019 PWM Methods

    65/100

  • 8/19/2019 PWM Methods

    66/100

    Minimum ?ipple #urrent PWM

    ∑∞

    =

    ∧∧∧

    =

    +++=

    +++=

    11,7,*

    2

    211

    27

    2*

    211

    27

    2*

    )(2

    1

    ...222

    ...

    n

    n

    ripple

     Ln

     I  I  I 

     I  I  I  I 

    ω 

    here) I) I< G#% rms harmonic currents

    H is the effective lea*a"e inductance of the machine per phase

    n % order of harmonics and % fundamental frequenc(

    current&harmon'cof +aue pea ......,, 7*   =∧∧ I  I 

    0he harmonic loss in a m&c isdictated $( the rms ripple

    current) therefore) rms ripple

    current should $e minimi3ed

    instead of individualharmonics# 0he rms ripple

    current in a m&c is "iven $( @

  • 8/19/2019 PWM Methods

    67/100

  • 8/19/2019 PWM Methods

    68/100

    !ysteresis +Bang%1ang, PWM

     Three%phase inerter for hysteresis #urrent #ontrol

    Three%phase inerter for hysteresis current control0

    !ysteresis +Bang%1ang, PWM

  • 8/19/2019 PWM Methods

    69/100

    y + g g,

     !ysteresis #urrent #ontroller 

    !ysteresis current controller at Phase HaI0

    Tolerance%Band #urrent #ontrol

  • 8/19/2019 PWM Methods

    70/100

     4esults in a varia$le frequenc( operation

  • 8/19/2019 PWM Methods

    71/100

    Current

    control

    6loc*Dia"ram 

    B0 !ysteresis +Bang%1ang, PWM

  • 8/19/2019 PWM Methods

    72/100

     #haracteristics of hysteresis #urrent #ontrol

     Adantages @*cellent dynamic response

     

  • 8/19/2019 PWM Methods

    73/100

    Space &ector Modulation

    • PM can $e "enerated $( analo"ue or di"ital control

    techniques#

    The adantages of digital control oer analogue are8

    • Sta$ilit( 5no drift) offsets or a"in" effects!

    • Precision 5noise immunit(!

    • Fle/i$ilit( 5can $e customi3ed $( chan"in" software!

    ?ven if done di"itall() si"nificant computin" time is required)

    as the PM si"nals have to $e calculated in real time# 6(usin" Space +ector Modulation this calculation process is

    simplified# As it is simplified) less computin" time is required)

    and therefore $etter performance can $e o$tained#

    Space &ector PWM

  • 8/19/2019 PWM Methods

    74/100

     >utput oltages of three%phase inerter 

    where- upper transistors8 S/- S.- S9  lower transistors8 S;- S:- S5

      switching aria1le ector8 a- 1- c

    Three%phase power inerter0

  • 8/19/2019 PWM Methods

    75/100

    , Phase +olta"e Source Inverter 5+SI!

  • 8/19/2019 PWM Methods

    76/100

    Sinusoidal Pulse WidthModulation +SPWM,

    Space &ector Modulation+S&M,

    Comparin" hi"h frequenc(trian"ular carrier si"nal with ,sinusoidal reference si"nals5treated as separate identit(!

    0a*in" all , modulatin" si"nalsinto account simultaneousl( withina 'D reference frame 5in d-q a/isor comple/ form!

     Availa$le DC suppl( volta"e notfull( utili3ed

    Increased utili3ation of DC suppl(volta"e) 8 more than SPM

    More 0otal .armonic Distortion Hess 0otal .armonic Distortion

    Does not facilitate advancedvector control implementation

    ?na$les advanced vector controlimplementation

    Comparison $etween SPM and S+M

  • 8/19/2019 PWM Methods

    77/100

    ,-ph 6rid"e

    Inverter output

    volta"e waves

    in square wave

    5or Si/ Step!

    mode

    '0 &oltage Source 'nerter +&S',

  • 8/19/2019 PWM Methods

    78/100

    '0 &oltage Source 'nerter +&S',

    A0 Si*%Step &S' 

  • 8/19/2019 PWM Methods

    79/100

     >utput oltages of three%phase inerter 

     

    S8

     throu"h S:

     are the si/ power transistors that shape the output volta"e

     

    hen an upper switch is turned on 5i#e#) a) $ or c is J8K!) the

    correspondin" lower switch is turned off 5i#e#) aL) $L or cL is J;K!

     @ight possi1le com1inations of on and off patterns for the three upper 

      transistors +S/- S.- S9,

     

