Pulse Width Modulation of Power Electronic DC-AC Converter · Space Vector PWM 5. Artificial...

44
3 Pulse Width Modulation of Power Electronic DC-AC Converter Pulse Width Modulation (PWM) . The Pulse Width Modulation (PWM) technique is applied in the inverter (DC/AC converter) to output an AC waveform with variable voltage and variable frequency for use in mostly variable speed motor drives. . The implementation of the complex PWM algorithms have been made much easier due to the advent of fast digital signal processors, microcontrollers, and Field Programmable Gate Arrays (FPGA). Pulse Width Modulated Inverters Two Level Inverters 1. Single Phase Half Bridge Inverters 2. Single Phase Full Bridge Inverters 3. Three-phase PWM voltage source inverter Multi Level Inverters 1. Diode Clamped or Neutral point clamped multi-level inverters 2. Capacitor clamped or flying capacitor multi-level inverters 3. Cascaded H-bridge multi-level inverters Special Type Inverters 1. Impedance Source or Z-Source Inverter 2. Quasi Impedance Source or qZSI Inverter High Performance Control of AC Drives with MATLAB/Simulink Models, First Edition. Haitham Abu-Rub, Atif Iqbal, and Jaroslaw Guzinski. Ó 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

Transcript of Pulse Width Modulation of Power Electronic DC-AC Converter · Space Vector PWM 5. Artificial...

3

Pulse Width Modulation of PowerElectronic DC-AC Converter

Pulse Width Modulation (PWM)

. The PulseWidthModulation (PWM) technique is applied in the inverter (DC/AC converter)

to output an AC waveform with variable voltage and variable frequency for use in mostly

variable speed motor drives.. The implementation of the complex PWMalgorithms have beenmademuch easier due to the

advent of fast digital signal processors, microcontrollers, and Field Programmable Gate

Arrays (FPGA).

Pulse Width Modulated Inverters

Two Level Inverters

1. Single Phase Half Bridge Inverters

2. Single Phase Full Bridge Inverters

3. Three-phase PWM voltage source inverter

Multi Level Inverters

1. Diode Clamped or Neutral point clamped multi-level inverters

2. Capacitor clamped or flying capacitor multi-level inverters

3. Cascaded H-bridge multi-level inverters

Special Type Inverters

1. Impedance Source or Z-Source Inverter

2. Quasi Impedance Source or qZSI Inverter

High Performance Control of AC Drives with MATLAB/Simulink Models, First Edition.Haitham Abu-Rub, Atif Iqbal, and Jaroslaw Guzinski.� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

1. Single Phase Half Bridge Inverters

The operation of the inverter can be well understood from Figure 3.2

(a) (b)

(c) (d)

Figure 3.2 Switching States in half-bridge inverter; a and c iao > 0 b and d. iao < 0.

vao

S1Da1

2dcV

vao

S’

2

V

Load AV

S1 Da22dcV

Figure 3.1 Power Circuit of a half wave bridge inverter.

2 High Performance Control of AC Drives

The output voltage is a square wave as shown in Figure 3.3

A graphical view shows that the output contains a considerable amount of low-order

harmonics such as 3rd, 5th, 7th, etc and the magnitude of the harmonics varies as the inverse of

its order.

If the modulating or control signal amplitude (Vm) > carrier signal (Vc)

The upper switch S1 is on vao ¼ Vdc

2

If the modulating or control signal amplitude (Vm) < carrier signal (Vc)

The upper switch S1’ is on vao ¼ � Vdc

2

Figure 3.4 A typical harmonic spectrum of output voltage in a half-bridge inverter.

Figure 3.3 Switching signal and the output voltage and current in a half-bridge inverter.

Pulse Width Modulation 3

The value of the average leg voltage VAO during a switching period TC can be determined

from Figure 3.6 (this shows one period of the triangular waveform).

. Matlab/Simulink Model of Half Bridge Inverter

Figure 3.6 One switching cycle in carrier-based sinusoidal PWM.

Figure 3.5 Bipolar PWM of single inverter leg.

Half-Bridge Inverter

voltage

Discrete,Ts = Ts s.

Vdc/2 = 0.5 p.u.

Vdc/2 = -0.5 p.u.

v+-

V1

Double click here to plotthe Valeg FFT

Scope2

g CE

S1'

g CE

S1

R-L Load

i+ -

I1

S1

S1'

Gate-signal Generation

Current

V inverter

I loadI load

Figure 3.7 Simulink model to implement carrier-based sinusoidal PWM.

4 High Performance Control of AC Drives

1

Out1-1double Convert1

Gain1Discrete

Edge Detector1

Data Type Conversion2 Data Type Conversion1In1

Figure 3.9b Dead band circuit.

2. Single Phase Full Bridge Inverters

Figure 3.9 Power circuit topology of a single-phase full-bridge inverter.

0.04 0.05 0.06 0.07 0.08 0.09 0.1–1

0

1

Vol

tage

[p.

u.]

