PSF in 181,182Ta and the emergence of the scissors...

30
PSF in 181,182 Ta and the emergence of the scissors resonance Speaker: Christiaan Brits Supervisors: Dr. M. Wiedeking Prof. P. Papka Dr. B. V. Khewsa

Transcript of PSF in 181,182Ta and the emergence of the scissors...

  • PSF in 181,182Ta and the emergence of the scissors resonance Speaker: Christiaan Brits Supervisors: Dr. M. Wiedeking Prof. P. Papka Dr. B. V. Khewsa

  • Introduction •  The scissors resonance (SR) is the oscillation of

    the proton and neutron distribution against each other like the blades of a scissor.

    •  Resonances can be observed through the photon strength function (PSF).

    •  The PSF characterizes the average electromagnetic properties of excited nuclei.

    •  The PSF and nuclear level density (NLD) can be simultaneously extracted using the Oslo method.

    •  The Oslo method uses particle-γ coincidence data to simultaneously extract the PSF and NLD.

    •  A 181Ta(d,x) and 181Ta(3He, 3He’) 181Ta reaction was used to investigate the SR of 181,182Ta.

  • General Motivation •  The PSF and NLD is one of the critical input parameters for

    calculating reaction cross sections through reaction codes like Talys.

    •  The PSF also plays a central role in elemental formation during galactic nucleosynthesis.

    •  Calculations have shown that relatively small changes to the overall shape of the PSF such as pygmy resonances can have an order of magnitude effect on the rate of elemental formation [1].

    •  K.L Malatji will discuss the astrophysical application in detail tomorrow afternoon.

    [1] S. Goriely, Phys. Lett. B 436, 10 (1998).

  • Tantalum motivation

    [1]M.Igashiraetal.Nucl.Phys.A,457,301–316(1986)[2]A.Wolpertetal.Phys.Rev.C,58,765(1998)

    Anenhancementcanbeseenbetweenenergies1-3MeVforPr,Tb,HoandLu,butnoenhancementcanbeseeninTaorAuinthisenergyregion[1].InaNRF[2]aweakSRwasfoundinaNRFexperiment,thisbringsquesZonsontheevoluZonoftheSR.

  • SiRi particle telescope and CACTUS array

    SiRiparZcletelescopecoversasca[eringanglebetween126°-140°.EnergyresoluZonof130keVasmeasuredfromelasZcpeak.

    TheCACTUSarrayhasatotalefficiencyof14.1%andenergyresoluZonof7%FWHMfora1332keVtransiZon.

  • The Oslo method

    By using the Oslo method the NLD and PSF can be simultaneously extracted from particle-gamma data. A detailed look at this method can be found in references [1,2]. The main steps in this method are: •  Calculate and remove the Compton background, single and

    double escape peaks and effects from pair production. •  Extract the first generation γ-rays from the Compton subtracted

    matrix. •  Simultaneous extraction of the NLD and PSF from the first

    generation matrix. •  Normalization of the NLD and PSF.

    [1]A.Schilleretal.,Nucl.Instrum.MethodsPhys.Rev.A,447,498(2000)[2]A.C.Larsenetal.,Phys.Rev.C,83,83,034315(2011)

  • NLD and PSF of 182Ta

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray

    str

    engt

    h fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

  • Resonances of 181Ta

    Thepygmyat7MeVisduetotheworkdoneby[1].Thebluelineisduetothepygmyandspin-flipresonances,theblackandpurplelinesareduetothesplitGEDRandthegreenline[2]wasaddedsothatthetotalfitmatchedexperimentalresults.

