PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal...

107
Telecom Technical Specifications PSTN01 November 17,2003 Revise July 20,2007 Technical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network NATIONAL COMMUNICATIONS COMMISSION 1

Transcript of PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal...

Page 1: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Technical Specificaitons for Terminal Equipment for Connection to Public

Switched Telephone Network

NATIONAL COMMUNICATIONS COMMISSION

1

Page 2: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Technical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network

CONTENTSCatalog............................................................................................................................................................2

1、Scope............................................................................................................................................................................5

1.1 Accordance .........................................................................................................................................................5

1.2 Application...........................................................................................................................................................5

2、Definition、Symbols and Abbreviations.....................................................................................................................9

2.1 Definition............................................................................................................................................................9

2.2 Symbols............................................................................................................................................................10

2.3 Abbreviations....................................................................................................................................................10

3、EMC Requirement.....................................................................................................................................................10

4、Safety Requirement....................................................................................................................................................11

5、Telecommunication requirement................................................................................................................................11

5.1 Public switch telephone network interface requirement...................................................................................11

5.1.1 Basic requirement.....................................................................................................................................11

5.1.2 Surge Protection........................................................................................................................................11

5.1.2.1 Telephone Line Surge Test:...............................................................................................................12

5.1.2.1.1 Metallic Surge Test....................................................................................................................12

5.1.2.1.2 Longitudinal Surge Test............................................................................................................12

5.1.2.2 AC Power Line Surge Test................................................................................................................13

5.1.3 Line Polarity.............................................................................................................................................14

5.1.4 Leakage current limitations......................................................................................................................14

5.1.5 Insulation resistance..................................................................................................................................15

5.1.6 Characteristics of TE for ringing signals..................................................................................................16

5.1.6.1 Response to ringing signal................................................................................................................16

5.1.6.2 Ringing Impedance...........................................................................................................................17

5.1.6.3 On-hook AC impedance....................................................................................................................17

5.1.7 Off-hook DC resistance............................................................................................................................19

5.1.8 Sending level limitations of signals..........................................................................................................20

5.1.9 Transverse balance limitations..................................................................................................................21

5.1.10 Return loss..............................................................................................................................................23

5.1.11 Pulse dialing............................................................................................................................................23

5.1.12 Dual tone multiple frequency (DTMF) dialing.......................................................................................25

5.1.12.1 Frequency combination...................................................................................................................25

5.1.12.2 Signaling level.................................................................................................................................26

2

Page 3: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5.1.12.3 Signaling level difference.........................................................................................................26

5.1.13 Series equipment

……………………………………………………………………………………..............28

5.1.13.1 DC voltage drop of series equipment..............................................................................................28

5.1.13.2 Insertion loss of series equipment...................................................................................................29

5.2 Handset function...............................................................................................................................................30

5.2.1 Transmission objective reference equivalent............................................................................................30

5.2.1.1 Sending objective reference equivalent (According to OREM-A specification)..............................30

5.2.1.2 Receiving objective reference equivalent (According to OREM-A specification)...........................31

5.2.2 Transmission characteristics frequency response.....................................................................................32

5.2.2.1 Sending frequency response (According to OREM-A specification)...............................................32

5.2.2.2 Receiving frequency response (According to OREM-A specification)............................................32

5.2.3 Side-tone objective reference equivalent (OREM-A method)..................................................................34

5.2.4 Distortion..................................................................................................................................................35

5.2.4.1 Sending distortion.............................................................................................................................35

5.2.4.2 Receiving distortion (According to OREM-A specification)...........................................................36

5.2.5 Receiver volume control...........................................................................................................................37

5.2.6 Continuous sound pressure level of receiver............................................................................................37

5.3 Cordless Phone function in connecting to PSTN.............................................................................................38

5.3.1 Radio frequency requirement....................................................................................................................38

5.3.2 Security code requirement........................................................................................................................39

5.3.3 Transmitter requirement............................................................................................................................39

5.3.3.1 Carrier frequency..............................................................................................................................39

5.3.3.2 Modulation sensitivity……...............................................................................................................40

5.3.3.3 Audio distortion................................................................................................................................40

5.3.4 Receiver requirement................................................................................................................................41

5.3.4.1 Useable sensitivity............................................................................................................................41

5.3.4.2 Useable bandwidth............................................................................................................................42

5.3.4.3 Audio distortion................................................................................................................................42

5.3.4.4 Signal and noise ratio........................................................................................................................43

5.3.4.5 Adjacent channel rejection................................................................................................................43

5.3.4.6 Spurious response rejection..............................................................................................................44

5.3.5 Radiated Field Intensity and Interference Test.........................................................................................45

5.4 Transmission characteristics of public automatic switching exchange...........................................................46

5.4.1 General function.......................................................................................................................................46

5.4.1.1 AC Power Failure..............................................................................................................................46

5.4.1.2 Release of the PSTN Line.................................................................................................................46

5.4.2 Quiescent state noise.................................................................................................................................47

3

Page 4: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5.4.3 Transmission Loss.....................................................................................................................................48

5.4.4 Cross talk..................................................................................................................................................49

5.5 Protocol requirement… ………………………………………………………………………………….….49

5.6 Caller ID requirement… …………………………………………………………………………………….50

5.6.1 FSK signals inspection standard...............................................................................................................50

5.6.1.1 AC / DC Termination........................................................................................................................50

5.6.1.1.1DC Termination..........................................................................................................................50

5.6.1.1.2 AC Termination.........................................................................................................................50

5.6.1.2 Timing...............................................................................................................................................51

5.6.1.2.1 Alerting case..............................................................................................................................51

5.6.1.2.2 Start Time..................................................................................................................................52

5.6.1.2.3 End Time...................................................................................................................................52

5.6.1.3 Signaling case...................................................................................................................................53

5.6.1.3.1 Frequency, Level, Twist and Interference tolerance..................................................................53

5.6.1.4 Packet case........................................................................................................................................53

5.6.1.4.1 Channel seizure.........................................................................................................................53

5.6.1.4.2 Mark..........................................................................................................................................54

5.6.1.4.3 Message type.............................................................................................................................54

5.6.1.4.4 Checksum..................................................................................................................................54

5.6.1.5 Presentation layer messages case......................................................................................................55

5.6.2 DTMF signaling Test criteria....................................................................................................................56

5.6.2.1 DC resistance in the NIT state..........................................................................................................56

5.6.2.2 Leaving the NIT state........................................................................................................................56

5.6.2.3 DTMF signaling................................................................................................................................57

5.6.2.4 DTMF Code / Number......................................................................................................................58

5.6.2.5 Guarding against interference from the parallel equipment..............................................................58

5.7 Automatic redialing function requirement........................................................................................................59

5.7.1 Automatic dialing function requirement...................................................................................................59

5.7.1.1 Automatic repeated call attempts......................................................................................................59

5.7.1.2 Disconnection Time of automatic dialing.........................................................................................60

5.7.2 Automatic answer function requirement...................................................................................................60

Appendix I FSK Test Status and Test Data......................................................................................................................62

Appendix II DTMF Test Status and Test Data.................................................................................................................69

Appendix III Recommentations of Test Environment and Test Equipments...................................................................70

4

Page 5: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

1.Scope1.1 Accordance

The specification is issued pursuant to paragraph 1 of Article 42 of the Telecommunications Acts.

1.2 ApplicationThis Technical Standard related to Terminal Equipment (TE), Series Equipment or Bridging equipment which

is used in connecting to Public Switched Telephone Network (PSTN). It defines the general technical condition

and requirements for inter-working and non-interference for Customer Equipment connected to PSTN.

The Terminal Equipment is defined in types A to I by their interface types. The following 3 pages is Test

Matrix with the individual types:

A. TE in connecting to PSTN: with Telephone Functions.

B. TE in connecting to PSTN: with Answering Systems Functions.

C. TE in connecting to PSTN: with Cordless Phone Functions.

D. TE in connecting to PSTN: with FAX Machine Functions.

E. TE in connecting to PSTN: with Modem Functions.

F. TE in connecting to PSTN: with Caller ID Functions.

G. TE in connecting to PSTN: with PBX Functions.

H. TE in connecting to PSTN: with Key System Functions.

I. TE in connecting to PSTN: Functions other than Typpe A to H.

5

Page 6: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test requirement product types listSec. Titles A B C D E F G H I

3. EMC requirement Y Y Y Y Y Y Y Y Y

4. Safety requirement Y Y Y Y Y Y Y Y Y

5.1 Public switch telephone network

interface requirement

Y Y Y Y Y Y Y Y Y

5.1.1 Basic requirement Y Y Y Y Y Y Y Y Y

5.1.2 Surge Protection Y Y Y Y Y Y Y Y Y

5.1.2.1 Telephone Line Surge Test Y Y Y Y Y Y Y Y Y

5.1.2.2 AC Power Line Surge Test ※ ※ ※ ※ ※ ※ ※ ※ ※5.1.3 Line polarity Y Y Y Y Y Y Y Y Y

5.1.4 Leakage current limitations Y Y Y Y Y Y Y Y Y

5.1.5 Insulation resistance Y Y Y Y Y Y Y Y Y

5.1.6 Characteristics of TE for ringing

signals

Y Y Y Y Y Y Y Y Y

5.1.6.1 Response to ringing signal Y Y Y Y Y Y Y Y Y

5.1.6.2 Ringing impedance Y Y Y Y Y Y Y Y Y

5.1.6.3 On-hook AC impedance Y Y Y Y Y Y Y Y Y

5.1.7 Off-hook DC resistance Y Y Y Y Y Y Y Y Y

5.1.8 Sending level limitation of

signals

Y Y Y Y Y Y Y Y Y

5.1.9 Transverse balance limitations Y Y Y Y Y Y Y Y Y

5.1.10 Return loss Y Y Y Y Y Y Y Y Y

5.1.11 Pulse dialing ※ ※ ※ ※ ※ ※ ※ ※ ※5.1.12 Dual tone multiple frequency (DTMF)

dialing

Y Y Y Y Y Y Y Y Y

5.1.12.1 Frequency combination Y Y Y Y Y Y Y Y Y

5.1.12.2 Signaling level Y Y Y Y Y Y Y Y Y

5.1.12.3 Signaling level difference Y Y Y Y Y Y Y Y Y

5.1.12.4 Tone duration Y Y Y Y Y Y Y Y Y

5.1.12.5 Pause duration Y Y Y Y Y Y Y Y Y

5.1.13 Series equipment ※ ※ ※ ※ ※ ※ ※ ※ ※5.1.13.1 DC voltage drop of series equipment ※ ※ ※ ※ ※ ※ ※ ※ ※5.1.13.2 Insertion loss of series

equipment

※ ※ ※ ※ ※ ※ ※ ※ ※

6

Page 7: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test requirement product types listSec. Titles A B C D E F G H I

5.2 Handset function Y ※ ※ ※ ※ ※ ※ ※ ※5.2.1 Transmission objective reference

equivalent

Y ※ ※ ※ ※ ※ ※ ※ ※

5.2.1.1 Sending objective reference

equivalent

Y ※ ※ ※ ※ ※ ※ ※ ※

5.2.1.2 Receiving objective reference

equivalent

Y ※ ※ ※ ※ ※ ※ ※ ※

5.2.2 Transmission characteristics

frequency response

Y ※ ※ ※ ※ ※ ※ ※ ※

5.2.2.1 Sending frequency response Y ※ ※ ※ ※ ※ ※ ※ ※5.2.2.2 Receiving frequency response Y ※ ※ ※ ※ ※ ※ ※ ※5.2.3 Side-tone objective reference

equivalent

Y ※ ※ ※ ※ ※ ※ ※ ※

5.2.4 Distortion Y ※ ※ ※ ※ ※ ※ ※ ※5.2.4.1 Sending distortion Y ※ ※ ※ ※ ※ ※ ※ ※5.2.4.2 Receiving distortion Y ※ ※ ※ ※ ※ ※ ※ ※5.2.5 Receiver volume control Y ※ ※ ※ ※ ※ ※ ※ ※5.2.6 Continuous sound pressure level of

receiver

Y ※ ※ ※ ※ ※ ※ ※ ※

5.3 Cordless phone function in connecting

to PSTN

※ ※ Y ※ ※ ※ ※ ※ ※

5.3.1 Radio frequency requirement ※ ※ Y ※ ※ ※ ※ ※ ※5.3.2 Security code requirement ※ ※ Y ※ ※ ※ ※ ※ ※5.3.3 Transmitter requirement ※ ※ Y ※ ※ ※ ※ ※ ※5.3.3.1 Carrier frequency ※ ※ Y ※ ※ ※ ※ ※ ※5.3.3.2 Modulation sensitivity ※ ※ Y ※ ※ ※ ※ ※ ※5.3.3.3 Audio distortion ※ ※ Y ※ ※ ※ ※ ※ ※5.3.4 Receiver requirement ※ ※ Y ※ ※ ※ ※ ※ ※5.3.4.1 Useable sensitivity ※ ※ Y ※ ※ ※ ※ ※ ※5.3.4.2 Useable bandwidth ※ ※ Y ※ ※ ※ ※ ※ ※5.3.4.3 Audio distortion ※ ※ Y ※ ※ ※ ※ ※ ※5.3.4.4 Signal and noise ratio ※ ※ Y ※ ※ ※ ※ ※ ※5.3.4.5 Adjacent channel rejection ※ ※ Y ※ ※ ※ ※ ※ ※5.3.4.6 Spurious response rejection ※ ※ Y ※ ※ ※ ※ ※ ※5.3.5 Radiated Field Intensity and ※ ※ Y ※ ※ ※ ※ ※ ※

7

Page 8: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Interference Test

8

Page 9: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test requirement product types listSec. Titles A B C D E F G H I

5.4 Transmission characteristics of public

automatic switching exchange

※ ※ ※ ※ ※ ※ Y Y ※

5.4.1 General function ※ ※ ※ ※ ※ ※ Y Y ※5.4.2 Quiescent state noise ※ ※ ※ ※ ※ ※ Y Y ※5.4.3 Transmission loss ※ ※ ※ ※ ※ ※ Y Y ※5.4.4 Cross talk ※ ※ ※ ※ ※ ※ Y Y ※5.5 Protocol requirement ※ ※ ※ Y Y ※ ※ ※ ※5.6 Caller ID requirement ※ ※ ※ ※ ※ Y ※ ※ ※5.6.1 FSK signals inspection standard ※ ※ ※ ※ ※ Y ※ ※ ※5.6.1.1 DC / AC Termination ※ ※ ※ ※ ※ Y ※ ※ ※5.6.1.2 Timing ※ ※ ※ ※ ※ Y ※ ※ ※5.6.1.3 Signaling case ※ ※ ※ ※ ※ Y ※ ※ ※5.6.1.4 Packet case ※ ※ ※ ※ ※ Y ※ ※ ※5.6.1.5 Presentation layer messages case ※ ※ ※ ※ ※ Y ※ ※ ※5.6.2 DTMF signaling Test criteria ※ ※ ※ ※ ※ Y ※ ※ ※5.6.2.1 DC resistance in the NIT state ※ ※ ※ ※ ※ Y ※ ※ ※5.6.2.2 Leaving the NIT state ※ ※ ※ ※ ※ Y ※ ※ ※5.6.2.3 DTMF signaling ※ ※ ※ ※ ※ Y ※ ※ ※5.6.2.4 DTMF Code/Number ※ ※ ※ ※ ※ Y ※ ※ ※5.6.2.5 Guarding against interference from

the parallel equipment

※ ※ ※ ※ ※ Y ※ ※ ※

5.7 Automatic dialing function

requirement

※ ※ ※ ※ ※ ※ ※ ※ ※

5.7.1 Automatic dialing function

requirement

※ ※ ※ ※ ※ ※ ※ ※ ※

5.7.1.1 Automatic repeated call attempts ※ ※ ※ ※ ※ ※ ※ ※ ※5.7.1.2 Disconnecting Time of automatic

dialing

※ ※ ※ ※ ※ ※ ※ ※ ※

5.7.2 Automatic answer function

requirement

※ ※ ※ ※ ※ ※ ※ ※ ※

Notes:

1).Y means the item of requirements which Terminal Equipment should comply with.