Spec

trum

[p.

u.]

Time [s]

0 1000 2000 3000 4000 5000 60000

0.2

0.4

0.6

0.8 Fundamental = 0.472721

Frequency [Hz]

fc

fc-2f

mfc+2f

mfc+4f

mfc-4f

m

Figure 3.8 Output voltage and its spectrum for half bridge inverter.

Figure 3.9a Dead Band between upper and lower gating signals.

Pulse Width Modulation 5

(a) (b)

(c) (d)

Figure 3.10 Switching States in full-bridge inverter; a and c iao > 0 b and d. iao < 0.

Da1,

Db2

ON

S1,S2'

ONDa2,

Db1

ON

S2,S’1

ON

2

TT 2

3TT2

dcV

dcV−

abi,

S1, S2'

abv

S2, S1'

dcV.50

dcV.50dcV.50−

dcV.50−

aov

bov

Da1,

Db2

ON

S1,S2'

ONDa2,

Db1

ON

S2,S’1

ON

Figure 3.11 Switching signal and the output voltage and current in a half-bridge inverter.

6 High Performance Control of AC Drives

0

Vm

Vdc

0

0.5Vdc

–0.5Vdc

0

0.5Vdc

–0.5Vdc

0

VA

BV

BO

VA

O

Vdc

–Vdc

Figure 3.12 Unipolar PWM scheme for single-phase full-bridge inverter.

Pulse Width Modulation 7

. Matlab/Simulink Model of Single-phase Full-Bridge Inverter

DC/AC Full-Bridge Inverter

Discrete,Ts = 1e-005 s.

Vdc = 1 p.u.

VAB

v+-V2

Double click here to plotthe Valeg FFT

g CE

S2'

g CE

S2

g CE

S1'

g CE

S1

R-L Load

I_Load

i+ -I2

S1

S1'

S2

S2'

Gate Signal

V inverter

I load

Figure 3.13 Simulink model to implement unipolar PWM scheme in a full bridge 1-phase inverter.

0.04 0.05 0.06 0.07 0.08 0.09 0.1–2

0

2

Time [s]

0 1,000 2,000 fc 4,000 5,000 2fc 7,0000

0.2

0.4Fundamental = 0.94638

Frequency [Hz]

Spec

trum

[p.

u.]

Vol

tage

VA

B [

p.u.

]

2fc+3f

m2fc-3f

m

2fc-f

m 2fc+f

m

Figure 3.14 Voltage (VAB) and its spectrum for unipolar PWM scheme in a single-phase inverter.

8 High Performance Control of AC Drives

Three-phase PWM voltage source inverter

Figure 3.15 Power circuit topology of a three-phase voltage source inverter.

Figure 3.16 Waveforms for square wave/six-step mode of operation of a three-phase inverter.

Pulse Width Modulation 9

The maximum output phase-to-neutral voltage in the six-step mode is 0.6367 Vdc or (2/p)Vdc and that of the line to line voltage is 1.1Vdc.

vanðtÞ ¼ 2

pVDC sin vtþ 1

5sin 5vtþ 1

7sin 7vtþ 1

11sin 11vtþ 1

13sin 13vtþ . . . . . .

� �

vabðtÞ ¼ 2ffiffiffi3

p

pVDC sin vt� p

6

� �þ 1

5sin 5 vt� p

6

� �þ 1

7sin 7 vt� p

6

� �þ . . . . . .

� �

Table 3.2 Phase-to-neutral voltages for six-step mode of operation

Switching

mode

Switches ON Phase voltage

van

Phase voltage

vbn

Phase voltage

vcn

1 S1, S’2, S3 1/3Vdc � 2/3Vdc 1/3Vdc

2 S1, S’2, S’3 2/3Vdc � 1/3Vdc � 1/3Vdc

3 S1, S2, S’3, 1/3Vdc 1/3Vdc � 2/3Vdc

4 S’1, S2, S’3 � 1/3Vdc 2/3Vdc � 1/3Vdc

5 S’1, S2, S3 � 2/3Vdc 1/3Vdc 1/3Vdc

6 S’1, S’2, S3 � 1/3Vdc � 1/3Vdc 2/3Vdc

Table 3.3 Line voltages for six-step mode of operation

Switching mode Switches ON Line voltage vab Line voltage vbc Line voltage Vca

1 S1, S02, S3 Vdc �Vdc 0

2 S1, S02, S

03 Vdc 0 �Vdc

3 S1, S2, S03, 0 Vdc �Vdc

4 S01, S2, S03 �Vdc Vdc 0

5 S01, S2, S3 �Vdc 0 Vdc

6 S01, S02, S3 0 �Vdc Vdc

Table 3.1 Leg/Pole voltages of a three-phase VSI during six-step mode of operation

Switching

Mode

Switches ON Leg voltage

VA

Leg voltage

VB

Leg voltage

VC

1 S1, S’2, S3 0.5Vdc � 0.5Vdc 0.5Vdc

2 S1, S’2, S’3 0.5Vdc � 0.5Vdc � 0.5Vdc

3 S1, S2, S’3, 0.5Vdc 0.5Vdc � 0.5Vdc

4 S’1, S2, S’3 � 0.5Vdc 0.5Vdc � 0.5Vdc

5 S’1, S2, S3 � 0.5Vdc 0.5Vdc 0.5Vdc

6 S’1, S’2, S3 � 0.5Vdc � 0.5Vdc 0.5Vdc

10 High Performance Control of AC Drives

. Matlab/Simulink Model of Three-phase PWM voltage source inverter

0.04 0.05 0.06 0.07 0.08 0.09 0.1–1

0

1

Van

[p.

u.]

