PTB‘s refractive index compensated absolute 3D laser...

27
PTB‘s refractive index compensated absolute 3D laser meter Jennifer Bautsch, Matthias Franke, Karl Meiners-Hagen, Tobias Meyer, Florian Pollinger, Günther Prellinger, Kerstin Rost, Martin Wedde, Klaus Wendt (PTB) Denis Dontsov, Wolfgang Pöschel (SIOS)

Transcript of PTB‘s refractive index compensated absolute 3D laser...

PTB‘s refractive index compensated absolute 3D laser meter

Jennifer Bautsch, Matthias Franke, Karl Meiners-Hagen, Tobias Meyer, Florian Pollinger, Günther Prellinger, Kerstin Rost, Martin Wedde, Klaus Wendt (PTB)

Denis Dontsov, Wolfgang Pöschel (SIOS)

Overview:

- Introduction

- Refractive index compensation

- 3D-Lasermeter (IFM mode)

- Results in air conditioned and harsh environment

- ADM mode of 3D-Lasermeter

- Results of ADM mode

- Conclusion

- 3D metrology based on speed of light (laser tracker, LaserTracer)

is affected by air refractive index

- In harsh environments several µm/m uncertainty is possible

- Within LUMINAR a device was proposed with:

- 3D capability like a LaserTracer

- intrinsic compensation of air refractive index

- fringe counting mode (IFM) like LaserTracer

- absolute distance measurement (ADM) mode like several laser trackers

- uncertainty 10-7 l, even in harsh conditions

- Result: 3D-Lasermeter

Introduction

Refractive index compensation by two colour interferometry

Standard Interferometry:

- Measurement of optical path l with frequency stabilised laser ⇒ l0 = n l

- Measurement of temperature, air pressure, humidity, (CO2) ⇒ refractive index n

- Distance: l = l0 /n

- Uncertainties from measurement of air parameters:

Large Volume Metrology Workshop, 18-19 May 2016, NPL TeddingtonKarl Meiners-Hagen

Parameter Refractive index

change

Temperature ∆t = +1 °C -1 x 10-6

Pressure ∆p = +1 hPa +2.7 x 10-7

Relative humidity ∆RH = +1 % -1 x 10-8

Refractive index compensation by two colour interferometry

- 3) From l1 = n1l and l refractive index n1 can be calculated: n1 = l1 / l

From n1, pressure p, and pw the temperature can be derived

- 2) Measurement of partial pressure of water vapour ⇒ pw

Distance l = f(l1 , l2 , pw) (independent on temperature and pressure)

Refractive index compensated interferometry:

- Measurement of optical path with two wavelengths ⇒ l1, l2

- 1) l = l1 - A(l2 - l1), A constant (dry air)

A ≈ 65 for 532 nm + 1064 nm

uncertainties in (l2 - l1) are scaled by 65!

Karl Meiners-Hagen

600 800 1000

2,68

2,70

2,72

2,74

2,76

n2-1

λ1 λ

2

10

4 x

(n

-1)

Wavelength

n1-1

Refractive index compensation by two colour interferometry

Influence of changes in the air parameters:

Parameter Standard Compensated

Temperature ∆t = +1 °C -1 x 10-6 ---

Pressure ∆p = +1 hPa +2.7 x 10-7 ---

Relative humidity ∆RH = +1 % -1 x 10-8 -2.4 x 10-8

⇒ Theoretically independent on temperature and pressure,

but more sensitive to relative humidity

⇒ Uncertainty enhanced by factor A: l = l1 - A(l2 - l1)

(≈ 65 for “optical“ wavelengths, ≈ 21 for “synthetic wavelengths“

at 532 nm/1064 nm)

3D-Lasermeter

- Similar design like LaserTracer

- IFM mode: frequency doubled Nd:YAG laser (1064 nm + 532 nm)

- Frequency stabilised on Iodine absorption line

- Heterodyne interferometer

Karl Meiners-Hagen

Comparison with PTB 50 m comparator (geodetic base)

Comparison with HeNe interferometer with folded beam path.

Tracking is switched off.