2).※means the item of requirements which Terminal Equipment should comply with if the function is provided.

3).Terminal Equipment should comply with item 5.4.4 Cross talk requirements.

9

Page 10: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2.Definition、Symbols and Abbreviations2.1 Definition

Terminal Equipment: Equipment which is used in connecting to public switched telephone network for

getting telephone communication service.

Loop Simulator: Simulated Circuit used in supplying DC loop current for testing.

Reference Load Impedance: A reference load impedance used in general test case of this technical

requirement. 600Ω is used in general case, unless defined in special case of test. See

Appendix.

Artificial Transmission Line: A simulated circuit used in test case to simulate the impedance and loss of

telephone network.

Automatic dialing: Automatic dialing is defined as the process whereby the dialing information is

automatically transmitted after seizure of a line.

Automatic line seizure: Automatic line seizure refers to seizure of the line not immediately succeeding a

manual operating procedure:

Automatic repeat call attempts : An automatic repeated call, of the same number that is failure at last call.

Call attempt: A procedure of TE in sending the call address number.

Communication state: The communication state commences after dialing, in the case of an outgoing call, or

commences after answering of the call, in the case of an incoming call and ends with the

transition of the terminal equipment to the quiescent state.

Connection to earth: A terminal of equipment used in connecting with Ground wire of power outlet or a

connection point on the equipment used in connecting to Ground while been test.

Dialing: Dialing begins with the emission of the first digit and ends with the last digit necessary for

establishment of the call.

Dialing state: The dialing state is the operating state from the beginning to the end of the transmission of

dialing information.

Inter-digital state: The inter-digital state commences on conclusion of the emission of one digit and ends

when emission of the next digit commences or with the beginning of the communication

states, as appropriate.

Longitudinal Conversion Loss: The measure of impedance is balanced to earth.

Network Termination Point (NTP): The physical connecting points to the Network.

Off hook condition: The off-hook condition commences when the terminal equipment has reached the

stationary dc resistance level and ends with the transition to the dialing state or the quiescent

state.

Operating states: The following operating states exist: quiescent state, off-hook condition, dialing state,

inter-digital state, communication state, ringing state as well as the transitions to these states.

Quiescent state: The quiescent state is characterized by the fact that the terminal equipment is neither in a

transient state nor in the dialing, ringing, off-hook, inter-digital or communication states.

Return Loss: Of the TE, a description of impedance is matching to PSTN.

10

Page 11: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Ringing state: The ringing state commences with the reception of the first ringing signal and ends with the

answering of the call or when no further ringing signals are received.

Switching signals: Switching signals are electrical characters for signaling between terminal equipment and

equipment of the telephone network.

Telecommunication messages: Telecommunication messages are electrical signals generated by terminal

equipment and which are not required for communication with the telephone network.

Transient states: From the quiescent state to the off-hook condition of outgoing call, from the ringing state

to the communication state incoming call or from the communication state to the quiescent

state of call clearing.

Metallic voltage: The potential difference between the tip and ring connections.

Longitudinal voltage: One half of the vector sum of the potential difference between the tip connection and

earth ground, and the ring connection and earth ground.

2.2 Symbols Ω : ohm

dB : decibell

dBspl. : dB sound pressure level

a.c. : alternating current

d.c. : direct current

dBm : dB miliwatt

dBV : dB Volt

DTMF : Dual Tone Multiple Frequency

V : Voltage

mA : miliampare

R : Resistance

ZR : Reference impedance

ERP : Ear Reference Point

MRP : Mouth Reference Point

r.m.s : root mean square

RL : Return Loss

2.3 AbbreviationsACTE : Automatic Call Transfer Equipment

DTMF : Dual Tone Multi-Frequency

HGP : DTMF High frequency Group Power

LGP : DTMF Low frequency Group Power

PBX : Private Branch Exchange system

PSTN : Public Switched Telephone Network

11

Page 12: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

RVA : Recorded Voice Announcement

TE : Terminal Equipment

3.EMC RequirementTE should comply with requirements of CNS 13438 C 6357(Information technology equipment, Radio)

Disturbance characterstics-Limits and methods of measurement) as EMC’s technolody requirement and testing

standard.

4.Safety RequirementTE should comply with requirements of CNS14336 C 5268(Safety of information technology equipment)

Including overvoltage and sound pressure testing items as electric safety technology requirement and testing

standard.

5.Telecommunication requirement5.1 Public switch telephone network interface requirement

5.1.1 Basic requirements 1. The TE shall be an independent entity not belongs to Type 1 telecommunications enterprises and

prohibited to modify Type 1 telecommunications enterprises equipment.

2. Any additional functions shall not impact public telecom equipment switching, testing, transport

and billing functions when TE is connected to Network.

3. While the TE is damaged or malfunctioning, other connected equipment should be influenced

continue to function properly.

5.1.2 Surge ProtectionVoltage Wave-shape of Surge

Front Time ( Tf ) = 1.67 × T , where T is time from 30% to 90% of peak voltage.

Decay Time ( Td ): Time from virtual origin to 50% of peak voltage on trailing edge

The circuit diagram of Surge Generator:

12

Page 13: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Open circuit voltage waveshape:

13

R1=50ΩC1=20μF

S1 R2=15Ω *R3=25ΩC2=0.2μF

S2

T:time from 30% to 90% of peak voltageTf = 1.67 × TTd:Time from virtual origin to 50% of peak

voltage on trailing edge

Page 14: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5.1.2.1 Telephone Line Surge Test:5.1.2.1.1 Metallic Surge Test:

Requirement: After applying the metallic surge test, all the operational functions must work well.

1. Metallic surge wave form:Front time〔Tf〕≦10μs、decay time 〔Td〕≧560μs and peak

voltage≧800V, the surge generator should support over 100A peak current.

2. Apply the above surge wave form on the tip and ring of telephone line, while EUT is at on-

hook and any operational mode, and then change the polarity to test it again.

Purpose: To simulate induced metallic surge voltage on a telephone line which could result from

lightning.

Test Method:

1. Figure 1 shows the metallic surge test configuration.

2. The method of metallic surge test

(1) Set the front time(Tf)、decay time(Td) and peak voltage of metallic surge wave form.

(2) Set EUT at on-hook mode.

(3) Apply one surge of each polarity between two leads.

(4) Record and check the functions of EUT.

(5) Set the EUT under each operational mode and repeat step (3) to (4).

Test equipment:

1. Surge Generator.

2. Loop Simulator.

Figure 1 Surge test configuration

5.1.2.1. 2 Longitudinal Surge Test:Requirement: After applying the metallic surge test, all the operational functions must work well.

1. Longitudinal surge wave form:Front time〔Tf〕≦10μs、decay time〔Td〕≧160μs and peak

voltage≧1500V, the surge generator should support over 200A peak current.

2. Apply the above surge wave form on the shorted tip and ring of telephone line about earth,

14

EUTSurgeGenerator

Loop Simulator

Earth terminal

Page 15: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

while EUT is at on-hook and any operational mode, and then change the polarity to test it

again.

Purpose: To simulate induced longitudinal surge voltage on a telephone line which could result from

lightning.

Test Method:

1. Figure 1 shows the longitudinal surge test configuration.

2. The method of metallic surge test

(1) Set the front time(Tf)、decay time(Td) and peak voltage of longitudinal surge wave

form.

(2) Set EUT at on-hook mode.

(3) With two leads connected together, apply one surge of each polarity between leads and

ground.

(4) Record and check the functions of EUT.

(5) Set the EUT under each operational mode and repeat step (3) to (4).

Test equipment:

1. Surge Generator.

2. Loop Simulator.

5.1.2.2 AC Power Line Surge Test:Requirement: After applying the AC power surge test, all the operational functions must work well.

1. AC power surge wave form:Front time (Tf)≦2μs、decay time (Td)≧10μs and peak voltage

≧2500V, the surge generator should support over 1000A peak current.

2. Apply the above surge wave form on the tip and ring of telephone line, while EUT is

powered on and off , and then change the polarity to test it three times.

Purpose: To simulate induced AC power surge voltage on a telephone line which could result from

lightning.

Test Method:

1. Figure 2 shows the AC power surge test configuration.

15

EUTSurge

Simulator

Figure.2 AC Power line surge test configuration

AC Power Line

Page 16: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2. The method of AC power surge test

(1) Set the front time(Tf)、decay time(Td) and peak voltage of AC power surge wave form.

(2) Power on EUT.

(3) Apply three times surge of each polarity between two leads.

(4) Record and check the functions of EUT.

(5) Power off EUT and repeat step (3) to (4).

Test equipment:

1. Surge Generator.

2. AC Power Source.

5.1.3 Line Polarity:Requirement: The two polarity connections of TE to PSTN shall comply with the requirements of

this technical standard.

Purpose: To make sure TE can work with the PSTN in two polarity connections.

Test method: Where tests with both polarity connections are needed for this regulation.

5.1.4 Leakage current limitationsRequirement: TE shall have a voltage applied to the combination of test points listed in the table 1.

(1) test point:All telephone connections.

(2) test point:All power connections.

(3) test point:All possible combinations of exposed conductive surfaces on the exterior of

such equipment.

Gradually increase the voltage from zero to the values listed in Table 1 over a 30 seconds

time period, then maintain the voltage for one minute. The current in the mesh formed by

the voltage source and these points shall not exceed 10mA peak at any time during this 90-

second interval.

Table 1: Voltages applied for various combinations of connection points

Voltage source connected between: AC voltage value

(1) and (3) 1000V/60Hz

(1) and (2) 1500V/60Hz

(2) and (3) 1500V/60Hz

Purpose: To verify the integrity of the dielectric barrier between the network and power line and the

equipment connections of the EUT.

Test method:

1. Leakage current limitations Test Configuration as Fig.3.

2. Leakage current limitations test method:

16

Page 17: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(1) Select the appropriate EUT test point, according to the table 1.

(2) Set EUT at on-hook.

(3) Gradually increase the test voltage from 0 to the level required for the connections

under test in reference to Table 1(i.e. V1), over a 30-second period. Maintain the

maximum voltage level during 60 seconds.

(4) Record the maximum current measured during this period.

(5) Calculate the the maximum leakage current = V2 ÷ 1000

(6) Repeat step (3) to (5) in each operational states.

(7) Change the different test point in table 1, repeat step (2) to (6).

Test equipment:

1. Isolated Adjustable High Voltage Source.

2. Voltmeters (V1 and V2).

5.1.5 Insulation resistanceRequirement: The insulation resistance between the following test points shall be greater than 5

MΩwhile apply 100 Vdc on th EUT.

1. TE with 2 wires:

(1) Telephone line, tip to ring.

(2) Telephone line, short tip with ring v.s. AC power.

(3) Telephone line, short tip with ring v.s. earth.

2. Leased line TE with 4 wires:

(1) Telephone line, short tip with ring v.s. shorting of T1 with R1.

(2) Telephone line, short T/ T1 with R/R1 v.s. earth ground.

(3) Telephone line, short T/ T1 with R/R1 v.s. AC power.

Purpose: To check whether the TE presents a higher resistance characters between ground and power

17

Isolated Adjustable High Voltage SourceGenerator:0 to 1500 VAC/60 Hz

EUT50 kΩ 1kΩ

V1

V2

Figure 3 Leakage current limitation test configuration

Page 18: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

line and the equipment connections of the EUT.

Test method:1. Insulation resistance Test Configuration as Fig.4.

2. Insulation resistance test method:

(1) Set EUT at on-hook state.

(2) Set the voltage to 100 Vdc.

(3) Connect output point to the tip an ring of telephone line.

(4) Measure and record the current. Calculate the insulation resistance = 100÷Idc.

(5) Connect output point to the test pints specified above one by one.

(6) Measure and record the current. Calculate the insulation resistance for each test

point.

Test equipment:

1. 100V DC Power Supply.

2. Voltmenter. (V)

3. Currentmeter (A)

5.1.6 Characteristics of TE for ringing signals5.1.6.1 Response to ringing signal

Requirement: If a ring detect function is provided and enabled, the TE shall be able to response to

ringing signals of 45 V rms at 20 Hz with a cadence of 1 sec. on and 2 sec. off

superimposed on a 48 VDC feeding voltage and series 5 kΩresistor.

Purpose: To verify the TE has to provide a minimum ringing response characters.

Test method:1. Response to ringing signal Test Configuration as Fig.5.

2. Response to ringing signal test method:

(1) The EUT should be at on-hook state.

18

Earth ConnectingFigure 4 Insulation resistance test configuration

AC power line

100VDC Power

Supply

EUT

T

T1R

R1

1kΩ A

V

Page 19: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(2) Set AC signal generator to 20Hz and adjust the ring signal level to 45Vrms.

(3) Check to see that the EUT provides an audible acoustic output or other response

states.

Test equipment:

1. DC power supply.

2. Ring signal generator : Frequency generator + Ringing amplifier

5.1.6.2 Ringing ImpedanceRequirement: Requirement: The ringing impedancce of the terminal equipment at ringing signal

20Hz, 75Vrms shall not be less than 5kΩ and capacitance shall be less than 3.0μF.

Purpose: It is assured by requiring the TE to present a impedance to ringing signals that is

sufficiently high.