Spec

trum

[p.

u.]

Time [s]

0 100 200 300 400 500 600 700 800 900 10000

0.5

1Fundamental = 0.63642

Frequency [Hz]

5th 7th 11th 13th 17th 19th

Figure 3.18 Harmonic spectrum for six-step phase voltage.

DC/AC Three-phase Inverter

Discrete,Ts = 1e-005 s.

Vdc = 1 p.u.1

Vdc = 1 p.u.

Van

VAB

VA0

v+-

V4

v+-

V3

v+-

V1

Double click here to plotthe Valeg FFT

g CE

S3

g CE

S2'1

g CE

S2'

g CE

S2

g CE

S1'g C

E

S1

R-L Load1

S1

S1'

S2

S2'

S3

S3'Gate Signal

R-LLoad2

R-LLoad3

Figure 3.17 Simulink for Six-step operation of inverter.

Pulse Width Modulation 11

Pulse Width Modulation Schemes

. Classification of PulseWidthModulation Schemes for Three Phase Voltage source inverters

a. Continuous PWM

1. Carrier Based PWM Scheme

2. Third Harmonic Injection Carrier-based PWM

3. Carrier-based PWM with Offset Addition

4. Space Vector PWM

5. Artificial Neural Network Based PWM

b. Discontinuous PWM

1. Carrier based Sinusoidal PWM

VAm VBm VCm Vdc/2 V AO

Vdc/2

Van

2/3Vdc

1/3Vd

V AB

Vdc

1/3Vdc

Figure 3.18 Carrier-based sinusoidal PWM of a three-phase inverter.

12 High Performance Control of AC Drives

2

S1'

1

S1VA

>= boolean

NOT

4

S2'

3

S2VB

>= boolean

NOT

6

S3'

5

S3VC

>= boolean

NOT

Carrier Wave

Figure 3.19 Gate signal generation in Matlab for three-phase inverter.

0.04 0.05 0.06 0.07 0.08 0.09 0.1-1

0

1

Van

[p.

u.]

Time [s]

0 1,000 2,000 4000 50000

0.2

0.4Fundamental = 0.47479

Spec

trum

[p.

u.]

Frequency [Hz]fc

fc+2f

mfc-2f

m

2fc

3fc

4fc

2fc+f

m2f

c-f

m 3fc+2f

m3f

c-2f

m3f

c-2f

m 3fc+2f

m

Figure 3.20 Phase-to-neutral voltage and spectrum for carrier-based PWM.

Pulse Width Modulation 13

2. Third Harmonic Injection Carrier-based PWM

vAm ¼ Vm1sin vtð ÞþVm3sin 3vtð ÞvBm ¼ Vmsin vt� 2

p

3

� �þVm3sin 3vtð Þ

vCm ¼ Vmsin vtþ 2p

3

� �þVm3sin 3vtð Þ

Figure 3.21 Varying frequency modulation ratios for different output frequency.

Figure 3.22 Block diagram of carrier-based PWM with third-harmonic injection.

14 High Performance Control of AC Drives

Vm1Vm3

VcVm1+Vm3

Gain Margin

Figure 3.23 Modulating signals and carrier-wave for third harmonic injection PWM.

6

S3'

5

S3

4

S2'

3

S2

2

S1'

1

S1

VC

VB

VA

>=

>=

>=

boolean

boolean

boolean

Carrier Wave

NOT

NOT

NOT

3rd harmonic

Figure 3.24 Gate signal generation for third harmonic injection PWM.

Pulse Width Modulation 15

3. Carrier-based PWM with Offset Addition

vAm ¼ Vm1 sin vtð Þþ offset

vBm ¼ Vm sin vt� 2p

3

� �þ offset

vCm ¼ Vm sin vtþ 2p

3

� �þ offset

Where offset is given as;

Offset ¼ � Vmax þVmin

2; Vmax ¼ Max vAm; vBm; vCmf g; Vmin ¼ Min vAm; vBm; vCmf g

0.04 0.05 0.06 0.07 0.08 0.09 0.1–1

0

1

Va

[p.u

.]Sp

ectr

um V

a [p

.u.]

Time [s]

0 500 1000 1500 2000 2500 3000 3500 4000 45000

0.1

0.2

Fundamental = 0.57965

Frequency [Hz]

Figure 3.25 Spectrum of phase ‘a’ voltage for third-harmonic injection.