Karl Meiners-Hagen

3D Lasermeter

reference laserZygo 7712

Fibre to detector board

Comparison with PTB 50 m comparator (geodetic base)

- Systematic deviations around 2 m ??

- Otherwise within ±2 µm up to 20 m

Karl Meiners-Hagen

May 2015

Tracking off

0 5 10 15 20

-2

-1

0

1

2

3

4

3D

-Laserm

ete

r -

Refe

rence / µ

m

Length / m

Comparison with PTB 50 m comparator (geodetic base)

After optimisations:

- Systematic deviations around 2 m ??

- Scatter well below 1 µm on short path, otherwise within ±2 µm up to 20 m

Karl Meiners-Hagen

Jan 2016

Tracking off

0 5 10 15 20-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

3D

-La

serm

ete

r -

Re

fere

nce

/ µ

m

Length / m

Comparison with PTB 50 m comparator (geodetic base)

- Seems to be a curve in our rail

- Deviations not yet understood (no problems with interferometer calibrations)

- � = (1μm)+(10 ��) for 1D, but why the effort?

Karl Meiners-Hagen

Jan 2016

Tracking on

0 2 4-2

-1

0

1

3D

-La

serm

ete

r -

Refe

rence / µ

m

Length / m

Harsh environment at GUM (Warsaw) 50 m comparator

Two housings with heating fans installed for simulating harsh environment

Karl Meiners-Hagen

12:15 12:20 12:25 12:30 12:35-50

-40

-30

-20

-10

0

10

Le

ngth

ch

ang

e /

µm

Time

L532 / µm

L1064 / µm

Compensated / µm

Harsh environment at GUM (Warsaw) 50 m comparator

Raw optical path length changes with temperaure

Compensated result remains constant, but with larger scatter during

turbulences

Karl Meiners-Hagen

Length ≈19 m

Harsh environment at GUM (Warsaw) 50 m comparator

Scatter during turbulences probably due to signal amplitudes.

Karl Meiners-Hagen

Length ≈19 m

12:15 12:20 12:25 12:30 12:35-200

-150

-100

-50

0

Le

ngth

chan

ge / µ

m

Time

0

20

40

60

80

100

120

140

Norm

alis

ed

sig

nal am

plit

ud

e / %

12:15 12:20 12:25 12:30 12:35

18,5

19,0

19,5

20,0

20,5

21,0

21,5

Te

mp

era

ture

/ °

C

Time

from interferometer

sensor data

Harsh environment at GUM (Warsaw) 50 m comparator

Temperature from sensors 1.5 °C off: we believe in interferometer (constant length)

Karl Meiners-Hagen

Length ≈19 m

Measurements at Airbus in Filton, March 2016

- Measurements in building Q7 on a 44.7 m path

- No interferometric reference, only sensor data for temperature, pressure, humidity

- Evaluation of data:

- length uncorrected and refractivity compensated

- air index change (no absolute values)

- temperature change (no absolute values)

(for absolute values of air index and temperature the absolute optical path lengths

must be known)

Karl Meiners-Hagen

Measurements at Airbus in Filton, March 2016

Moderate turbulences: corrected length follows a straight line, uncorrected does not.

Karl Meiners-Hagen

07:25 07:26 07:27 07:28

0

20

40

60

Le

ng

th c

ha

ng

e /

µm

Time

L532 / µm

L1064 / µm

L2Color 532 / µm

2016-03-10

Measurements at Airbus in Filton, March 2016

Refractive index change and measured temperature:

Sensors can‘t follow the refractive index (measurement cycle and thermal delay)

Karl Meiners-Hagen

07:25 07:26 07:27 07:28

-3x10-7

-2x10-7

-1x10-7

0

2016-03-10

∆ n

Time

Sensors

Interferometer

19,70

19,75

19,80

Tem

pera

ture

/ °

C

Measurements at Airbus in Filton, March 2016

Heating of building turned on at 09:00

(Windy morning, up to 1 mm movement of the structure)