Test method:1. Ringing Impedance Test Configuration as Fig.6.

2. Ringing Impedance test method:

(1) The EUT should be at on-hook state.

(2) Set AC signal generator to 20Hz and adjust the signal level until the reading of V1

in EUT is 75Vrms.

(3) Measure the AC voltage, V2.

(4) Calculated the ringing impedance of the EUT. Z = V1 V2 1000.

(5) Digital storage oscilloscope monitor and record the waveform of V1 and V2.

(6) Calculate the phase angleθof impedance and the capacitance of EUT.

(a) θ= △t 50ms 360

(b) C = 1 /ω Z sin whereω= 2π f

θ : phase angle of impedance

△t : time different of V1 and V2

19

EUT

Figure 5 Response to ringing signal test configuration

Ring signal Generator

48VDC

5 kΩ

Page 20: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. Digital storage oscilloscoge.

2. Ring signal generator : Frequency generator + Ringing amplifier

3. DC power Supply.

4. AC Voltmeter(V1 and V2).

5.1.6.3 On-hook AC impedanceRequirement: While EUT is at on-hook state loaded with 3Vrms, 200Hz ~ 3200Hz AC signal on the

telephone line, the AC impedance shall be in the acceptable region of Figure 7.

Purpose: To prevent the interference to other TE connecting with in parallel.

Test method:1. On-hook AC impedance test configuration as Fig.8.

2. On-hook AC impedance test method:

(1) EUT set on-hook state.

(2) Set the AC signal generator to 200 Hz and adjust the output level to let V2 be 3

Vrms reading.

(3) Measure and record the V1.

(4) Calculate the AC impedance Z = V2 V1 x 10 kΩ.

(5) Vary the AC signal generator slowly from 200 Hz to 3200 Hz, keeping V2 at 3

Vrms reading.

(6) Repeat step (3) to (4) .

20

Ring signal Generator

48VDC

1 kΩ

V2

V1

Digital Storage OscilloscopeCh1 GND Ch2

EUT

Figure 6 Ringing Impedance Test Configuration

Page 21: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. AC Signal Generator.

2. AC Voltmeter 2.

5.1.7 Off-hook DC resistanceRequirement: The DC voltage to loop current characteristics of the TE during the any operating

function of off-hook state shall appear on the acceptable region shown in Fig.9.

21

AC SignalGenerator

EUT

10kΩ

V2

V1

Figure 8 On-hook AC impedance test configuration

0 10 20 3026 Loop Current (mA)

Unacceptable

Acceptable

(26, 10.6)

(20, 8)

(10, 6)56

8

10

15

DC Voltage on T/R wires of TE

Figure 9: DC Voltage and Current limits

3200(Hz)

200 300 500 1000 2000

50

100

(200, 30)

(697, 100) (1633, 100)

(3200, 60)Unacceptable Area

Acceptable Area

Fig.7 AC Impedance for On-hook Mode

AC Impedance (kΩ)

Page 22: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Purpose: To verify that the steady state DC loop characteristics. The test only applies to TE which

are capable of reaching the loop state.

Test method:1. Off-hook DC resistance Test Configuration as Fig.10.

2. Off-hook DC resistance test method:

(1)The EUT should be at off-hook state.

(2) Adjust the VR to let A be 10mA and 20mA readings separately, then record

the corresponding DC voltage and map the point into Fig.9. Each current

reading shall stay at least 5 seconds interval.

(3) Adjust the VR to let V be 10.6V reading, then record the DC current and map

the point into Fig.9.

(4) Repeat step (2) to (3) for each operating functions states of EUT.

Test equipment:

22

EUT

48VDC

A

V

VR

Figure 10 Off-hook DC resistance Test Configuration

Page 23: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

1. DC Power Supply.

2. DC Voltmeter.

3. DC Currentmeter.

4. Variable Resistor.

5.1.8 Sending level limitations of signals Requirement: All the output level s of internal signals transmitted from TE except the DTMF, which

will be sent to the public switched telephone network, should follow:

(1) The mean sending level in the frequency range 200 Hz to 4000 Hz over a one-minute

period shall not be greater than –10dBm when the TE interface is terminated with the

reference impedance 600 ohms. Output level shall be not adjustable to over this limit

range by the user. This requirement does not apply to DTMF signals.

(2) The mean sending level in the frequency range 4kHz to 8kHz over a one-minute period

shall not be greater than –20dBm when the TE interface is terminated with the

reference impedance 600 ohms.

(3) The mean sending level in the frequency range 8kHz to 12kHz over a one-minute

period shall not be greater than –40dBm when the TE interface is terminated with the

reference impedance 600 ohms.

(4) The mean sending level on the 4kHz bandwidth over the frequency range 12kHz to

40kHz over a one-minute period shall not be greater than –60dBm when the TE

interface is terminated with the reference impedance 600 ohms.

The leased line equipment have to meet this requirement.

Purpose: To verify that the voice band signal power and out-band noise from internal sources, other

than DTMF, which will be sent to public switched telephone network are properly limited.

Test method:1. Sending level limitations of signals Test Configuration as Fig.11.

2. Sending level limitations of signals test method:

(1) Place the EUT in the desired state and transmit a signal at maximum power.

(2) Set band-pass filter in 200Hz to 4000Hz,

23

EUT Loop Simulator

Bandpass Fielter

AC RMS Voltmeter

R

Figure 11 Sending level limitations of signals Test Configuration

Page 24: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(3) Measure and record the maximum averaged output signal power level in dBm.

(4) Band-pass filter to bandwidth 4kHz~8kHz/ 8kHz~12kHz…… /36kHz~40kHz.

(5) Measure and record the maximum averaged output signal power level in dBm for

each bandwidth.

(6) Repeat step (2) to step (5) for other internal output signals.

Test equipment:

1. Loop Simulator.

2. Bandpass Fielter.

3. AC RMS Voltmeter.

4. R : Reference Load of 600Ω

5.1.9 Transverse balance limitations

Requirement: TE are at on-hook, off-hook and tip-ring reverse states test, the minimum transverse

balance requirements as TABLE 2.

State Frequency Balance

Off-hook 200Hz≦f≦4000Hz 40dB

On-hook 200Hz≦f<1000Hz 60dB

On-hook 1000Hz≦f≦4000Hz 40dB

Technical description: The transverse balance coefficient is expressed as:

Transverse Balance m-1 = 20 log10 Vm / V1V1: is the longitudinal voltage produced across a longitudinal termination R2(500Ω) Vm

(0.775V): is the metallic voltage across the tip and ring interface of the input port when a

voltage at frequency band 200Hz to 4000 Hz is applied from a balance source with a

metallic impedance R0 (a corrective circuit) . The source voltage should be set such that Vm

= 0.775 Volts when a termination of R0 is substituted for TE.

Purpose: To ensure that the impedance unbalance about earth, expressed as output signal balance.

Test method:1. Test Configuration of Transverse balance limitations is as Fig.12.

2. Transverse balance limitation test method:

(1) Set the AC signal generator to 200 Hz.

(2) Connect R0 ( corrective circuit) to the test circuit Fig.12.

(3) Adjust the output voltage (Vm) of AC signal generator to the frequency selective

voltmeter, which acrosses R0 , to be setted at 10Hz bandwidth and 0.775V.

(4) Connect the frequency selective voltmeter to across the R2 and test Vl.

(5) Adjust variable capacitors C3 and C4 until the minimum signal level of Vl is

24

Page 25: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

obtained. (The result of this balance calibration must be at least 20dB greater than

the balance requirement for the EUT at the frequency.)

(6) Replace R0 with EUT and set EUT at on-hook.

(7) Measure the metallic reference voltage (Vm) and the transverse voltage (V1).

(8) Calculate the balance using the following formula :

Transverse Balance = 20 log Vm / V1

(9) Reverse the tip and ring connections of the EUT and repeat step (7) to (9). The

lesser of the two results is the transverse balance of the EUT at 200 Hz.

(10) Repeat step (2) to (10) for at least each of the following frequencies : 500, 1000,

2000, 3000 and 4000 Hz.

(11) Repeat step (1) to (10) for each operational states.

25

EUTLoop Simulator

AC Signal Generator

R1

C1

C2

R2

Vl

C3

C4

Vm

R0

Tip

Ring

T1

200 ~4000HzEarth metal

Earth

Figure 12 Test Configuration of Transverse balance limitations

300 kΩ

300Ω

300Ω

350Ω

Tip

Ring

Figure 13 Ro Corrective circuit

Page 26: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. AC Signal Generator.(ZOSC must be less or equal to 600Ω)

2. Loop Simulator.

3. R0:Corrective circuit as Figure 13.

4. R2:500Ωfor longitudinal resistor

5. T1:600Ω:600Ωsplit audio transformer

6. C1/C2:8mF±0.1%, 400V

7. C3/C4:100 ~ 500pF adjustable trimmer capacitors

8. R1:ZOSC+R1=600Ω

5.1.10 Return loss Requirement: For all operational states of TE at 0 KM simulative loop, the return loss of TE shall

meet the following requirement:

(1) The return loss shall be greater than an echo return loss (ERL) of 8dB over a frequency

band of 500 Hz to 2500 Hz when measured against to 600Ω.

(2) The return loss in the frequency band 200 Hz to 3200 Hz shall be greater than 6dB

when measured against to 600Ω.

Purpose: To assured by requiring the TE to present a impedance which allows proper functioning of

call control and to maintain stability in the PSTN.

Test method:1. Return loss Test Configuration as Fig.14.

2. Return loss test method:

(1) Set the EUT not to transmit any signals in the off-hook state.

(2) Put EUT in the off-hook state with the simulative loop be set at 0 KM.

(3) Vary the oscillator frequency from 200 Hz to 3200 Hz and record the minimum

value of return loss and frequency at which it occurs.

(4 )Set EUT to be at each off-hook operational states, then repeat step (3).

26

EUT Loop Simulator

Return Loss Tester

Oscillator

600ΩC

Page 27: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. Loop Simulator.

2. Return Loss Tester.

3. Oscillator.

4. C: 125μF±10%

5.1.11 Pulse dialingRequirement: TE shall send normal pulse when TE be dialed the specifications are as follows.

(1) Pulse speed:10±1 P.P.S.

(2) Make / Brake ratio:33±3%.

(3) Minimum Inter-digit time:600msec.

Pulse dialing trigger current: High = 18 mA, Low = 6mA.

Purpose: To assure effective pulse dialing of TE to PSTN.

Test method:1.Pulse dialing test configuration as Fig.15.

2. Pulse dialing test method:

(1) Set artificial line at 0 kM.

(2) Let TE send out Pulse Dial signals.

(3) Measure and record the DC Voltage of Pulse Dial signals.

(4) Set artificial line at 5 kM, repeat steps (2) to (3).

(5) Use the below fomula to calculate the average pulse speed, M/B ratio and minimum

27

Figure 14 Return loss Test Configuration

EUT Loop Simulator Storage

TypeOscilloscope

Adjustable artificial line

Figure 15 Pulse dialing test configuration

Page 28: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

interdigital time.

Make interval : begins≧T3 ends≦T4

Brake interval : begins≦T1 ends≧T2

Rise time : begins≧T2 ends≧T3

Fall time : begins≦T3 ends≦T1

Period : begins≧T4 ends≧T3

P.P.S. = 1 ÷Period.

Make / Brake ratio = Make interval ÷Period x 100%.

Minimum Interdigital Interval Pause:

The minimum pause time between any two pulse dial digits.

Test equipment:

1.Adjustable artificial line.

2.Loop Simulator.

3.Storage Type Oscilloscope.

5.1.12 Dual tone multiple frequency (DTMF) dialing5.1.12.1 Frequency combination

Requirement: The TE shall use DTMF signaling characters according to table 3. The tolerances on

the frequencies for the characters supported shall be ±1.5 % when artificial line at 0 kM and

5 kM.

Purpose: To verify whether the TE sends appropriate DTMF signal frequency combination to PSTN.

The allowed combinations are listed in the table3.

Table 3 : Frequency of DTMF signals

LGP(Hz) HGP (Hz)

1209 1336 1477 1633

28

T3

T2T1

T4

t (μs)

Idc

(mA)

T1 & T2 : Time at low trigger currentT3 & T4 : Time at high trigger current

Page 29: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

697 1 2 3 A

770 4 5 6 B

852 7 8 9 C

941 * 0 # D

Test method:1. Frequency combination test configuration as Fig.16.

2. Frequency combination test method:

(1) The artificial line set to 0 KM.

(2) Let the EUT transmit DTMF signal "1"to line.

(3) Measure and record the frequency of DTMF signals.

(4) Calculate the frequency deviation.

(5) Repeat for each of the other dialer number that the EUT is equipped to generate.

Repeat step (3) to (4).

(6) Set artificial line to 5 KM, Repeat step (2) to (5).

Test equipment:

1. Adjustable Artificial line.

2. Loop Simulator.

3. Spectrum Analyzer.

5.1.12.2 Signaling levelRequirement:

(1) The level of any tone in the DTMF high frequency group shall be –6 ±2dBm and the

level of any tone in the low frequency group shall be –8 ±2dBm when the TE interface

is terminated with the reference impedance 600 ohms and artificial line at 0 KM.

(2) The level of any tone in the DTMF high or low frequency group shall be ≧-21dBm

when the TE interface is terminated with the reference impedance 600 ohms and

29

Figure 16 Frequency combination test configuration

EUT Loop Simulator Spectrum

Analyzer

Adjustable artificial line

Page 30: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

artificial line at 5 KM.

Purpose: To check whether the TE sends appropriate DTMF signals.

Test method:1. Signaling level test configuration as Fig.17.

2. Signaling level test method:

(1) The artificial line set to 0 KM.

(2) Let the EUT transmit DTMF signal "1"to line.

(3) Measure and record the frequency of DTMF signals power level.

(4) Repeat for each of the other dialer number that the EUT is equipped to generate.

Repeat step (3).

(5) Set artificial line to 5 KM, Repeat step (2) to (4).

Test equipment:

1. Adjustable Artificial line.

2. Loop Simulator.

3. Spectrum Analyzer.

4. R: 600Ω Reference Load.

5.1.12.3 Signaling level differenceRequirement: During sending of any DTMF frequency combination, the level of the tone in the high

frequency group shall be 0 to 3 dB high than the level of the tone in the low frequency

group when artificial line at 0KM.

Purpose: To check whether the TE sends appropriate DTMF signals.

Test method:1. Signaling level difference test configuration as Fig.17.

2. Signaling level test method:

(1) The artificial line set to 0 KM.

(2) The EUT set in the off-hook stated, transmitting DTMF signal to line.