Gain Margin Vm1

+ Offset

Vm1

Offset

Figure 3.26 Modulating signals and carrier-wave for offset addition PWM.

16 High Performance Control of AC Drives

0.04 0.05 0.06 0.07 0.08 0.09 0.1–1

0

1

Time [s]

0 500 1000 1500 2000 2500 3000 3500 4000 45000

0.1

0.2Fundamental = 0.57758

Spec

turm

Va

[p.u

.]V

a [p

.u.]

Frequency [Hz]

Figure 3.28 Output voltage and voltage spectrum for offset addition PWM.

6S3'

5S3

4S2'

3S2

2S1'

1S1

VC

VB

VA

>=

>=

>=

min

MinMax1

max

MinMax –0.5

Gain

boolean

boolean

boolean

Carrier Wave

NOT

NOT

NOT

Figure 3.27 Matlab/Simulink for offset addition PWM (File name: PWM_3_phase_CB_offset.mdl).

Pulse Width Modulation 17

4. Space Vector PWM

Space vector is defined as;

fs¼ 2

3fa þ ej2

p3 fb þ ej4

p3 fc

� �

Where fa, fb and fc are the three-phase quantities that can as voltages, currents or

fluxes.

The total possible outputs are 23¼ 8 (000, 001, 010, 011, 100, 101, 110, 111). Here 0 indicates

the upper switch is ‘off’ and 1 represents the upper switch is ‘on’.

The space vectors can be shown graphically in Figure 3.29.

The maximum obtainable fundamental output voltage is calculated from the right angled

triangle (Figure 3.30) as;

Vmax ¼ 2

3

Vdc cos

p

6

� �¼ 1ffiffiffi

3p Vdc

Figure 3.29 Voltage space vector locations corresponding to different switching states.

18 High Performance Control of AC Drives

Discontinuous Space Vector PWM

Discontinuous space vector PWM results when one of the two zero vectors is not used in the

implementation of the space vector PWM. One of the leg of the inverter do not switch in

the whole switching period and remains tied to either the positive or negative dc bus. The nine

different discontinuous space vector PWM techniques are;

. t7¼ 0 for all sectors, known as DPWMMAX

. t8¼ 0 for all sectors, known as DPWMMIN

. Discontinuous modulation DPWM 0

. Discontinuous modulation DPWM1

. Discontinuous modulation DPWM 2

. Discontinuous modulation DPWM 3

. Discontinuous modulation DPWM 4

. Discontinuous modulation DPWM 5

. Discontinuous modulation DPWM 6

V max Vdc32

α = π/6

Figure 3.30 Determining the maximum possible output using space vector PWM.

SECTOR I

0

4/ot 2/at 2/bt 2/ot 2/bt 2/at 4/ot

ASdcV5.

dcV5.0

BS

dc.

B

SCS

7V 1V 2V 8V 2V 1V 7V2 1 7

Ts

Figure 3.31 Switching pattern for space vector PWM for sector I.

Pulse Width Modulation 19

V2V3 (1 1 0 )(0 1 0 )

0.4

0.6

va DPWMMAX

V1V4 (1 0 0 )t7 = 0

t7 = 0

t7 = 0

0

0.2 Vavg

V5

(0 1 1 )t7 = 0

t7 = 0

t7 = 0

-0.4

-0.2Vo

ltag

eg (

volt

s)

V NV5V6(0 0 1 ) (1 0 1 )

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04Time (sec)

VnN

(b)(a)

DPWMMAX

Figure 3.33 (a) Zero voltage distributions (b) associated voltage waveforms for discontinuous space

vector PWM.

Figure 3.32 Leg voltage (switching pattern) for discontinuous space vector PWM.

20 High Performance Control of AC Drives

. Matlab/Simulink Model for space vector PWM:

VaSa

mag

3-Ph

VSIVbSb

Voltage

Acquisition

Low pass

Filter

reference

voltage

generator MATLAB

Function

Zero-OrderHold

VeSe

Bankangle MATLAB Fcn

RepeatingSequence

. Simulation Results for space vector PWM:

Figure 3.35 Sub-blocks of Matlab/Simulink model, a. Reference voltage generation, b. VSI, c. Filters.

Pulse Width Modulation 21

. Space Vector PWM in Over-modulation Region

Figure 3.37 a. Filtered leg voltages for continu-

ous SVPWM.

Figure 3.37 b. Filtered phase voltages for DSVPWM.

Figure 3.39 Linear and over-modulation range.

Figure 3.38 Zero vector time of application in linear modulation range in sector I.

22 High Performance Control of AC Drives

Locus of Modified Reference Vector

Desired Reference

Vector

α

*sv

*'sv

av

bv

O A

γB

C

x

y

p

q

π/3–

γFigure 3.40 Over-modulation I in space vector PWM-Case 1.