Karl Meiners-Hagen

08:30 08:45 09:00 09:15

-1000

-500

0

500

Le

ng

th c

ha

ng

e /

µm

Time

L532 / µm

L1064 / µm

L2Color 532 / µm

2016-03-09

Measurements at Airbus in Filton, March 2016

Refractive index difference within 5x10-7 during heating

Possible reason: temperature distribution (lowest 5 m path had no sensors)

Karl Meiners-Hagen

08:30 08:45 09:00 09:15-3x10

-6

-2x10-6

-1x10-6

0

2016-03-09

∆ n

Time

Sensors

Interferometer

10

11

12

13

Tem

pera

ture

/ °

C

ADM mode

- Two frequency doubled Nd:YAG lasers (1064 nm + 532 nm)

- Phase locked wih 20 GHz (1064 nm) / 40 GHz (532 nm) offset

- Generation of additional frequencies with frequency shifters (AOM)

Karl Meiners-Hagen

40 GHz

(7.5 mm)

20 GHz

(15 mm)

Nd:YAG 532 nm

1064 nm

Nd:YAG 532 nm

1064 nm

∆ν = 20 GHz (40 GHz)

-7 MHz

+93 MHz

+186 MHz

-5 MHz

+95 MHz

+190 MHz

+97.5 MHz

+96.75 MHz

-2.5 MHz

-3.25 MHz

+195 MHz

+193.5 MHz

ADM mode

- Two frequency doubled Nd:YAG lasers (1064 nm + 532 nm)

- Phase locked wih 20 GHz (1064 nm) / 40 GHz (532 nm) offset

- Generation of additional frequencies with frequency shifters (AOM)

Karl Meiners-Hagen

197.5 MHz

(1.5190 m)

196.75 MHz

(1.5248 m)

- Coarse distance by frequency scanning with AOM

- Uncertainty scaling bad: 7.5 mm/532 nm x 21.5 = 300 000

Nd:YAG 532 nm

1064 nm

Nd:YAG 532 nm

1064 nm

∆ν = 20 GHz (40 GHz)

-7 MHz

+93 MHz

+186 MHz

-5 MHz

+95 MHz

+190 MHz

+97.5 MHz

+96.75 MHz

-2.5 MHz

-3.25 MHz

+195 MHz

+193.5 MHz

ADM mode

Karl Meiners-Hagen

Light source, now on a trolley with laser shielding

90 cm x 60 cm

+ 19‘‘ rack

ADM mode

- Fixed 40 m path at 50 m comparator in PTB

- 10 seconds averaging: 60 µm standard deviation ⇒ 0.2 nm between four

optical wavelength results

Karl Meiners-Hagen

14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00

-0,5

0,0

0,5

1,0

1,5

2,0 2016-02-23/24

Length

change / m

m

Time

ADM mode

- At Airbus with 2 m path length: >1 mm variation ⇒ 3.3 nm between four

optical wavelength results

- Problems with polarisation in the interferometer

- In JRP „Surveying“ the ADM mode works up to 864 m

(<50 µm length independent standard deviation, 1x10-7 l)

Karl Meiners-Hagen

11:23 11:25 11:27 11:29 11:31 11:33 11:35-0,02

-0,01

0,00

0,01

0,02

0,03

0,04

Length

change / m

m

Time

532 nm

1064 nm

l ≈ 2 m

2016-03-03

11:22 11:27 11:32

-1,0

-0,5

0,0

0,5

l ≈ 2 m

2016-03-03

Length

change / m

m

Time

Raw data Refractive index compensated result

Conclusions

- IFM measurements works with 1D uncertainty � = (1μm)+(10 ��)

- Temperature range 9 °C to 22 °C verified, with gradients up to 10 °C

- 3D measurements at a CMM, 3D uncertainty around 3.5 µm

- ADM measurements suffer from problems with polarisation which were

solved in the JRP “Surveying” project

- Outlook: investigation of temperature dependence of non polarising beam

splitters

Physikalisch-Technische Bundesanstalt

Braunschweig und Berlin

Bundesallee 10038116 Braunschweig

Karl Meiners-HagenArbeitsgruppe Mehrwellenlängeninterferometrie für geodätische Längen

Telefon: 0531 592-5230E-Mail: [email protected]

Stand: 05/2016