(3) Send dialer no. 1 signal, measure and record the frequency of DTMF signals power

30

R

Figure 17 Signaling level test configuration

EUT Loop Simulator

Spectrum Analyzer

Adjustable artificial line

Page 31: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

level.

(4) Calculate the signal level difference.

(5) Repeat for each of the other dialer number that the EUT is equipped to generate.

Repeat step (2) to (4).

Test equipment:

1. Adjustable Artificial line.

2. Loop Simulator.

3. Spectrum Analyzer.

5.1.12.4 Tone durationRequirement: The TE shall provide a setting whereby the duration for which any individual DTMF

tone combination sent is not less than 40 ms. This requirement applies only to a TE with an

automatic dialing function. It applies when the TE is in automatic dialing mode.

Purpose: To check whether the TE sends DTMF signals of the appropriate duration.

Test method:1. Tone duration test configuration as Fig.18.

2. Tone duration test method:

(1) The artificial line set to 0 KM.

(2) The EUT set in the off-hook stated and automatic dialing mode.

(3) Transmitting DTMF signal to line.

(4) Measure and record the all DTMF signal.

(5) Calculate and record the minimum tone duration.

(6) Adjust the artificial line to 5KM, Repeat step(2) to (5).

Test equipment:

1. Adjustable Artificial line.

2. Loop Simulator.

3. Storage Type Oscilloscope.

31

Figure 18 Tone duration test configuration

EUT Loop Simulator Storage

TypeOscilloscope

Adjustable artificial line

Page 32: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5.1.12.5 Pause durationRequirement: The TE shall provide a setting whereby the duration of the pause between any

individual DTMF tone combination is not less than 50 ms. This

requirement applies only to a TE with an automatic dialing function.Purpose: To check

whether the TE sends DTMF signals of the appropriate duration. This requirement applies

only to a TE with an automatic dialing function. It applies when the TE is in automatic

dialing mode.

Purpose: To check whether the TE sends DTMF signals of the appropriate duration.

Test method:1. Pause duration test configuration as Fig.18.

2. Pause duration test method:

(1) The artificial line set to 0 KM.

(2) The EUT set in the off-hook stated and automatic dialing mode.

(3) Transmitting DTMF signal to line.

(4) Measure and record the all DTMF signal.

(5) Calculate and record the minimum pause duration between any individual DTMF

signal.

(6) Adjust the artificial line to 0 KM and repeat step (2) to (5).

Test equipment:

1. Adjustable Artificial line.

2. Loop Simulator.

3. Storage Type Digital Oscilloscope.

5.1.13 Series equipment5.1.13.1 DC voltage drop of series equipment

Requirement: The DC voltage drop across the line connections shall be less than 3V with loop

current at 30mA and shall be less than 6V with loop current at 60mA.

Purpose: Series equipment which is connected and operates with another TE which is in the off-

hook condition, or which remain in the circuit at all times.

Test method:1. DC voltages drop of series equipment test configuration as Fig.19.

2. DC voltage drop of series equipment test method:

(1) Adjust variable resistor to give a loop current 30mA.

(2) Measure and record DC voltmeter V1.

(3) EUT set to be at on-hook state and connect to the configuration as fig.19.

(4) Measure and record DC voltmeter V2.

(5) Calculate DC voltage drop = V2 – V1.

(6) Adjust variable resistor to give a loop current 60mA and repeat step (2) to (5).

32

Page 33: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. Loop Simulator.

2. Currentmeter A.

3. DC Voltmeter V1 and V2.

4. VR:variable resistor

5.1.13.2 Insertion loss of series equipmentRequirement: The Insertion Loss of Series Equipment shall be less than 1.5 dB at frequency 1500

Hz when test with signal level of – 10dBV and reference load 600Ω.

Purpose: Series equipment which is connected and operates with another TE which is in the off-

hook condition, or which remain in the circuit at all times.

Test method:1. Insertion loss of series equipment test configuration as Fig.20.

2. Insertion loss of series equipment test method

(1) Set the frequency generator to 1500 Hz and adjust to an output level of –10dBV as

measured by the AC voltmeter across 600 ohms resistor.

(2) EUT set to on-hook state and connect EUT to the test circuit Fig.20.

(3) Measure and record the AC voltmeter V (dBV).

(4) Calculate insertion loss = –10dBV – V.

33

A

V

VRLoop Simulator

600Ω

Figure 19 DC voltages drop of series equipment test configuration

Loop Simulator

EUT

Signal GeneratorZs = 600

C: 2μF±10%

AC Voltmeter

EUT

Page 34: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. Signal Genterator.

2. Loop Simulator.

3. AC Voltmeter.

5.2 Handset function5.2.1 Transmission objective reference equivalent

5.2.1.1 Sending objective reference equivalent (According to OREM-A specification)Requirement: According to OREM-A specification, the sending objective reference equivalent shall

be +11~ -2 dB when measured with the artificial line set to 0KM and +11 ~ 0 dB when

measured with the artificial line set to 5KM.

Purpose: The TE have a objective reference equivalent compatible with other telephones connected

to the network so as to be capable of providing adequate speech performance.

Test method:1. Sending objective reference equivalent test configuration as Fig.21.

2. Sending objective reference equivalent test method:

(1) The Sending objective reference equivalent value shall be determined from

measured frequency response curve using the calculation method described in

OREM-A.

(2) The frequency response curve shall be measured over a range from at least 200Hz

to 5000Hz in accordance with OREM-A method.

(3) The handset setup on artificial ear and mouth accordance with OREM-A method.

(4) Artificial line set to 0KM.

(5) The nominal sound pressure level produced by the artificial mouth shall be

0.6dBPa.

(6) Measure and record the Sending objective reference equivalent value from objective

equivalent tester.

(7) Artificial line set to 5KM and Repeat step (5) to (6).

34

600Ω

Figure 20 Insertion loss of series equipment test configuration

C=2μF±10%

Page 35: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. Signal Generator.

2. Amplifier.

3. Artificial mouth.

4. Sound attenuation cover.

5. Telephone handset Speech network.

6. Artificial line.

7. Loop simulator.

8. dB meter : Objective reference equivalent meter or level recorder

5.2.1.2 Receiving objective reference equivalent (According to OREM-A specification)Requirement: According to OREM-A specification, the receiving objective reference equivalent

shall be 5 ~ -6 dB when measured with the artificial line set to 0KM and 5 ~ -4 dB when

measured with the artificial line set to 5Km.

If the telephone handset has adjustable receive gain, it shall be set to provide the nominal

output level.

Purpose: The TE have a objective reference equivalent compatible with other telephones connected

to the network so as to be capable of providing adequate speech performance.

Test method:1. Receiving objective reference equivalent test configuration as Fig.22.

2. Receiving objective reference equivalent test method:

(1) The receiving objective reference equivalent value shall be determined from

measured frequency response curve using the calculation method described in

OREM-A.

(2) The frequency response curve shall be measured over a range from at least 200Hz

to 5000Hz in accordance with OREM-A method.

(3) The handset setup on artificial ear and mouth accordance with OREM-A method.

35

Telephone handsetSpeech netw

ork

Artificial line

600 Ω

Loop simulator

TR

C=2μF±10%

RxSound attenuationcover

Tx

Artificial mouth

Amplifier

Signal Generator

Figure 21 Sending objective reference equivalent test configuration

dB m

eter

Page 36: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(4) Artificial line set to 0 KM.

(5) AC Signal generator be sent 285mv to artificial ear.

(6) Measure and record the receiving objective reference equivalent value from

objective equivalent meter.

(7) Artificial line set to 5KM and Repeat step (5).

Test equipment:

1. dB meter : Objective reference equivalent meter or level recorder

2. Amplifier.

3. Sound attenuation cover.

4. Artificial ear.

5. Telephone handset Speech network.

6. Artificial line.

7. Loop simulator.

8. AC signal generator.

5.2.2 Transmission characteristics frequency response5.2.2.1 Sending frequency response (According to OREM-A specification)

Requirement: According to OREM-A specification, the sending frequency response, as a function of

frequency, shall be not greater than the upper limit and not less than the lower limit shown

in figure 23 between 180 Hz to 5000 Hz. The 1000 Hz point on the frequency response

graph is to be placed at the 0dB level on Fig.23 when measured with the artificial line set to

0KM.

Purpose: The TE have a frequency response compatible with the network and with other telephones

connected to the network so as to be capable of providing adequate speech performance.

Test method:1. Sending frequency response test configuration as Fig.21.

2. Sending frequency response test method:

36

Telephone handsetSpeech netw

ork

Artificial line

AC

signalgenerator

Loop simulator

TR

C=2μF±10%

RxSound attenuationcover

Tx

Artificial ear

Amplifier

dBMeter

Figure 22 Receiving objective reference equivalent test configuration

C=2μF±10%

Page 37: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(1) The handset setup on artificial ear and mouth accordance with OREM-A method.

(2) Artificial line set to 0KM.

(3) The nominal sound pressure level produced by the artificial mouth shall be

0.6dBPa.

(4) The frequency response curve shall be measured in a range of 200 Hz to 5kHz in

according to OREM-A method.

(5) Measure and record the sending frequency response.

Test equipment:

1. Signal Generator.

2. Amplifier.

3. Artificial mouth

4. Sound attenuation cover

5. Telephone handset Speech network.

6. Artificial line.

7. Loop simulator.

8. dB meter: Objective reference equivalent metor (OREM) or level recorder.

5.2.2.2 Receiving frequency response (According to OREM-A specification)Requirement: According to OREM-A specification, the receiving frequency response, as a function

of frequency, shall be not greater than the upper limit and not less than the lower limit

shown in figure 24 between 240 Hz to 5000 Hz. The 1000 Hz point on the frequency

response graph is to be placed at the 0dB level on Fig.24 when measured with the artificial

line set to 0KM.

If the telephone handset has adjustable receive gain, and when the volume control is set to

nominal output level and maximum output level shall be meet this requirement.

Purpose: The TE have a frequency response compatible with the network and with other telephones

connected to the network so as to be capable of providing adequate speech performance.

Test method:1. Receiving frequency response test configuration as Fig.22.

2. Receiving frequency response test method:

(1) The handset setup on artificial ear and mouth accordance with OREM-A method.

(2) Artificial line set to 0KM.

37

2dB

12dB/Oct.

-14.5dB -11dB

-4dB12dB/Oct.

180 200 300 1000 2000 3000 4500 5000

12dB/Oct.

14dB

6dB/Oct.

18dB/Oct.

+20

+10

-10

0

-20

dB

Page 38: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Figure 23: Frequency Response of Sending

Figure 24: Frequency Response of Receiving

(3) AC Signal generator be sent 285mv to artificial ear.(4) The frequency response curve shall be measured in a range of 200 Hz to 5kHz in

accordance with OREM-A method.

(5) Measure and record the receiving frequency response.

Test equipment:

1. dB meter : Objective reference equivalent meter or level recorder

2. Amplifier.

3. Sound attenuation cover.

4. Artificial ear.

5. Telephone handset Speech network.

6. Artificial line.

7. Loop simulator.

8. dB meter: Objective reference equivalent meter (OREM) or level recorder.

38

Frequency (Hz)

2dB

18dB/Oct.-10dB

-2dB

240 500 1000 3000 Frequency (Hz) 4500 5000

2dB/Oct.

8.5dB5.5dB

18dB/Oct.

3dB/Oct.5dB/Oct.

3dB/Oct.24dB/Oct.

+20

+10

-10

0

-20

dB

Page 39: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5.2.3 Side-tone objective reference equivalent (According to OREM-A specification)Requirement: According to OREM-A specification, the side-tone objective reference equivalent

shall be ≧ 4 dB when measured with the artificial line set to 0KM and 5KM.

If the telephone handset has adjustable receive gain, it shall be set to provide the nominal

output level.

Purpose: The TE have a side-tone performance which neither disturbs the user nor interferes with

the speech levels to such an extent as to render the telephone incompatible with adequate

speech performance.

Test method:1. Side-tone objective reference equivalent test configuration as Fig.25.

2. Side-tone objective reference equivalent test method:

(1) The side-tone objective reference equivalent shall be measured according to

OREM-A method.

(2) The handset setup on artificial ear and mouth accordance with OREM-A method.

(3) The sound presure level of artificial mouth be produced 0.6dBa, frquency is from

200Hz to 5kHz

(4) Artificial line set to 0KM.

(5) Measure and record the side-tone objective reference equivalent value from

objective equivalent tester.

(6) Artificial line set to 5KM and Repeat step (4).

Test equipment:

1. Sinal generator.

2. Amplifier 2.

3. Artificial ear.

39

Telephone handsetSpeech netw

ork

Artificial line

600 ohms

Loop simulator

TR

C= 2μF±10%

C =2μF±10%

RxTx

Artificial mouth

Amplifier

SignalGenerator

Artificial ear

Amplifier

dB Meter

Figure 25 Side-tone objective reference equivalent test configuration

Page 40: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

4. Artificial mouth.

5. Telephone handset Speech network.

6. Artificial line.

7. Loop simulator.

8. dB meter: Objective reference equivalent meter (OREM) or level recorder.

5.2.4 Distortion5.2.4.1 Sending distortion (According to OREM-A specification)

Requirement: The total distortion in the electric output signal of transmitter to telephone line shall

not exceed 5% when measured with the artificial line set to 0KM.

Purpose: The TE not to produce distortion of the transmitted speech signals sufficient to interfere

with adequate speech performance.

Test method:1. Sending distortion test configuration as Fig.26.

2. Sending distortion test method:

(1) The handset setup on artificial ear and mouth accordance with OREM-A method.

(2) Artificial line set to 0KM.

(3) The artificial mouth sound pressure level shall be set to 0dBPa at 1000 Hz.

(4) Measure and record the sending distortion from distortion meter.

Test equipment:

1. Signal Generator.

2. Amplifier.

3. Artificial Ear.

4. Artificial mouth.

40

Telephone handsetSpeech netw

ork

600 ohms

Distortion

analyzer

Loop sim

ulator

TR

C = 2μF±10%

RxTx

Artificial mouth

Amplifier

Signal Generator

Figure 26 Sending distortion test configuration

Artificial line

Sound attenuationcover

C = 2μF±10%

Page 41: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5. Telephone handset Speech network.

6. Loop simulator

7. Distortion analyzer.

8. Artificial line

5.2.4.2 Receiving distortion (According to OREM-A specification)Requirement: The total distortion of receiver shall not exceed 7% when measured with the artificial

line set to 0KM.

If the telephone handset has adjustable receive gain, the total distortion of receiver shall not

exceed 10% when the volume control set to maximum output level.

Purpose: The TE not to produce distortion of the received speech signals sufficient to interfere with

adequate speech performance.