Area = A2

Area = A3

Area = A1

Locus of Modified Reference Vector

Desired Reference

Vector

α

*sv

*'sv

av

bv

AOγ

B

C

x

y

p

q

r

s

π /3

–y

Figure 3.41 Over-modulation I in SVPWM-Case 2.

Pulse Width Modulation 23

. Matlab/Simulink Model to implement space vector PWM in Over-modulation Regions

. Harmonic Analysis

Harmonic component of the output voltage is given using the Fourier series expression as:

FnðuÞ ¼ 4

p

ðp=20

f ðuÞsinðnuÞdu

264

375

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.6

-0.4

-0.2

volta

ge(v

olts

)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.6

-0.4

-0.2

volt

age(

volt

s)

time (sec)time(sec)

0.6

0.4

0.6

(b) MI = 0.952(a) MI = 0.907

-0.2

0

0.2

0.4

volt

age(

volt

s)

-0.2

0

0.2

volt

age(

volt

s)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.6

-0.4

time (sec)0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.6

-0.4

time(sec)

(d) MI = 1.000(c) MI = 0.980

Figure 3.43 Inverter Phase ‘a’ voltage waveform at different modulation indices.

Locus of Modified Reference Vector

Desired Reference

Vector

α

*sv

*'sv

Oγ x

y

pq

π/3

–y

Figure 3.42 Over-modulation II in space vector PWM.

24 High Performance Control of AC Drives

. Total Harmonic Distortion (THD)

The Total Harmonic Distortion (THD) factor is defined as

THD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiV2r �V2

1

� �qV21

Total Harmonic Distortion

35

20

25

30

10

15TH

D [

%]

0

5

10.990.980.970.960.950.940.930.920.910.9

MI

Figure 3.45 Total Harmonic Distortion in over-modulation region.

Figure 3.44 Harmonic spectra by FFT, normalized to fundamental component.

Pulse Width Modulation 25

5. Artificial Neural Network Based PWM

0 0.004 0.01 0.016 0.02–1.5

–1

–0.5

g A(α

*), g

B(α

*), g

C(α

*)

0

0.5

1

1.5

Time (s)

Figure 3.47 Turn –on pulse width function of phase A, B, C as a function of Angle a in different sector.

Norm

alization

De-no

rmalization

V*

α* Ts/4

UP/Down

Counter

Sa

Sb

Sc

( )*Vf

( )*αg

Neural Network

Figure 3.46 Functional Block diagram of ANN based Space Vector PWM for a three-phase VSI.

26 High Performance Control of AC Drives

. Matlab/Simulink Model of Implementing ANN based Space Vector PWM

3Sc

2Sb

1Sa

comparatorblock

Subsystem1

RepeatingSequence

Product2

Product1

Product

x{1}

g{a}

g{b}

g{c}

Neural Network

-K-

Gain

T/4

Constant1

Cartesian toPolar

2Vq

1Vd

3

g{c}

2

g{b}

1

g{a}a{3}

a{2}

a{1}

ya

Process Output 1

px

Process Input 1

a{4}a{3}

Layer 4

a{3}a{2}

Layer 3

a{2}a{1}

Layer 2

a{1}p{1}

Layer 1

a{3}

a{2}

a{1}

1

x{1}

Figure 3.48 Matlab/Simulink model of ANN based space vector PWM.

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04–1

0

1

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.040

0.5

1

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04–1

0

1

Time (s)

VA

-fil

tere

d (p

.u.)

Leg

vol

tage

(p.

u.)

VA

(p.

u.)

Figure 3.49 ANN based Space vector PWM waveforms.

Pulse Width Modulation 27

Table 3.5 Relationship between the space vector and modulating signal

Sector No. UA UB UC

I ðta þ tb þ t8 þ t7Þ=Ts ð� ta þ tb þ t8 � t7Þ=Ts ð� ta � tb þ t8 � t7Þ=TsII ðta � tb þ t8 � t7Þ=Ts ðta þ tb þ t8 � t7Þ=Ts ð� ta � tb þ t8 � t7Þ=TsIII ð� ta � tb þ t8 � t7Þ=Ts ðta þ tb þ t8 � t7Þ=Ts ð� ta þ tb þ t8 � t7Þ=TsIV ð� ta � tb þ t8 � t7Þ=Ts ðta � tb þ t8 � t7Þ=Ts ðta þ tb þ t8 � t7Þ=TsV ð� ta þ tb þ t8 � t7Þ=Ts ð� ta � tb þ t8 � t7Þ=Ts ðta þ tb þ t8 � t7Þ=TsIV ðta þ tb þ t8 � t7Þ=Ts ð� ta � tb þ t8 � t7Þ=Ts ðta � tb þ t8 � t7Þ=Ts

Figure 3.50 Relationship between carrier-based and space vector PWM in sector I.

Figure 3.51 Relationship between modulating signal and space vector sectors.