    [1]A.Makinagaetal.Phys.Rev.C,90,044301(2014)[2]M.Igashiraetal.Nucl.Phys.A,457,301–316(1986)

    (MeV)γ

    -ray energy Eγ0 2 4 6 8 10 12 14 16

    )-3

    -ray

    str

    engt

    h fu

    nctio

    n (M

    eVγ -910

    -810

    -710

    -610

    -510 Ta, present experiment181,x), 2001 Belyaev γTa(181

    '), 2014 Makinaga γ,γTa(181

    Total fit

  • Scissors resonance

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    12.5MeV181Ta(d,d’)B(M1)=

    181Ta(3He,3He’)B(M1)=

    15MeV181Ta(d,d’)B(M1)=

    B(M1) = 3.02±1.47µN2

    B(M1) = 3.78± 0.5µN2

    B(M1) = 3.17±1.75µN2

  • Scissors resonance

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18112.5 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    Ta(d,d')18115 MeV

    1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

    -10

    0

    10

    20

    30

    -910×

    He')3He,3Ta(181

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    -ray energy (MeV)γ0 1 2 3 4 5 6

    )-3

    -ray s

    treng

    th fu

    nctio

    n (M

    eVγ

    -810

    -710

    upper error band observed lower error band

    Ta182

    FromtheSRcentroidsa13°γdeformaZoncanbecalculated[1].

    [1]E.LippariniandS.Stringari,Phys.Rep.175,103(1989)

  • Discussion Theresultsaresurprising.182TadoesnothaveavisibleSR,181TahowevermayhaveaweakSR.ThisissupportedbyNRFexperimentfindingsinRef[1].181,182TashouldalsohaveastrongSRconsideringonlyδ≈0.265for181Taandδ≈0.255for182Ta[2].TheacZnideshaveaSRstrengthof10[3-6]andtherare-earthshaveSRstrengthsof6-9[7,8].ThesumrulepredicZon[9]predictedaSRstrengthof8.3for181Ta. [1]C.T.Angell,R.HajimaandT.Shizuma,Phys.Rev.Le[117142501(2016)[2]S.HilaireandM.Girod,AIPconferenceproceedings1012,359(2008)

    [3]M.Gu[ormsenetal.,Phys.Rev.Le[.109,162503(2012).[4]M.Gu[ormsenetal.,Phys.Rev.C89,014302(2014).[5]T.G.Tornyietal.,Phys.Rev.C89,044323(2014).[6]T.Laplaceetal.,Phys.Rev.C93,014323(2016).[7]A.Schilleretal.,Phys.Le[.B633,225(2006).[8]H.T.Nyhusetal.,Phys.Rev.C81,024325(2010).[9]E.LippariniandS.Stringari,Phys.Rep.175,103(1989)

  • Discussion TheSRweaknesscanbeexplainedbya13°γdeformaZon[1].PotenZalenergysurfacecalculaZonsusingthecrankingNilssonmodel[2]plusshellcorrecZoncalculatedatheoreZcalγdeformaZon.TheresultssupportnucleartriaxialityasthelikelymechanismofSRsplimngin181Ta.AnotherpossibleexplanaZonfortheSRsplimngwasproposedfrommicroscopiccalculaZons[3].InthesecalculaZonstheSRmodeofprotonsoscillaZngagainstneutronsisaccompaniedbylower-energynuclearspinscissorsmodewherespin-upnucleonsoscillateagainstspin-downnucleons.[1]E.LippariniandS.Stringari,Phys.Rep.175,103(1989)[2]S.Frauendorn,Nucl.Phys.A667,115(2000)[3]E.BalbutsevandI.Molodtsova,Phys.Rev.C88,014306(2013).

  • The PSF and NLD of 181,182Ta was extracted using the Oslo method. In 181Ta the average SR strength is 3.2±0.78 , only 40% of the expected SR strength. This is similar to the latest NRF result where only 30% of the expected strength was found. No observable SR was found in 182Ta, possibly due the extra unpaired nucleon spreading the strength apart. The SR weakness could be due to the 13° γ deformation of Ta. More work needs to be done on γ-soft, odd-even, and odd-odd nuclei. In light of the proposed nuclear spin scissors mode [1], theoretical guidance on possible observables and specific experimental signatures for this mode are highly desirable.