Test method:1. Receiving distortion test configuration as Fig.27.

2. Receiving distortion test method:

(1) The handset setup on artificial ear and mouth accordance with OREM-A method.

(2) Artificial line set to 0KM.

(3) The signal generator shall be set to –12dBv / 1000 Hz. Sine wave to EUT.

(4) Measure and record the receiving distortion from distortion meter.

(5) If the EUT has the function of increasing receiver gain, set the voice level in the

maximum and repeat step(4).

Test equipment:

1. Signal Generator.

2. Distortion meter

41

Sound attenuationcover

Telephone handsetSpeech netw

ork

AC

signal generator

Loop sim

ulator

TR

C =2μF±10%

Rx

Artificial Ear

Tx

Amplifier

Figure 27 Receiving distortion test configuration

Artificial line

Distortionmeter

C =2μF±10%

Page 42: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

3. Amplifier

4. Artificial era

5. Sound attenuation cover

6. Telephone handset speech network

7. Loop simulator

8. Artificial line

5.2.5 Receiver volume controlRequirement: If the telephone handset has adjustable receive gain, it shall be provide 3dB of gain

minimum and up to 6dB of gain maximum when measured in term of receiving objective

reference equivalent.

The 6dB of gain maximum may be exceed if the receiver volume is automatically restored

to its nominal value when the TE is returned to the on-hook state.

Purpose: To provide adequate speech receiving performance with other TE in connected through the

network.

Test method:1. Receiver volume control test configuration as Fig.22.

2. Receiver volume control test method:

(1) Artificial line set to 0KM.

(2) Receiver volume control set to minimum condition.

(3) Measure and record receiving objective reference equivalent. SORE1 according to

section 5.2.1.2.

(4) Receiver volume control adjusted to maximum condition and repeated step (3) then

get the SORE2.

(5) Calculate the receive gain = SORE2 – SORE1.

(6) Artificial line adjusted to 5KM and repeated step (2) to (5).

Test equipment:

1. Signal generator.

2. Amplifier.

3. Artificial ear.

4. Sound attenuation cover.

5. Telephone handset Speech network.

6. Artificial line.

7. Loop simulator.

8. dB meter: Objective reference equivalent meter (OREM) or level recorder.

5.2.6 Continuous sound pressure level of receiverRequirement: In the off-hook mode, rms acoustic pressure of receiver shall be less than 125 dB(A).

42

Page 43: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

If the telephone handset has adjustable receive gain, it shall be meet this requirement when

volume control set to maximum output level.

Purpose: To protect the user not hurt in hearing function.

Test method:1. Continuous sound pressure level of receiver test configuration as Fig.28.

2. Continuous sound pressure level of receiver test method:

(1) Set the sound level amplifier to provide “A” weighting and “slow” response.

(2) EUT set off-hook state and adjust variable resistor to give a loop current 30mA.

(3) Set the signal generator to give an output 4.0Vrms into an open circuit at a

frequency of 1000 Hz.

(4) Sweep the signal generator frequency from 180 Hz to 10 kHz.

(5) Measure and record the maximum acoustic output reading of receiver during the

frequency sweep.

Test equipment:

1. Sound level meter.

2. Artificaial ear.

3. Sound attenuation cover.

4. Telephone handset Speech network.

5. DC current meter.

6. Loop simulator

7. Signal generator.

5.3 Cordless Phone function in connecting to PSTN 5.3.1 Radio frequency requirement

The frequency below 80 MHz of the low power duplex cordless telephone shall be adapted by DGT

(as table 4 and table 5).

43

Telephone handsetSpeech netw

ork

Signal generator

Loop simulator

RT

Rx

C = 2μF±10%

Sound attenuationcover

Tx

Figure 28 Continuous sound pressure level of receiver test configuration

Artificial ear

Sound level meterA

Amplifier

C = 2μF±10%

Page 44: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Table 4 The operation frequency for 1.6 / 49MHz cordless phone

ChannelBase station frequency(MHz) Portable frequency(MHz)

Receive Transmission Transmission Receive

1 49.830 1.665 49.830 1.665

2 49.830 1.695 49.830 1.695

3 49.830 1.725 49.830 1.725

4 49.830 1.755 49.830 1.755

5 49.830 1.785 49.830 1.785

6 49.845 1.665 49.845 1.665

7 49.845 1.695 49.845 1.695

8 49.845 1.725 49.845 1.725

9 49.845 1.755 49.845 1.755

10 49.845 1.785 49.845 1.785

Table 5 The operation frequency for 46 / 49MHz cordless phone

Channel Portable(Transmission frequency) Base station(Transmission frequency)

1 49.670 MHz 46.610 MHz

2 49.845 MHz 46.630 MHz

3 49.860 MHz 46.670 MHz

4 49.770 MHz 46.710 MHz

5 49.875 MHz 46.730 MHz

6 49.830 MHz 46.770 MHz

7 49.890 MHz 46.830 MHz

8 49.930 MHz 46.870 MHz

9 49.990 MHz 46.930 MHz

10 49.970 MHz 46.970 MHz

5.3.2 Security code requirementThe security measures of probability unauthorised use should be less than 1 in 1000 for both base

and handset unit.

A declaration of conformance to this requirement should be provided by the supplier.

5.3.3 Transmitter requirement

5.3.3.1 Carrier frequencyRequirement: The carrier frequency is the ability of the transmitter to maintain an assigned carrier

44

Page 45: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

frequency ( The shift should be less than ±500Hz ).

Purpose: Test carrier frequency of transmitter to avoid interfering to other electrical equipments.

Test Method:

1. Carrier frequency test configuration as Fig.29.

2. Test method of measuring carrier frequency

(1) Operate the equipment in standby transmitter conditions.

(2) Record the carrier frequency of the transmitter as MCF.

(3) Calculate the frequency error by the following:

Frequency error = ACG – MCF.

MCF is the Measured Carrier Frequency in Hz.

ACF is the Assigned Carrier Frequency in Hz.

Figure 29 Carrier frequency test configuration

Test equipment:

1. Loop Simulator.

2. RF. Stanrdard Load for TE.

3. RF Counter.

5.3.3.2 Modulation sensitivity (Use for Base station only)Requirement: While input voice-band signal via loop simulator to TE, the signal level of standard

test modulation produced should be -12 ±3dB.(During testing, any microphone auto-

functions should be disable)

Purpose:The Modulation sensitivity is testing the Audio Input signal produce ±3KHz Deviation is

to modulate its sensitivity.

Test method:

1. Modulation sensitivity test configuration as Fig.30.

2. Test method of measuring Modulation sensitivity

(1) Apply a 1000Hz tone from the audio generator and adjust is output level until 60%

of rated system deviation is reached.

45

Loop Simulator

EUT RF Stanrdard Load for TE

RF Counter

Page 46: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(2) Record the audio generator output level as the Modulation sensitivity.

Test equipment:

1. Loop Simulator.

2. Audio Frequency Signal Generator.

3. Standard R.F. Load for TE.

4. Modulation Meter.

Figure 30 Modulation sensitivity test configuration

5.3.3.3 Audio distortionRequirement : The audio distortion is the voltage ratio, usually expressed as a percentage of the rms

value of the undesired signal of the transmitter's demodulated output tot the rms value of

the complete signal at the output of the transmitter's demodulator. (specification:< 5%).

Purpose: The Audio Input signal produce ±3KHz Deviation is to modulate its distortion in order to

assure its quality.

Test Method:

1. Audio distortion test configuration as Fig. 31.

2. Test method of measuring Audio distortion

(1) Set Audio Frequency at 1000Hz and adjust the output level to produce 60% of the

rated system deviation.

(2) Measure and record the audio distortion of the transmitter.

46

Audio FrequencySignal Generator

Modulation MeterBase Unit of TE RF Stanrdard Load for TE

Loop Simulator

Audio FrequencySignal Generator

Loop Simulator

EUT RF Stanrdard Load for TE

Modulation Meter

Distortion Meter

Page 47: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Figure 31 Audio distortion test configuration

Test equipment:

1. Loop Simulator.

2. Standard R.F. Load for TE.

3. Audio Frequency Signal Generator.

4. Modulation Meter.

5. Distortion Meter.

5.3.4 Receiver requirement5.3.4.1 Useable sensitivity

Requirement: The level of receiver input signal at a specified frequency with specified

modulation which will result in the standard SINAD at the output of the receiver.

Specification:<2.0μV.

Purpose:Testing the ability of Receiving signal for the transmitter.

Test method:

1. Usable sensitivity test configuration as Fig. 32.

Figure 32 Usable sensitivity test configuration

2. Test method of measuring Usable sensitivity

(1) Apply a standard input signal to the receiver input terminals.

(2) Adjust the output level of RF signal generator to let the receiver reach the standard

12 dB SINAD.

(3) Such RF signal level is useable sensitivity.

Test equipment:

1. RF Signal Generator.

2. AF-Load.

3. SINAD Meter.

5.3.4.2 Useable bandwidthRequirement: The useable Bandwidth is the input signal frequency displacement that reduces the

SINAD produced by a signal 6dB in the reference sensitivity of the standard 12 dB SINAD.

47

RF Signal Generator. AF- Load SINAD

METEREUT

Page 48: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Specification:Over±500 Hz.

Purpose:The Useable Bandwidth is testing shift frequency of Base Unit for receiving in order to

reduce the sensitivity of Bandwidth by 6 dB.

Test method:

1. Useable bandwidth test configuration as Fig. 33.

2. Test method of measuring Useable bandwidth

(1) Sending a standard input signal from RF signal generator to the input of receiver.

(2) Adjust RF signal generator and adjust its level to a value that produces 12 dB

SINAD reference sensitivity.

(3) The output level of RF signal generator is the level of sensitivity (Reference

Sensitivisty).

(4) Increase the signal level by 6dB.

(5) Increase the input signal frequency until the 12 dB SINAD reference sensitivity is

obtained Record this frequency as FM.

(6) SINAD reference sensitivity is abtained. Record this frequency ad FL.

(7) Calculate the frequency differences by the following:

GDIFF1= FH - nominal frequency.

GDIFF2= nominal frequency –FL.

The smaller of GDIFF1, or GDIFF2 is the useable Bandwidth.

Test equipment:

1. RF Signal Generator.

2. AF-Load.

3. Audio Frequency Distortion Meter.

Figure 33 Useable bandwidth test configuration

5.3.4.3 Audio distortionRequirement: The audio distortion is the voltage ratio, usually expressed as a percentage of the rms

value of the undesired signal to the rms value of the complete signal at the output of the

receiver. (Specification: < 5%).

Purpose: The Audio distortion is testing the distortion rate of Receiving signal in order to assure its

quality.

48

RF Signal Generator. EUT AF- Load SINAD

METER

Page 49: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test method:

1. Audio distortion test configuration as Fig. 34.

2. Test method of measuring Audio distortion

(1) RF Signal Generator apply a standard input signal to the receive input terminals.

(2) Measure and record the audio distortion readings.

Figure 34 Audio distortion test configuration

Test equipment:

1. RF Signal Generator.

2. AF-Load.

3. Distortion Meter.

5.3.4.4 Signal and noise ratioRequirement: The ratio of the rated output power to the residual output power in the absence of

modulation, measured at standard input signal level. Specification: > 40dB.

Purpose:The signal and Noise Ratio is testing the ratio between signal and noise of output power

in the absence of modulation circumstance.

Test method:

1. Signal and noise ratio test configuration as Fig. 35.

2. Test method of measuring Signal and noise ratio

(1) Apply a standard input signal to the receiver.

(2) Record the audio output level as V1.

(3) Remove the modulation in the RF Sigal Generator and record the audio output level

as V2.

(4) Calculated as signal to Noise Ratio=20log(V1/V2).

Figure 35 Signal and noise ratio test configuration

49

RF Signal Generator. EUT AF- Load Distortion

meter

RF Signal Generator. EUT AF- Load SINAD

METER

Page 50: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. RF-Signal Generator.

2. AF-Load.

3. SINAD Meter.

5.3.4.5 Adjacent channel rejectionRequirement: The adjacent channel rejection is the ratio of the level of an adjacent input signal

that causes the SINAD produced by a wanted signal 3 dB in excess of the reference

sensitivity to be reduced to the standard 12 dB SINAD to the reference sensitivity.

Specification:> 45dB.

Purpose:The Adjacent channel Rejection is the testing the Receiving of transmitter is to avoid to

the possibility of rejection from adjacent channel.

Test method:

1. Adjacent channel rejection test configuration as Fig. 36.

Figure 36 Adjacent channel rejection test configuration

2. Test method of measuring Adjacent channel rejection

(1) Power off the RF - Signal Generator B.

(2) RF - Signal Generator A send out the standard nput signal.

(3) Record the signal level P0 of EUT receiving reference sensitivity.

(4) Increase the input signal level 3dB.

(5) Power on the RF - Signal Generator B and apply an input signal modulated with

400 Hz at 60% of the maximum permissible frequency deviation to adjacent

channel.

(6) Adjust the signal level between one channel and its adjacent channel to reach the

50

AF- LoadEUTRF MixerRF Signal Generator A

SINAD METER

RF Signal Generator B

Page 51: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

reference sensitivity of receiver signal frequency, record their channel levels as P1

and P2.

(7) Calculate the Adjacent channel rejection:

The adjacent channel rejection high = P1 – P0.

The adjacent channel rejection low = P2 – P0.

Test equipment:

1. RF-Signal Generator 2.

2. RF Mixer.

3. SINAD Meter.

4. AF-Load.

5.3.4.6 Spurious response rejectionRequirement: Spurious response rejection is to keep the spurious response signal less than input

signal of receiver to avoid the spurious response. Specification:>35 dB.

Purpose:The Spurious response rejection is testing the receiving of TE is to avoid to the possibility

of Interference from unwanted signal in output port.

Test method:

1. Spurious response rejection test configuration as Fig. 37.

Figure 37 Spurious response rejection test configuration

51

RF Signal Generator A RF Mixer EUT AF- Load

SINAD METER

RF Signal Generator B

Page 52: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2. Test method of Spurious response rejection.

(1) Power off the RF - Signal Generator B.

(2) RF - Signal Generator A send out the standard nput signal.

(3) Record the signal level P0 of EUT receiving reference sensitivity.

(4) Increase the input signal level 3dB.

(5) Power on the RF - Signal Generator B and apply an input signal modulated with

400 Hz at 60% of the maximum permissible frequency deviation to adjacent

channel.

(6) Adjust the Spurious response frequency from receiver 1/2 middle frequency to

double receiver frequency (except the receiver frequency in ±100kHz), adjust the

Spurious response frequency to the maximum effect.