28 High Performance Control of AC Drives

Multi-level Inverters

The most popular configurations are;

1. Diode Clamped or Neutral point clamped multi-level inverters

2. Capacitor clamped or flying capacitor multi-level inverters

3. Cascaded H-bridge multi-level inverters

1. Diode Clamped Multi-level Inverters

The leg voltages can then be written as

VAN ¼ SA1 � SA2ð ÞVdc

VBN ¼ SB1 � SB2ð ÞVdc

VCN ¼ SC1 � SC2ð ÞVdc

Figure 3.52 Neutral Point Clamped 3-level inverter topology.

Pulse Width Modulation 29

Time [s](a)

Car

rier

and

Mod

ulat

ing

wav

e [p

.u.]

Car

rier

and

Mod

ulat

ing

wav

e [p

.u]

Car

rier

and

Mod

ulat

ing

wav

e [p

.u.]

0 Time [s](b)

Time [s](c)

Figure 3.53 Principle of SPWM for a five-level diode clamped inverter: (a) IPD; (b) POD;

and (c) APOD.

30 High Performance Control of AC Drives

. Matlab/Simulink Model of Carrier-based PWM scheme for three-level NPC

1

dc

ia

ib

ic

Sa

Sb

Sc

Vdc

Vc1

Vc2

Double click here to plotthe Valeg FFT

Sa

Sb

Sc

S-PWM

van

vbn

vcn

ia

ib

ic

R-L Load

Vc1

Vc2

Sabc

Van

Vbn

Vcn

Figure 3.54 Matlab/Simulink model of Carrier-based PWM for a 3-level NPC.

–1

–1.5

–0.5

0

0.5

Phas

e 'a

' vol

tage

[p.

u.]

Lin

e vo

ltage

Vab

[p.

u.]

Phas

e 'a

' vol

tage

[p.

u.]

Spec

trum

vol

tage

[p.

u.]

Phas

e cu

rren

ts [

p.u.

]

1

1.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

–2

–1

0

1

1.5

0.5

–0.5

–1.5

–2.5

2

2.5

Time [s]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04–0.06

–0.04

–0.02

0

0.02

0.04

0.06

Time [s]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04–2

0

2

Time [s]

0 1000 2000 3000 4000 5000 6000 7000 80000

0.05

0.1Fundamental = 0.89287

Frequency [Hz]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04Time [s]

Figure 3.55 Response of a three-level NPC.

Pulse Width Modulation 31

2. Flying Capacitor Type Multi-level Inverter

Figure 3.56 Power Circuit of a 3-level three-phase flying capacitor type inverter.

32 High Performance Control of AC Drives

0.5V

dc

C

va

Sa1

Sa1

Da1

Da1

Da2

Da2

Da3

Da3

Da4

Da4

Da1

Da2

Da3

Da4

Da1

Da2

Da3

Da4

Da1

Da2

Da3

Da4

Da1

Da2

Da3

Da4

Da1

Da2

Da3

Da4

Sa2

Sa2

S’a2

S’a2

Sa1

Sa2

S’a2

S’a1S’a1

S’a1

Sa1

Sa2

S’a2

S’a1

Sa1

Sa2

S’a2

S’a1

Sa1

Sa2

S’a2

S’a1

Sa1

Sa2

S’a2

S’a1

Sa1

Sa2

S’a2

S’a1

Cf

(a)va

Cf

Da1

Da2

Da3

Da4

C1

C2

(b)

0.5V

dc

0.5V

dc0.

5Vdc

va

Cf

0.5V

dc0.

5Vdc

C1

C2

(c)va

Cf

0.5V

dc0.

5Vdc

C1

C2

(d)

va

Cf

0.5V

dc0.

5Vdc

C1

C2

(e)va

Cf

0.5V

dc0.

5Vdc

C1

C2

(f)

va

Cf

0.5V

dc0.

5Vdc

C1

C2

(g) va

Cf

0.5V

dc0.

5Vdc

C1

C2

(h)

Figure 3.57 (a) Switch State 1100with positive current flow; (b) Switch state 1100with negative current

flow; (c) Switch state 1010 with positive current flow (Flying capacitor charges); (d) Switch state 1010

with negative current flow (Flying capacitor discharges); (e) Switch state 0101 with positive current flow

(Flying capacitor discharges); (f) Switch state 0101with negative current flow (Flying capacitor charges);

(g) Switch state 0011 with positive current flow; (h) Switch state 0011 with negative current flow.

Pulse Width Modulation 33

Vdc

0Ts 2Ts 3Ts 4Ts

Vdc/2

Vdc/2

Figure 3.59 Carrier wave for Sn2 and Sn20 in FLC inverter.

Vdc /2

Ts 2Ts 3Ts 4Ts

0

Sn1

Sn2

Figure 3.61 Gate signal generation when 0 � vref � Vdc=2.

Vdc

Ts 2Ts 3Ts 4Ts

Vdc /2

S n1

Sn2

Figure 3.60 Gate signal generation when Vdc=2 � vref � Vdc.