  • 8/19/2019 PWM Methods

    80/100

     >utput oltages of three%phase inerter 

     The eight inerter oltage ectors +&7 to &C,

    Space &ector PWM

  • 8/19/2019 PWM Methods

    81/100

     >utput oltages of three%phase inerter 

     0he ei"ht com$inations) phase volta"es and output line to line volta"es

    Space &ector PWM

  • 8/19/2019 PWM Methods

    82/100

    Basic switching ectors and sectors0

     Basic switching ectors and Sectors

     : actie ectors +&/-&

    5- &

    .- &

    ;- &

    9- &

    :, 

     A*es of a he*agonal

     "# lin2 oltage is supplied to

      the load

     @ach sector +/ to :,8 :7 degrees

     5 $ero ectors +&7- &C,

     At origin

     No oltage is supplied to the

    load

    Space &ector PWM

  • 8/19/2019 PWM Methods

    83/100

     #omparison of Sine PWM and Space &ector PWM +5,

      Space &ector PWM generates less harmonic distortion

    in the output oltage or currents in comparison with sine PWM

     Space &ector PWM proides more efficient use of supply

      oltage in comparison with sine PWM

     Sine PWM 8 

  • 8/19/2019 PWM Methods

    84/100

     #omparison of Sine PWM and Space &ector PWM

  • 8/19/2019 PWM Methods

    85/100

  • 8/19/2019 PWM Methods

    86/100

    raphs of , modulatin" volta"es where reference volta"e is shifted

    from one sector to another 

    Space &ector PWM

  • 8/19/2019 PWM Methods

    87/100

    −−=

    cn

     bn

    an

    q

    d

    V

    V

    V

    2

    3

    2

    30

    2

    1

    2

    11

    3

    2

    V

    V

    &oltage Space &ector and its

    components in +d- q,0

    cn bnan

    cn bnq

    cn bnan

    cn bnand

    V2

    3V

    2

    3V

    co&30Vco&30V0V

    V2

    1V2

    1V

    co&60Vco&60VVV

    −+=

    ⋅−⋅+=

    −−=

    ⋅−⋅−= Step /0 "etermine &d- &q- &ref - and angle + ,

     #oordinate transformation8 a1c to dq

    frequency)fundamentaf (where,

    f 2t/)V

    V(tan

    VVV

    &

    &&

    d

    q1

    2

    q

    2

    dref 

    =

    ===

    +=

    − t π 

    Space &ector PWM

  • 8/19/2019 PWM Methods

    88/100

    ?eference ector as a com1ination of adjacent ectors at sector /0

     Step 50 "etermine time duration T/- T5- T7

    Space &ector PWM

    Step 5 "etermine time duration T T T

  • 8/19/2019 PWM Methods

    89/100

     Switching time duration at Sector /

    )600(where,)3"(&'n

    )3"(co&V

    3

    2

    0

    1V

    3

    2

    )(&'n

    )(co&V

    )VV(V

    VdtVdtVV

    dc2dc1ref 

    2211ref 

    0

    1

    2

    0

    0

    1ref 

    21

    21 1

    °≤≤

    ⋅⋅⋅+

    ⋅⋅⋅=

    ⋅⋅⇒

    ⋅+⋅=⋅∴

    ++= ∫ ∫ ∫ ∫  +

    +

    π 

    π 

    α

    α

     Step 50 "etermine time duration T/- T5- T7

        

     

     

     

     

    ==+−=∴

    ⋅⋅=∴

    −⋅⋅=∴

    dc

    ref 

    &210

    2

    1

    V3

    2

    Vaand

    1where,),(

    )3"(&'n

    )(&'n

    )3"(&'n

    )3"(&'n

    T T T T 

    aT T 

    aT T 

     z 

     z 

     z 

    π 

    α 

    π 

    α π 

  • 8/19/2019 PWM Methods

    90/100

  • 8/19/2019 PWM Methods

    91/100

     Al"orithms of S+M

  • 8/19/2019 PWM Methods

    92/100

     Al"orithms of output si"nals $ased on sector 8

  • 8/19/2019 PWM Methods

    93/100

    Nutput si"nal $ased on S(mmetrical Sequence al"orithm in sector 8

    Space &ector PWM

    1 d t i l

  • 8/19/2019 PWM Methods

    94/100

    Space &ector PWM switching patterns at each sector0

    +a, Sector /0 +1, Sector 50

     Step .0 "etermine the switching time of each transistor +S/ to S:, +/,

    1ased on symmetrical sequence

     Space &ector PWM

  • 8/19/2019 PWM Methods

    95/100

    Space &ector PWM switching patterns at each sector0

    +c, Sector .0 +d, Sector ;0

     Step .0 "etermine the switching time of each transistor +S/ to S:, +5,

    Space &ector PWM

  • 8/19/2019 PWM Methods

    96/100

    Space &ector PWM

    Space &ector PWM switching patterns at each sector0

    +e, Sector 90 +f, Sector :0

     Step .0 "etermine the switching time of each transistor +S/ to S:, +.,

  • 8/19/2019 PWM Methods

    97/100

  • 8/19/2019 PWM Methods

    98/100

    • '2!PA*S2% 24 SP!-S)!-S(-( P! T'(%5&S

  • 8/19/2019 PWM Methods

    99/100

    •   SHE 

    • , A++I*+ /AS* - ,!mber f ,otches 0etermine S$itching1re2!ency

    • 0I11I34T T APP45 AT 4W 1+*63*,5• 3TP3T MA5 ,T /* 7A+M,IA445 PTIM3M

    • MST 3S*134 W7*, SP*I1I +0*+ 1 7A+M,IS A+*7A+M134

    • *AS5 4I,*A+I8ATI, I, W74* M034ATI, +A,9*

    • 0 4I,: ;4TA9* +IPP4* I,T+03*S A00ITI,A4 3TP3T

    +IPP4*• MI+MP3T*+

  • 8/19/2019 PWM Methods

    100/100

    O8 Q# Mohan) # P# 4o$$in) and 0# 2ndeland) Power Electronics: Converters,  Applications, and Design) 'nd ed# Qew 7or*@ ile() 8#

    O' 6# R# 6ose) Power Electronics and Variable requency Drives:!echnology

    and Applications# I??? Press) 8