(7) Adjust the input signal level of Spurious respons to reach the reference sensitivity

and record the signal level of Spurious respons as P1.

(8) Calculate the Spurious respons rejection = P1 - P0

Test method:

1. RF-Signal Generator 2.

2. RF Mixer.

3. SINAD Meter.

4. AF-Load.

5.3.5 Radiated Field Intensity and Interference testRequirement: The radiated field intensity at 3 meter distance should be less than 10000μV / m. The

radiated field intensity at 3 meter distance of harmonied frequency and unwanted power

should be less than the requirements list in the table 6 below:

Purpose:To measure the radiated field intensity of harmonied frequency and unwanted power of

cordless telephone handset at transmission and receiving states to prevent the interference.

Test method: According to CNS 13438.

Test equipment: According to CNS 13438.

Table 6

Frequency

(MHz)

Maximum field intensity at 3 m

of harmonied frequency (μV/m)

Maximum field intensity at 3 m

of unwanted power (μV/m)

25 ~ 88 100 100

88 ~ 216 150 150

216 ~ 1000 200 200

52

Page 53: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5.4 Transmission characteristics of public automatic switching exchange5.4.1 General function

5.4.1.1 AC Power FailureRequirement:

1. When AC power is failed, PABX should keep at least on line for emergency dialing.

2. PABX system on restoration of ac power shall keep the services been set up till the time

just before the restoration of ac power.

3. The operation instruction or user manual should have instruction to ac power failed.

Purpose: To assure PBX can provide emergency telephone function when lost or recovery of AC

power supplied.

Test method:

1. Lost of AC power test configuration as Fig. 38.

2. Test method of AC Power Failure:

(1) Without supplying the AC power to TE.

(2) Set a on line communication to one PSTN line from extension line.Reference the

operation manual of vendor.

(3) Plug in the AC power.

(4) Check TE should keep the communication status of being set up.

Test equipment:

1. Loop Simulator.

5.4.1.2 Release of the PSTN LineRequirement: The release of PSTN line should be within 3 seconds after the extension line is

released or interrupted by console.

Purpose: To prevent call intrusion of PSTN lines.

Test method:

1. Release the PSTN Line test configuration as Fig. 39.

2. Test method of Release of the PSTN Line:

53

Loop Simulator EUT

Figure 38. AC power failure test configuration

AC power source

Page 54: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(1) Set the extension telephone on line and in communication to PSTN line.

(2) Set the extension telephone off line, the PSTN line will be released.

(3) Record the DC voltage and measure the timing from the extension line released to

PSTN line is released.

Test equipment:

1. Loop Simulator.

2. Storaged Type Oscilloscope.

3. Telephone.

5.4.2 Quiescent state noiseRequirement: The Quiescent state noise of each PSTN port should be less than 1.5mVp ( 36 dBrnc).

Purpose: To assure the quality of communication in PSTN.

Test method:

1. Quiescent state noise test configuration as Fig. 40.

2. Quiescent state noise Test method:

(1) Connecting 600Ω load and set a communication to PSTN line.

(2) Bandpass Filter set at frequency of 200 Hz to 4000 Hz.

(3) Measuring the peak noise level at PSTN port.

Note: Bandpass filter and voltameter can be substituded by spectrum analyzer.

Test equipment:

1. Loop Simulator.

2. Bandpass Filter.

3. AC Voltameter.

4. 600ΩReference Load.

54

Loop

Simulator

EUT Telephone set

Storaged Type OscilloscopeCH1 CH2

Ext . Por t

PSTN Por t

Figure 39 Release of the PSTN Line test configuration

Page 55: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

5.4.3 Transmission LossRequirement: Transmission loss of extension port to PSTN port should be less than 2 dB.

Purpose: To assure a good quality of through port communication.

Test method:

1. Transmission loss test configuration as Fig. 41.

2. Transmission loss Test method:

(1) Connecting 600Ω load and set extension port in communication with PSTN port.

(2) Set AC Signal Generator in connection to loop simulator.

(3) Adjust the level of 1000 Hz signal to get 0 dBV output at PSTN port.

(4) Measure the input signal level V1( in dBV) at the extension port.

55

Figure 40 Quiescent state noise test configuration

Loop Simulator

EUT

Ext. PortPSTN

Por t

AC Voltmeter

600ΩReference

LoadAC Signal Generator

C:2uF±10%

sw

Figure 41 Transmission loss test configuration

Loop

Simulator

EUT600Ω

Reference Load

Bandpass Filter

Ext . Por t

PSTN Por t

AC Voltmeter

Page 56: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

(5) Caculate the Transmission loss = 0 – V1.

(6) Set AC Signal Generator in connection to 600Ω load.

(7) Adjust the level of 1000 Hz signal to get 0 dBV output at extension port.

(8) Measure the input signal level V2( in dBV) at the PSTN port.

(9) Caculate the Transmission loss = 0 – V2.

(10) Select the higher value from the results of step (5) and (9).

(11) Selecting another port of extensions and PSTN lines, repeat step (1) to (10).

(12) The maximum value get from step (1) to (11) is the Transmission loss.

Test equipment:

1. AC Signal Generator.

2. Loop Simulator.

3. AC Voltmeter.

4. 600 Reference Load.

5.4.4 Cross talkRequirement: The crosstalk loss of 1 kHz signal should be more than 65 dB. For any TE with more

than two PSTN ports.

Purpose: To assure good quality of communication and not be interfered by another communication

lines in another PSTN port.

Test method:

1. Crosstalk test configuration as Fig. 42.

56

Spectrum Analyzer

AC Signal Generator

C:2uF±10%

Loop Simulator

600ΩReference

Load

Ext. Port 1

Page 57: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2. Crosstalk Test method:

(1) Set two connections with PSTN lines by two referenced 600Ω reference load.

(2) Set AC Signal Gerenator to connect with loop simulator.

(3) Adjust Signal Generator to get 1 kHz 0 dBV at PSTN port 2.

(4) PSTN port 1 and Ext. port 1 is no signals applied.

(5) Set spectrum analyzer frequency range at 200 Hz to 4000 Hz.

(6) Measuring the peak level Vp1 at PSTN port 1 and Ext. Port 1(dBv)

(7) Caculate crosstalk loss = 0 – Vp1.

(8) Set AC Signal Generator to connect with reference 600Ω load. repeat step (3) to (7).

(9) Selecting another port of extensions and PSTN lines of EUT, repeat step (1) to (8).

(10) The minimum value get from step (1) to (9) is the crosstalk loss.

Test equipment:

1. AC Signal Generator.

2. Loop Simulator 2.

3. Spectrum Analyzer.

4. 600Ω Reference Load 2.

5.5 Protocol requirementData Equipments using communication protocal should follow the recommandations of ITU-T.

A declaration of conformance to this requirement should be provided from the supplier.

5.6 Caller ID requirement5.6.1 FSK signals inspection standard

The test case and definition of test data is attached in Appendix I.5.6.1.1 AC / DC Termination

5.6.1.1.1DC TerminationRequirement: The controller is set to transmit a valid alerting signal to the TE to place in the signal

state. The current drawn by TE in the signal state is calculated from measurement of the

voltage across R1.

The current drawn by TE shall not exceed 0.5 mA.

Purpose: To make sure the loop current drawn by the caller ID equipment is not over the limits lead

to on line state of PSTN.

Test method:1. DC termination test configuration as Figure 43.

57

Loop Simulator

EUTSW

PSTN Por t 1

PSTN Por t 2

Ext. Port 2

600ΩReference

Load

Figure 42 Crosstalk test configuration

Page 58: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2. DC termination test method:

(1) Set the Simulated Signal Generator to send the alerting signal.

(2) Check the EUT is at signal state.

(3) Measure and record the DC voltage on the 1 kΩ resistor.

(4) Caculate the DC current = V / 1000.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator

3. Storage Type Oscilloscope.

5.6.1.1.2 AC TerminationRequirement:During the signaling state the TE shall present the following AC conditions: an

impedance not less than 8 kΩ, but with a phase angle not exceeding +5° over the frequency

range 200 Hz to 4 000 Hz; Compliance shall be by suppliers declaration.

Purpose: To make sure the input impedance can meet the requirement of PSTN.

Test method:1. AC termination test configuration as Figure 44.

58

C:2uF±

Simulated Signal

GeneratorLoop

SimulatedEUT1kΩ

Storage Type Oscilloscope

Figure 43 DC termination test configuration

AC Signal Generator

Loop Simulator EUT

C:2μF±10%

1kΩ

Storage Type OscilloscopeCH1 CH2

V2 V1

C:2μF±10%

Page 59: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2. AC termination test method:

(1) Set the EUT at signal state.

(2) Set the Simulated Signal Generator to send 200 Hz signal and adjust the level of

V1= 3Vrms at EUT side.

(3) Measure and record the AC voltage level of V2.

(4) Caculate the AC impedance Z = V1 / (V2 1000).

(5) Use Storage Type Oscilloscope to measure and record signal of V1 and V2.

(6) Caculate the phase angleθby:

θ= △t 50ms 360.

△ t : the difference of timeing V1 and V2.

(7) Repeat steps (3) to (6) by set the AC Signal Generator to send from 200 Hz to

4000Hz signal.

Test equipment:

1. AC Signal Generator.

2. Loop Simulator.

3. Storage Type Oscilloscope.

4. AC Voltage Meter V1, V2

5.6.1.2 Timing5.6.1.2.1 Alerting case

Requirement:The controller is set to transmit the test packet TP1 to the TEUT for each following test

cases.

Table 7: Timing requirements DT-ASTAS case Modem case Result

DT1 FSK1 Correct reception of FSK data

DT2 FSK1 Correct reception of FSK data

DT4 first ring pattern

starts 1 sec after end of

TAS single ring burst

FSK1 TEUT return to the idle state at the start

of first ring pattern

No message or error displayed

DT4 No data packet TEUT return to the idle state

DT4 FSK1 Correct reception of FSK data

DT5 FSK1 Correct reception of FSK data

Purpose: To make sure the correct function of caller ID equipment at each signal condition.

59

Figure 44 AC termination test configuration

Page 60: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test method:1. Alerting case test configuration as Figure 45.

2. Alerting case test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send signal of each TAS case and Modem

case as listed in table 6.1 and sending the message of test pattern TP1.

(3) After the EUT received the signals, check the result with Table 7.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.2.2 Start TimeRequirement: The TE shall enter the signaling state within 45ms from the end of the DT-AS.

Compliance shall be by supplier declaration.

Purpose:To make sure caller ID can receive FSK signal after DT-AS signal is received.

Test method:1. Start Time test configuration as Figure 45.

2. Start Time test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send DTAS(Dual tone alert signal) and after

45ms, send the FSK Data Signal.

(3) Check the FSK Data received by the EUT is correct as set in step (2).

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.2.3 End TimeRequirement:The TE shall leave the signaling state and revert to the idle state within 150ms from

when the caller display message has been completely signaled. Compliance shall be by

supplier declaration.

60

Simulated Signal

GeneratorLoop

SimulatorEUT

C:2μF±10%

Figure 45 Alerting case test configuration

Page 61: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Purpose:To make sure caller ID can go back to idle state after the FSK signal is received.

Test method:1. End Time test configuration as Figure 45.

2. End Time test method:

(1) Set the Simulated Signal Generator to send FSK1 Data Signals and after 150ms,

send the FSK2 Data Signal.

(2) Check FSK1 Data is only recevied by EUT.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.3 Signaling case5.6.1.3.1 Frequency, Level, Twist and Interference tolerance

Requirement:The controller is set to transmit the test packet TP1 to the EUT for table 8 each test

cases.

Purpose: To make sure caller ID can correctively receiving the FSK signals.

Test method:1. Frequency, Level, Twist and Interference tolerance test configuration as Figure 45.

2. Frequency, Level, Twist and Interference tolerance test method:

(1) Set the EUT is at idle state.

(2) Set the Simulated Signal Generator to send signal of each TAS case and Modem

case as listed in table 6.2 and sending the message of test pattern TP1.

(3) After the EUT received the signals, check the result with Table 8.

Table 8: Signaling requirementsTAS case Modem case Result

DT5 FSK1 Correct reception of FSK data

DT5 FSK2 Correct reception of FSK data

DT5 FSK3 Correct reception of FSK data

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.4 Packet case5.6.1.4.1 Channel seizure

Requirement: The controller is set to transmit the test message DT5:FSK1:TP1 to the EUT. Check

the message is correctly interpreted by the EUT.

61

Page 62: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Purpose: To make sure caller ID can correctively receiving the FSK signals.

Test method:1. Channel seizure test configuration as Figure 45.

2. Channel seizure test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send test data of DT5:FSK1:TP1.

(3) Check the data is received and displayed on EUT correctly.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.4.2 MarkRequirement:The controller is set to transmit the test message DT5:FSK1:TP1 to the EUT. Check

the message is correctly interpreted by the EUT.

Purpose: To make sure caller ID can correctively receiving the signals.

Test method:1. Mark test configuration as Figure 45.

2. Mark test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send test data of DT5:FSK1:TP1.

(4) Check the data is received and displayed on EUT correctly.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.4.3 Message typeRequirement:The controller is set to transmit the following test message to the EUT.

Check that each message is correctly interpreted by the EUT.

Table 9 Message TypeTest data Test case Result

DT5:FSK1:TP1 (call setup type message) Correct reception of FSK data

DT5:FSK1:TP2

(* Optional)

(message waiting indicator type message)

(test on/off alternate)

Correct reception of FSK data

DT5:FSK1:TP5 (non call setup type message) rejected or an error message

Note: the function of caller ID is optional for this item.

Purpose: To make sure caller ID can correctively receiving the FSK signals.

Test method:

62

Page 63: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

1. Message type test configuration as Figure 45.

2. Message type test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send smessages as listed in table 9.

(3) Check the results of EUT meet with Table 9.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.4.4 ChecksumRequirement: The controller is set to transmit the test message DT5:FSK1:TP6 to the EUT (incorrect

checksum). Check the message is correctly rejected or an error message displayed by the

EUT.

Purpose: To make sure caller ID can detect the error messages.

Test method:1. Checksum test configuration as Figure 45.

2. Checksum test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send test data of DT5:FSK1:TP6.

(3) Check the message is correctly rejected or an error message is displayed on the

EUT.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.1.5 Presentation layer messages caseRequirement:The test controller is set to transmit the test messages as listed in Table 10 to the EUT.

Check that each message is correctly interpreted by the EUT.

Purpose: To make sure caller ID can correctively receiving and displaying the FSK signals.

Test method:1. Presentation layer messages case test configuration as Figure 45.

2. Presentation layer messages case test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send smessages as listed in table 10.