Vdc

0Ts 2Ts 3Ts 4Ts

Vdc/2

Vdc/2

Figure 3.58 Carrier wave for Sn1 and Sn10 in FLC inverter.

34 High Performance Control of AC Drives

.Matlab/SimulinkModel

of3-level

CapacitorClamped

orFLCinverter

Dis

cre

te,

Ts

= 1

e-0

05

s.

po

we

rgu

i

v+ -

Vo

ltage

Me

asu

rem

ent

4

v+ -

Vo

ltage

Me

asu

rem

ent

1

Sco

pe

5S

cop

e3

Sco

pe

2

C5

Vo

ltage

Me

asu

rem

ent

4

v+ -

Vol

tage

Me

asu

rem

ent

2

g

CE

Sa

5

g

CE

Sa

3

g

CE

Sa

1

C7

C6

C1

Vdc

g

CE

Sa

6

g

CE

Sa

4

g

CE

Sa

2

C4

C3

C1

Sco

pe

1

g

C

g

C

g

C

g

CE

Sa

1'2

g

CE

Sa

1'1

g

CE

Sa

1'i

+-

Cur

rent

Me

asu

rem

ent

Out

1

Out

2O

ut1

Out

2

Out

1

Out

2

v+ -

Vol

tage

Me

asu

rem

ent

5S

cop

e6

E

Sa

2'2

E

Sa

2'1

E

Sa

2'

Out

3

Out

4

swu

tch

sta

te2

Out

2

Out

3

Out

4

swu

tch

sta

te1

Out

2

Out

3

Out

4

swu

tch

sta

te

Pulse Width Modulation 35

3. Cascaded H-Bridge Multi-level Inverter

va vb vc

Sa11 Sa22 Sb11 Sb22 Sc11 Sc22

S’a11 S’

a22

dcV

S’b11 S’

b22

dcV

S’c11 S’

c22

dcV1Nv

Sa12 Sa21

dcV

Sb12 Sb21

dcV

Sc12 Sc21

dcV2Nv

S’a12 S’

a21 S’b12 S’

b21 S’c12 S’

c21

Figure 3.64 Power circuit topology of a five-level Cascaded H-bridge inverter.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1–1000

0

1000

Vab

(V)

Van

(V)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

–500

0

500

Time [s]

Figure 3.63 Output line and phase voltages from 3-level FLC inverter.

36 High Performance Control of AC Drives

.Matlab/SimulinkModel

of5-level

CHBinverter

OU

PU

T-1

O

UT

PU

T -

3

OU

TP

UT

-2

Con

tinuo

us

pow

ergu

i

Vdc

8

Vdc

7

Vdc

5

Vdc

4

Vdc

2

Vdc

1

v+ - V

8

v+ - V

7

v+ - V

3

v+ -

V1

Sco

pe3

Sco

pe1

Sco

pe

In2

Out

1

Out

2

INV

ER

TE

R P

WM

LO

GIC

2

In2

Out

1

Out

2

INV

ER

TE

R P

WM

LO

GIC

1

In2

Out

1

Out

2

INV

ER

TE

R P

WM

LO

GIC

gC

E

IGB

T2_

9

gC

E

IGB

T2_

8

gC

E

IGB

T2_

7

gC

E

IGB

T2_

3

gC

E

IGB

T2_

27

gC

E

IGB

T2_

26

gC

E

IGB

T2_

25

gC

E

IGB

T2_

21

gC

E

IGB

T2_

20g

C

E

IGB

T2_

2

gC

E

IGB

T2_

19

gC

E

IGB

T2_

18

gC

E

IGB

T2_

17

gC

E

IGB

T2_

16

gC

E

IGB

T2_

12

gC

E

IGB

T2_

11

gC

E

IGB

T2_

10g

C

E

IGB

T2_

1

gC

E

IGB

T1_

9

gC

E

IGB

T1_

7

gC

E

IGB

T1_

6

gC

E

IGB

T1_

4

gC

E

IGB

T1_

3

gC

E

IGB

T1_

1

[aaG

1_2]

[aG

1_2]

-T-

[aG

1_2A

]

[aG

4_2A

]

[aG

4_2]

[aG

3_2A

]

-T-

-T-

-T-

[aG

2_2A

]

-T-

[aG

3_2]

[aG

1_2K

]

[aG

4_2K

]

[aG

3_2K

]

-T-

-T-

-T-

[aG

2_2K

]

[aaG

4_2]

[aaG

3_2]

[aaG

2_2]

[aG

2_2]

-T-

[aG

1_2]

-T-

-T-

-T-

[aG

4_2]

-T--T

--T-

-T-

-T-

-T-

[aG

3_2]

-T-

-T--T-

-T--T-

-T-

-T-

-T--T-

-T-

[aG

2_2]

0.9

Con

stan

t

1 oh

31

oh2

1 oh

1

Figure

3.65

Matlab/Sim

ulinkof5-level

3-phaseCHB.