(3) Check the results of EUT meet with Table 10.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

63

Page 64: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

64

Page 65: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Table 10: Presentation layer messagesTest data Test case Result

DT5:FSK1:TP7 Call type: ring back when free

(valid CLI message)

Message ignore

DT5:FSK1:TP8 Call type: absent (valid CLI

message)

Correct reception of FSK data

DT5:FSK1:TP9 Call type: voice (valid CLI

message)

Correct reception of FSK data

DT5:FSK1:TP10 Call type: voice (valid CLI

message)

Correct reception of FSK data

DT5:FSK1:TP11 Call type: message waiting(valid

message)

Message either ignore or

Correctly displayed

DT5:FSK1:TP13 Call type: voice (maximum

length valid CLI message)

Correct reception of FSK data

DT5:FSK1:TP14

(* Optional)

Call type: voice (valid CLI

message)

Correct reception of FSK data

DT5:FSK1:TP15

(* Optional)

Call type: voice (valid CLI

message)

Correct reception of FSK data

Note: the function of caller ID is optional for this item.

5.6.2 DTMF signaling Test criteriaThe following test cases and data is defined as Appendix II.

5.6.2.1 DC resistance in the NIT stateRequirement: In the NIT state the DC resistance between the line terminals shall be great than

90 kΩ.

Purpose: To make sure the impedance of caller ID is no interference to PSTN.

Test method:1. DC resistance in the NIT state test configuration as Figure 46.

65

Loop Simulator

EUTDC Current Meter

Page 66: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2. DC resistance in the NIT state test method:

(1) Set the EUT at NIT state.

(2) Measure and record the DC current Idc.

(3) Caculate the DC resistance = 48V / Idc.

Test equipment:

1. Loop Simulator.

2. DC Current Meter.

5.6.2.2 Leaving the NIT stateRequirement: When the number information transfer is completed, the TE shall leave the NIT state

and return to the quiescent condition with the ringing function.

Criteria for leaving the NIT state.

The transfer of number information is to be regarded as completed when one of the

following criteria are met:

1. The DTMF code "C" (end code) is received;

2. Ringing signal is received;

3. After receipt of a DTMF code the DTMF pause condition is present for more than 1 sec.

At least the criteria 2. And 3. Shall be supported by the TE, as these criteria will guarantee

in both normal and abnormal number information transfer procedures, that the NIT state is

left before or as soon as possible after the line comes into loop condition.

Purpose:To make sure caller ID can go back to idle state after the DTMF signal is received.

Test method:1. Leaving the NIT state test configuration as Figure 46.

2. Leaving the NIT state test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send test signals of DTMF1 data / End Code /

DTMF2 data.

(3) Check there is only DTMF1 data displayed on EUT.

(4) Set the Simulated Signal Generator to send test signals of DTMF1 data / Ringing

Signal / DTMF2 data.

(5) Check there is only DTMF1 data displayed on EUT.

(6) Set the Simulated Signal Generator to send test signals of DTMF1 data, stop to wait

for 1 second then send test signals of DTMF2 data.

(7) Check there is only DTMF1 data displayed on EUT.

Test equipment:

66

Figure 46 DC resistance in the NIT state test configuration

Page 67: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.2.3 DTMF signalingRequirement:The Tolerance of Frequencies, Timing, Level and differences features of DTMF codes

received between the line terminals is performed as following table 11.

The EUT receiver performance must be:

1. Receiving Level (High, Low Group):-3 to -24dBm.

2. Maximum level difference between two frequencies:5dB.

3. Frequency tolerance: within +/- 1.5%.

Purpose: To make sure capability of caller ID in receiving the DTMF signals.

Test method:1. DTMF signaling test configuration as Figure 45.

2. DTMF signaling test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send test signals as the limits in the

requirements of the Receiving Level, Maximum Level Difference between two

frequencies, Frequency Tolerance and the conditions and code listed in Table 11.

(3) Check the correct code is displayed on EUT.

TABLE 11 DTMF SIGNALSSignaling

Case

Code

Number

Result

DS1 TC2 Correct reception of number

DS2 TC2 Correct reception of number

DS3 TC2 Correct reception of number

DS4 TC2 Correct reception of number

DS5 TC2 Correct reception of number

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

5.6.2.4 DTMF Code / NumberRequirement:

Purpose: To make sure capability of caller ID in receiving the DTMF signals.

Test method:1. DTMF Code / Number test configuration as Figure 45.

67

Page 68: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

2. DTMF Code / Number test method:

(1) Set the EUT at idle state.

(2) Set the Simulated Signal Generator to send each Signaling Case and numbers as

listed in Table 12.

(3) Check the results of EUT meet with Table 12.

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator.

Table 12 DTMF Code/Number

5.6.2.5 Guarding against interference from the parallel equipmentRequirement:The Caller ID must guard against interference from the parallel equipment which is in

communication state.

Purpose: To make sure the Caller ID can guard against interference from the parallel Terminal

equipment which is in communication state.

Test method:1. Test configuration of guarding against interference from the parallel equipment is as

Figure 47.

2. Test method of guarding against interference from the parallel equipment:

(1) Set the EUT at idle state.

(2) Set parallel TE at Off Line state.

(3) Set the Simulated Signal Generator to send DTMF Signaling Case and Numbers.

(4) Check there shall be no error of codes displayed on EUT.

Signaling Case Code / Number Result

DS1 TC1 Correct reception of number

DS1 TC3 Call restriction

DS1 TC4 Call restriction

68

C:2μF±10% Loop Simulator

Parallel Terminal

Equipment

Page 69: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. Simulated Signal Generator.

2. Loop Simulator

3. Telephone set.

5.7 Automatic redialing function requirement5.7.1 Automatic dialing function requirement

5.7.1.1 Automatic repeated call attemptsRequirement:

1. If an automatic repeated dial without dial tone detection, the dial digit should not send

out within 2 seconds after on line.

2. The Automatic repeated call should be equal or no more than 2 attempts and should wait

more than or equal 1 minute after previor attemp.

3. The Automatic repeated call is no limits on attempts if the wait time of repeated call is

more than or equal 3 minutes after previor attemp.

4. For Emergency call, the repeated call attempt is no limited.

Purpose: To prevent the unreasonable wast to the using of PSTN source.

Test method:1. Automatic repeated call attempts test circuit as Figure 48.

2. Automatic repeated call attempts test method:

(1) Set loop simulator without sending dial tone and with sending busy tone after

received all digits of the call.

(2) Set TE to automatic repeated call attemp mode.

(3) Measure and record the AC and DC voltage on the line of the test.

(4) Caculate the time from loop start to first digit sent out.

(5) Caculate the time from TE goes off line to the next on line.

(6) Count the total attempts of repeated calls, not including the first call.

69

SimulatedSignal Generator

EUT

Figure 47 Test configuration of guarding against interference from the parallel equipment

Storage Type OscilloscopeCH1 CH2

Page 70: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Test equipment:

1. Loop Simulator.

2. Storage Type Oscilloscope.

5.7.1.2 Disconnection Time of automatic dialingRequirement:

1. Disconnection Time should be less than 20 seconds after busy tone send out.

2. Disconnection Time should be less than 2 minutes of no answering ring back signals.

Purpose:To prevent the unreasonable design of TE to waisting of PSTN source.

Test method:1. Disconnection Time of automatic dialing test as Figure 48.

2. Disconnection Time of automatic dialing test method:

(1) Loop simulator set to send busy tone after receiving the dial digits.

(2) TE set at automatic dial mode.

(3) Measuring the AC and DC voltage during all the test.

(4) Caculate the time when last digit dialled to release the line.

(5) Loop simulator set to send ring back tone after receiving the dial digits.

(6) Repaet step (2) to (4).

Test equipment:

1. Loop Simulator.

2. Storage Type Oscilloscope.

5.7.2 Automatic answer function requirementRequirement: TE with Automatic answer function should

(1) Seizure the calling line before receiving more than 3 cycle rings.

(2) Release the line before passing more than 3 seconds after the calling party released the

line at the other side.

Note: Item(2) is only suitable for the moden function TTE.

70

EUT

LoopSimulator 100Ω

Figure 48 Automatic repeated call attempts test circuit

Page 71: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Purpose: To prevent the unreasonable design of TE in waisting of PSTN source.

Test method:1. Automatic answering function test as Figure 49.

2. Automatic answering function test method:

(1) Set TE at on-hook mode.

(2) Using the calling party equipment diall to theTE.

(3) Loop simulator will send rings to TE.

(4) Count the number of rings received by TE till the line is seizured.

(5) Change calling side to turn to on-hook mode.

(6) Wait untill TE turn to on-hook mode.

(7) Record the timing and DC voltage in step (5) to (6).

(8) Caculate the time between calling party release the line and TE release the line.

Test equipment:

1. Calling Party Equipment.

2. Storage Type Oscilloscope.

3. Loop Simulator.

71

Figure 49 Automatic answering function test configuration

EUT

Storage Type OscilloscopeCH1 CH2

Calling Party

Equipment

LoopSimulator

Page 72: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Appendix I FSK Test status and Test DataTABLE I.1: DT-AS DETECTION

case DT1 DT2 DT4 DT5

frequency (Hz) 2120 and 2737 2140 and 2763 2140 and 2763 2130 and 2750

Level (dBV) -10 -10 -30 -20

Twist (dB) 6 6 6 0

Duration (msec) 90 110 110 100

Validity valid valid valid valid

TABLE I.2:FSK SIGNALING CONDITIONSparameter FSK1 FSK2 FSK3

mark frequency (Hz) (logic 1) 1300 1280.5 1319.5

space frequency (Hz) (logic 0) 2100 2068.5 2131.5

Mark level (dBV) (between A-wire, B-wire) -20 -36 -4

Space level (dBV) (between A-wire, B-wire) -20 -30 -10

Interfering signal power level (dB) none -25 -25

Table I.3:Data Link Packet StructureTest packet type TP1 TP2 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP13 TP14 TP15

Channel seize SZ2 SZ2 SZ2 SZ2 SZ2 SZ2 SZ2 SZ2 SZ2 SZ2 SZ2 SZ2 SZ2

Mark period MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1

Message type MT1 MT3 MT1 MT2 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1

Presentation

message

PM1 PM9 PM1 PM1 PM1 PM2 PM3 PM4 PM5 PM6 PM8 PM10 PM11

checksum CH1 CH1 CH1 CH1 CH2 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH1

72

Page 73: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

TABLE I.4: PRESENTATION LAYER TEST MESSAGESpresentation layer message type PM1 PM2 PM3 PM4 PM5 PM6 PM8 PM9 PM10 PM11

Message length (byte) ML1

(38)

ML1

(38)

ML2

(35)

ML3

(29)

ML3

(29)

ML4

(3)

ML6

(75)

ML7

(28)

ML3

(29)

ML3

(29)

Call type (3) CT1 CT2 - CT1 CT1 CT3 CT1 CT3 CT1 CT1

Time and date (10) TD1 TD1 TD1 TD1 TD1 - TD1 TD1 TD1 TD1

Calling line identity (12/18) CL1 CL1 CL1 - - - CL3 CL1 - -

Called line identity (12/11) CL2 CL2 CL2 CL2 CL2 - CL4 - CL2 CL2

Reason for absence of caller

number (3)

- - - RA1 RA2 - - - RA3 RA4

Visual indicator (3) - - - - - - - VI1 - -

First Called line identity (12) - - - - - - FC1 - - -

Network message system status

(3)

- - - - - - NS1 - - -

Type of forwarded call (3) - - - - - - FT1 - - -

Type of calling user (3) - - - - - - CS1 - - -

Redirection number(12) - - - - - - RN1 - - -

TABLE I.5: TEST DATATest Data Comments

SZ1 96 bits alternating mark & space

SZ2 300 bits alternating mark & space (start

with space, end with mark)

ETSI channel seizure period

MK1 80 bits continuous mark Network operator option

MK2 25 bits continuous mark Invalid mark period

MK3 180 bits continuous mark ETSI preferred value mark period

CH1 Correct checksum Calculated for each message

CH2 incorrect checksum Calculated for each message

MT1 1000 0000 80 H Call setup message type

MT2 1000 0001 81 H Non call setup message type

MT3 1000 0010 82 H Message waiting indicator message type

ML1 0010 0110 26 H 38 byte message

ML2 0010 0011 23 H 35 byte message

ML3 0001 1101 1D H 29 byte message

ML4 0000 0011 03 H 3 byte message

ML6 0100 1011 4B H 75 byte message

73

Page 74: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Table I.6: CT1 TestCT1 test Data Meaning

Parameter type 0001 0001 11 H Call type

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0000 0001 01 H Voice call

TABLE I.7: CT2 TESTCT2 test Data Meaning

Parameter type 0001 0001 11 H Call type

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0000 0010 02 H Ring back when free call

TABLE I.8: CT3 TESTCT3 test Data Meaning

Parameter type 0001 0001 11 H Call type

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 1000 0001 81 H Message waiting call

TABLE I.9: RA1 TESTRA1 test Data Meaning

Parameter type 0000 0100 04 H Reason for absence of caller number

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0100 1111 4F H Caller number unavailable

TABLE I.10: RA2 TESTRA2 test Data Meaning

Parameter type 0000 0100 04 H Reason for absence of caller number

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0101 0000 50 H Caller number withheld

TABLE I.11: RA3 TESTRA3 test Data Meaning

Parameter type 0000 0100 04 H Reason for absence of caller number

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0100 0011 43 H Coin phone call number unavailable

TABLE I.12: RA4 TEST

74

Page 75: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

RA4 test Data Meaning

Parameter type 0000 0100 04 H Reason for absence of caller number

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0100 1001 49 H International call number unavailable

75

Page 76: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

TABLE I.13: NM1 TESTNM1 test Data Meaning

Parameter type 0001 0011 13 H Network message system status

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0000 0011 03 H 3 message waiting

TABLE I.14: TD1 TESTTD1 test Data Meaning (14:30 13rd August)

Parameter type 0000 0001 01 H Time & date

Parameter length 0000 1000 08 H 8 byte parameter data

Parameter data 0011 0000 30 H 0

Parameter data 0011 1000 38 H 8

Parameter data 0011 0001 31 H 1

Parameter data 0011 0011 33 H 3

Parameter data 0011 0001 31 H 1

Parameter data 0011 0100 34 H 4

Parameter data 0011 0011 33 H 3

Parameter data 0011 0000 30 H 0

TABLE I.15: CL1 TESTCL1 test Data Meaning ( 0936275234 )