Pulse Width Modulation 37

1. Impedance Source or Z-Source Inverter

Circuit Analysis

Figure 3.68 Equivalent circuit of a Z-source inverter; (a). non-shoot-through mode, (b). shoot through

mode.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1–5

0

5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1–2

0

Vab

( p.

u)V

ab(

p.u)

2

Time [s]

Figure 3.66 Output line and phase voltages from 5-level CHB inverter.

Figure 3.67 Power circuit topology of a Z-source inverter.

38 High Performance Control of AC Drives

. Carrier-based Simple Boost PWM control of a Z-source Inverter

. Carrier-based Maximum Boost PWM control of a Z-source Inverter

v*a

v*b

v*c

V*N

V*P

S1

S2

S3

S’3S’2S’1

1

1

1

1

1

0

1

0

0

0

0

0

1

0

0

1

1

0

1

1

1

0

0

0

Carrier Modulating signals

Shoot-through zero states

Figure 3.69 Principle of Carrier-based simple boost PWM for a Z-source inverter.

0 0.80.60.40.2

10

4

2

Modulation Index (M)

Vol

tage

Gai

n (G

)

10

8

6

Maximum constant boost

Simple boost

Figure 3.71 Voltage gain versus modulation index for Z-source inverter.

v*a

v*b

v*c

V*N

V*P

S1

S2

S3

S’3S’2

S’1

1

1

0

1

0

0

1

0

0

1

1

0

CarrierModulating signals

Shoot-through zero states

1

1

1

0

0

0

0

0

0

1

1

1

Figure 3.70 Principle of Carrier-based Maximum boost PWM for a Z-source inverter.

Pulse Width Modulation 39

.Matlab/Sim

ulinkmodel

ofZ-sourceinverter

ZS

I

Dis

cre

te,

Ts

= 1

e-0

06

s.

ZS

IO

UT

PU

T

VA

RIA

BL

E L

OA

D

Iso

late

d L

oa

d

INP

UT

Va

b

Vc1

Vc2

Iab

c

Va

bc

Iin

Vin

D

Va

b_

filt

ere

dV

pn

DC

-so

urc

e

ZS

I C

AR

RIE

R B

AS

ED

CO

NT

RO

L

Co

mm

an

de

d V

olt

ag

e

Figure

3.72

Matlab/Sim

ulinkmodel

ofZ-sourceinverter(Filenam

e:ZSI_SPWM_RL_load.mdl).

40 High Performance Control of AC Drives

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-200

0

200

Vab

c Filt

ered

(V

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-20

0

20

I abc (

A)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1000

0

1000

Vab

(V

)

Figure 3.74 Outputs from Z-Source inverter, a. Filtered three-phase voltages, b. Three-phase load

current, c. Line voltage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1–1000

0

1000

Vin

v (V

)V

c1 a

nd V

c2 (

V)

VL

1 an

d V

L2

(V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1–500

0

500

Time (s)

Figure 3.73 Voltages at the source side, a. at the input of the bridge inverter, b. across two capacitors, c.

across two inductors.

Pulse Width Modulation 41

2. Quasi Impedance Source or qZSI Inverter

Circuit Analysis

Figure 3.76 Equivalent circuit of the qZSI; (a) non-shoot-through state, (b) shoot-through state.

Impedance Network, qZSI

2cv

S SS

DC Source

L1 C2

1Li 2Li

1Lv

L2

2Lv

VCVB

S2 S3 Dc1Db2

VA

S1Da1

2dcV

o C1 1cv invv

S’2 S’

3Db2 Dc2S’

1 Da22dcV

Figure 3.75 Power Circuit topology of the voltage fed qZSI.

42 High Performance Control of AC Drives

.Matlab/Simulinkmodel

ofqZ-sourceinverter

QZ

SI

Disc

rete

,Ts

= 1

e-00

6 s.

Vab

1

OU

TP

UT

VA

RIA

BL

E L

OA

D

Isol

ated

Loa

d

INP

UT

Va

b

Vc1

Vc2

Iab

c

Va

bc

Iin

Vin

DV

ab_f

ilter

ed

Vp

n

Fo20

H

DC

-sou

rceQZS

I CAR

RIE

R B

ASED

CO

NTR

OL

Con

trol

Co

mm

an

de

dV

olt

ag

e

Figure

3.77

Matlab/Sim

ulinkmodel

ofZ-sourceinverter.

Pulse Width Modulation 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-200

0

200

Vab

c Filt

ered

(V

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-20

0

20

I abc (

A)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1000

0

1000

Time (s)

Vab

(V

)

Figure 3.79 Outputs from qZ-Source inverter, a. Filtered three-phase voltages, b. Three-phase load

current, c. Line voltage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1000

0

1000

Vin

v (V

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

200

400

Vc1

and

Vc2

(V

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-500

0

500

Time (s)

VL

1 and

VL

2 (V

)

Figure 3.78 Voltages at the source side: upper - at the input of the bridge inverter; middle - across two

capacitors; lower - across two inductors.

44 High Performance Control of AC Drives