Parameter type 0000 0010 02 H Calling line directory number

Parameter length 0000 1010 0A H 10 byte parameter data

Parameter data 0011 0000 30 H 0

Parameter data 0011 1001 39 H 9

Parameter data 0011 0011 33 H 3

Parameter data 0011 0110 36 H 6

Parameter data 0011 0010 32 H 2

Parameter data 0011 0111 37 H 7

Parameter data 0011 0101 35 H 5

Parameter data 0011 0010 32 H 2

Parameter data 0011 0011 33 H 3

Parameter data 0011 0100 34 H 4

76

Page 77: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

TABLE I.16: CL2 TESTCL2 test Data Meaning ( 0223433657 )

Parameter type 0000 0011 03 H Called line directory number

Parameter length 0000 1010 0A H 10 byte parameter data

Parameter data 0011 0000 30 H 0

Parameter data 0011 0010 32 H 2

Parameter data 0011 0010 32 H 2

Parameter data 0011 0011 33 H 3

Parameter data 0011 0100 34 H 4

Parameter data 0011 0011 33 H 3

Parameter data 0011 0011 33 H 3

Parameter data 0011 0110 36 H 6

Parameter data 0011 0101 35 H 5

Parameter data 0011 0111 37 H 7

TABLE I.17: CL3 TESTCL3 test Data Meaning (maximum length number)

Parameter type 0000 0010 02 H Calling line directory number

Parameter length 0001 0010 10 H 16 byte parameter data

Parameter data 0011 0000 30 H 0

Parameter data 0011 0000 30 H 0

Parameter data 0011 0010 32 H 2

Parameter data 0011 0001 31 H 1

Parameter data 0011 0010 32 H 2

Parameter data 0011 0011 33 H 3

Parameter data 0011 0100 34 H 4

Parameter data 0011 0101 35 H 5

Parameter data 0011 0110 36 H 6

Parameter data 0011 0111 37 H 7

Parameter data 0011 0001 31 H 1

Parameter data 0011 0010 32 H 2

Parameter data 0011 0011 33 H 3

Parameter data 0011 0100 34 H 4

Parameter data 0011 0101 35 H 5

Parameter data 0011 0110 36 H 6

77

Page 78: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

TABLE I.18: CL4 TESTCL4 test Data Meaning (083625234)

Parameter type 0000 0011 03 H Called line directory number

Parameter length 0000 1001 09 H 09 byte parameter data

Parameter data 0011 0000 30 H 0

Parameter data 0011 1000 38 H 8

Parameter data 0011 0011 33 H 3

Parameter data 0011 0110 36 H 6

Parameter data 0011 0010 32 H 2

Parameter data 0011 0101 35 H 5

Parameter data 0011 0010 32 H 2

Parameter data 0011 0011 33 H 3

Parameter data 0011 0100 34 H 4

TABLE I.19: FC1 TESTFC1 test Data Meaning (0936275234)

Parameter type 0001 0010 12 H First Called line directory number

Parameter length 0000 1010 0A H 10 byte parameter data

Parameter data 0011 0000 30 H 0

Parameter data 0011 1001 39 H 9

Parameter data 0011 0011 33 H 3

Parameter data 0011 0110 36 H 6

Parameter data 0011 0010 32 H 2

Parameter data 0011 0111 37 H 7

Parameter data 0011 0101 35 H 5

Parameter data 0011 0010 32 H 2

Parameter data 0011 0011 33 H 3

Parameter data 0011 0100 34 H 4

78

Page 79: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

TABLE I.20: RN1 TESTRN1 test Data Meaning (0223433657)

Parameter type 0001 1010 1A H Redirection number

Parameter length 0000 1010 0A H 10 byte parameter data

Parameter data 0011 0000 30 H 0

Parameter data 0011 0010 32 H 2

Parameter data 0011 0010 32 H 2

Parameter data 0011 0011 33 H 3

Parameter data 0011 0100 34 H 4

Parameter data 0011 0011 33 H 3

Parameter data 0011 0011 33 H 3

Parameter data 0011 0110 36 H 6

Parameter data 0011 0101 35 H 5

Parameter data 0011 0111 37 H 7

TABLE I.21: VI1 TESTVI1 test Data Meaning

Parameter type 0000 1011 0B H Visual indicator

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 1111 1111 FF H Active on

TABLE I.22: NS1 TESTNS1 test Data Meaning

Parameter type 0001 0011 13 H Network message system status

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0000 0001 01 H 1 message or unspecified number of message

waiting

TABLE I.23: FT1 TESTFT1 test Data Meaning

Parameter type 0001 0101 15 H Type of forwarded call

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0000 0011 03 H unconditional forwarded call

TABLE I.24: CU1 TESTCU1 test Data Meaning

Parameter type 0001 0110 16 H Type of calling user

79

Page 80: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Parameter length 0000 0001 01 H 1 byte parameter data

Parameter data 0000 1010 0A H ordinary calling subscriber

80

Page 81: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Appendix II DTMF Test Status and Test DataTable.II.1 TEST CASEDTMF Signaling Conditions

CASE DS1 DS2 DS3 DS4 DS5

frequency variation 0% +1.5% 0% 0% +1.5%

Level (dBm) -13 -24 -3 -3 -24

Twist (Db) 0 5 5 5 5

Tone duration (msec) 70 90 90 50 50

interdigit pause (msec) 70 90 90 50 50

Interfering signal power level (dB) none -20 -20 -20 -20

Validity valid valid invalid valid valid

Test Code / NumberPARAMETER TC1 TC2 TC3 TC4

START CODE D D D D

CALLER NUMBER CN1 CN2 CN3 CN4

STOP CODE C C C C

TABLE II.2 TEST DATATest Data Nots

CN1 0021456789012345 International Paging

CN2 0223433657 Domestic Paging

CN2 0 International Limited Paging

CN4 0 Domestic Limited Paging

81

Page 82: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Appendix III Recommentations of Test Environment and Test EquipmentsTest environmentAll tests shall be performed under non-condensing conditions at:

an ambient temperature in the range from +15℃ to +35℃ a relative humidity in the range from 45% to 85%

an air pressure in the range 86 kPa to 106 kPa

For TE which is not designed to operate over the entire specified environment range, all tests shall be performed at any

point within the operational range specified by the supplier.

Power state

Test shall be carried out with the TE power on, under normal operating conditions defined by the supplier.

For TE which is directly powered (either wholly or parity)from the mains supply, all tests shall be carried out within

±5% of the rated voltage of the TE. If the equipment is powered by other means and those means are not supplied as

part of the apparatus (e.g. batteries, DC supplies and stabilized AC supplies) all tests shall be carried out within the

power supply limit declared by the supplier. If the power supply is AC, the test shall be conducted within ±4% of the

rated frequency.

Measurements to earth

Where a measurement to earth id defined and the supplier’s instructions state that a connection to earth is intended,

then all the following points, as applicable, shall be connected to the earth point:

a point in the TE which is intended to be connected to mains earth (in practice this might be carried out by

connecting to the earth of the mains source which is supply the TE)

connector points which are intended to be connected to earth during the normal operation of the TE.

Where the TE has no facility for connection to earth, for example by one of the above points, then the test does not

apply.

82

Page 83: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Suggested Equipment List1. AC current meter : range > 200mA, minimum frequency range 15 Hz to 68 Hz, accuracy +3% Full Scale(fsc).

2. AC voltage source : output 0 Vrms to 1500 Vrms at 60 Hz, isolated with 10 mA minimum current sourcing

capability.

3. AC volt meter : input impedance > 1 megaohm, range 0 V to 150 Vrms, minimum frequency range 15.3 Hz to 68

Hz, accuracy +3%.

4. Bandpass filter : input impedance > 100 kilohms, bandpass 200 Hz to 4000 Hz, cutoff frequencies at the 3dB

attenuation points, out of band roll-off >24dB per octave.

5. Bandpass filter : input impedance >100 kilohms, bandpass 4000 Hz to 48kHz, cutoff frequencies at the 3 dB

attenuation points, out-of-band roll-off >24 dB per octave.

6. Current source: Maximum Output : 1 A.

7. DC current meter : range 0 mA to 200 mA, accuracy +3% fsc.

8. DC current meter : range 20μA, accuracy +3% fsc.

9. DC power supply : output level 0 V to 200 V, maximum output current >1A.

10. DC Voltmeter : input impedance >1 megohm, range 0 V to 200 V, accuracy +3% fsc.

11. Digital sampling storage oscilloscope : input impedance >1 megohm, frequency range >6 MHz, input sensitivity

of 3 mV or better, trigger sensitivity of at least 10 mV or better, accuracy +3%.

12. Digital sampling storage oscilloscope : input impedance >1 megohm, frequency range >100 MHz, input

sensitivity of 3 mV or better, trigger sensitivity of at least 10 mV or better, accuracy +3%.

13. DS1 transmission test set capable of sending a programmed bit stream.

14. Frequency counter : input impedance >1 megohm, frequency range from 100 Hz to at least 10 MHz, input

sensitivity of 10 mV or better, resolution <1 Hz, accuracy +3 Hz.

15. Frequency generator : output impedance 600 ohms, frequency range up to at least 4 kHz, maximum output level

>40 dBm, sinusoidal output.

16. Frequency selective voltmeter : frequency range from 2000 Hz to at least 4 kHz, input impedance >10 kilohms,

balanced input, range 1μV to 1 V, accuracy +3%, bandwidth 10 Hz and 30 Hz.

17. Means to record oscilloscope and spectrum analyzer traces.

18. Multiplexer/demultiplexer for 1.544 Mb/s PCM systems with zero level encoder/decoder, may consist of one or

more descrete units which perform this function.

19. Ringing Amplifier : Output level to at least 150 V rms superimposed on 56.5 V dc, frequency range 15.3 Hz to 68

Hz.

20. Spectrum analyzer : input impedance >1 megohm, frequency range from 10 Hz to at least 6 MHz, sensitivity of

0.1 mV or better, resolution <1 Hz, accuracy +2 dB.

21. Summing Network : input and output impedances 600 ohms.

22. Type A Surge generator : output 800 V peak, having 10μs maximum front time to crest and a 560μs minimum

decay time to half crest; with a peak current capability of 100 A minimum; and the ability to generate these pulses

in both positive and negative polarity.

23. Type A Surge generator : output 1500 V peak, having 10μs maximum front time to crest and a 160μs minimum

83

Page 84: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

decay time to half crest; with a peak current capability of 200 A minimum; and the ability to generate these pulses

in both positive and negative polarity.

24. Surge generator : output 2500 V peak, having 2μs maximum front time to crest and a 10μs minimum decay time

to half crest; a peak current capability of 1000 A minimum; and the ability to generate these pulses in both

positive and negative polarity; means for preventing the surge voltage from entering the feeding ac power

network.

25. Tracking generator : output impedance <600 ohms, frequency range from 10 Hz to at least 6 MHz, maximum

output level 0 dBm.

26. True rms ac voltmeter : input impedance >100 kilohms, frequency range from 10 Hz to at least 4 kHz, averaging

times of 0.1 s and 3.0 s, input sensitivity of 0.7 mV or better, peak indicating optional, accuracy +3%.

27. True rms ac voltmeter : input impedance >100 kilohms, frequency range from 1 kHz to at least 1 MHz, input

sensitivity of 35 mV or better ( referenced to 135 ohms ), peak voltage and rms voltage indicating, accuracy +3%.

28. True rms current meter : range 0 mA to 500 mA, accuracy +3% fsc, measures dc and rms current simultaneously (

e.g., a thermocouple type meter without dc blocking condenser at the input ).

29. Voltage source : output 120 V rms at 60 Hz, output current 10 mA.

30. Voltage source : output 300 V rms at 60 Hz, output current 10 mA.

31. White noise generator : output impedance 600 ohms, frequency range from 200 Hz to at least 4 kHz, maximum

output level of at least 10 dBm.

32. Zero level encoder/decoder : Equipment or companion terminal equipment capable of encoding and decoding

analog signals with zero loss in the bit format appropriate for the digital interface under test.

33. Feeding Bridge with 2μF±10% blocking capacitors and inductors of 2 Henries minimum for analog telephone.

34. Test loops : Any real loop or commercially available artificial loop equivalent to 0 km and 5 km 0.4mm #26 AWG

non-loaded cable.

35. Artificial ear : The artificial ear shall be the IEC coupler for supra-aural earphones as described in ANSI S3.7-

1973, Method for Coupler Calibration of Earphones. The pressure response of the microphone shall be used in

determining the sound pressure generated in the coupler by the receiver.

36. Standard microphone : A type ( 0.5 in ) laboratory standard pressure microphone according to ANSI S1.12-

1967[3] for measuring the sound pressure generated in the artificial ear. The sensitivity of the microphone should

be constant over the frequency range of 100 Hz to 5000 Hz.

37. Microphone amplifier : The frequency response characteristics of this amplifier should be constant over the

frequency range from 100 Hz to 5000 Hz. The input-output characteristics of this amplifier must be linear for the

range of sound pressure levels to be measured.

38. 100 Hz to 5000 Hz sine-wave frequency generator, with a sweep speed slow enough not to reduce the accuracy of

the measurement. The generator level should be constant over a frequency range of 100 Hz to 5000 Hz.

39. AC Voltmeter having ranges from 0.01V to 10V (full scale reading ), with an input impedance greater than 100 k

ohm for bridging measurements or equal to 900 ohm for terminated measurements.

40. Simulative transmission wire is # 26AWG 5km(0.4mm, 280Ω/km, 50nf/km)

84

Page 85: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

85

Page 86: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Loop Simulator (Feeding Bridge):

Reference loading impedance: 600Ω

86

600Ω

L≧2H, DCR=200Ω±10%

*VR: 3kΩ, 8Wvariable Resistor

48Vdc

L≧2H, DCR=200Ω±10%

Tip

Ring

C=2μF±10%

C=2μF±10%

Page 87: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

Simulative transmission wire:1. 0.4mm #26AWG transmission wire : 0 KM simulative circuit

R : 70ΩC : 50nF

2. 0.4mm #26AWG transmission wire : 2 KM simulative circuit (2 pieces of 1 Km simulative circuit be serial)

R : 70ΩC : 50nF

3. 0.4mm #26AWG transmission wire : 5 KM simulative circuit (5 pieces of 1 Km simulative circuit be serial)

R : 70ΩC : 50nF

87

R

C

R

R

R

R

C

R

R

R

R

C

R

R

R

R

C

R

R

R

R

C

R

R

R

R R

R R

C

R R

R R

C

R R

R R

C

Page 88: PSTN01 Technical Specificaitons for Terminal · Web viewTechnical Specificaitons for Terminal Equipment for Connection to Public Switched Telephone Network CONTENTS Catalog 2 1、Scope

Telecom Technical Specifications

PSTN01November 17,2003

Revise July 20,2007

88