    Conclusion

  • Wiedeking M., 2 Kheswa B.V., 2 Bello Garrote F.L., 4 Bleuel D.L, 3 Giacoppo F., 4 Guttormsen M., 4 Gőrgen A., 4 Hadynska-Klek K., 4 Hagen T.W., 4 Klintefjord M., 4 Larsen A.C., 4 Nyhus H.T., 4 Papka P., 1,2 Renstrøm T., 4 Rose S., 4 Sahin E., 4 Siem S., 4 Tveten G.M., 4 Zeiser F., 4 Ingeberg V.W. 4 1.  Department of Physics, University of Stellenbosch 2.  Department of Nuclear Physics, iThemba LABS 3.  Lawrence Livermore National Laboratory 4.  University of Oslo, Norway

    Collaborators

  • Dankie Thank you Enkosi

  • NLD and PSF

    [1]A.Schilleretal.,Nucl.Instrum.MethodsPhys.Res.A447,498(2000).

    •  NLDistheamountoflevelsaccessibleatagivenexcitaZonenergy,spinandparity.

    •  Theamountofavailablequasi-parZclesandavailablesingle-parZcleorbitalsinthevicinityoftheFermi-levelisthebasicblocksthatdeterminestheNLD

    •  ThePSFisadistribuZonofaveragereducedwidthsfortransiZonsofacertainmulZpoletypeXLbetweentwodifferentstatesofenergies.

    •  ThePSFisgivenintermsoftransiZonwidthsandresonancespacingby[1]:

  • Discussion

    Only33-50%M1strengthfortheodd-massnucleicouldbedetectedintheenergyrange2.5-3.7MeVinsomeexperiments,duetolargefragmentaZon.Groundstatewidthdecaysfor163Dyfromtwoexperimentsareshownhere.

  • Discussion

    ThesensiZvityofthelatestexperimentwasgreatlyimprovedandanumberofpreviouslyundetectabletransiZonswerefound.TheM1strengthofthelatestexperimentcomparesbe[ertocloselyingeven-massM1strengthandaccountsforthelostM1strengthinodd-massnuclei[1].

    [1]P.vonNeumann-Cosel,K.Heyde,andA.Richter.Rev.Mod.Phys.,82,2365(2010)

  • CACTUS array calibration BypumngagateonindividualparZclepeaksintheexcitaZonenergyspectrumthe𝛾-rayscanbecalibrated.TheexcitaZonenergyspectrumof29SiwasUsed.

    1273keV

    2028keV

    3067keV

    3623keV

    4079keV

    4895,4933keV

    3623keV1595keV

    2028keV

    2028keV

  • Data analysis

    TheparZcle-𝛾coincidencematricesof182Taand181Taareshownhere.Thereissome12CcontaminantwhichundergoesthereacZon12C(d,p)13C.Theresultant13Cemits𝛾 -raysofenergies3854keVand3089keV.

    182Ta 181Ta

  • Statistical and systematic errors

    AtheoreZcalfit(line)totheexperimentaldatafortheχ2minimizaZoniscomparedtotheexperimentaldata(points)

  • Motivation ObservedsolarabundancedistribuZon.SolarabundancecalculaZonwithoutthepygmyresonance,theA=90-110nucleiareproducedmoreaccurately.SolarabundancecalculaZonwiththeinclusionofthepygmyresonance,theA=130nucleiareproducedmoreaccurately.

    M.ThoennessenadoptedfromS.Goriely,Phys.Le[.B436,10(1998).

  • The First Generation method

    A.C.Larsen,PhDthesis,UniversityofOslo,2008.

    ThedistribuZonofprimary𝛾-rayscontainsinformaZonontheNLDandPSF.Highlyexcitednucleiprimarilydecaythroughacascadeof𝛾-rays.

    𝐸↓𝛾 

    𝐸↓𝑥 

  • Discussion

    Recently,datafromOslohaveshownthatthescissorsresonanceisstronglyobservableintheacZnideregion.Unlikeintherare-earthregion,thescissorsresonanceisnotfragmentedforodd-odd[1],even-odd[2]oreven-even[2]nucleiintheacZnideregion,butareconsistentlylocalized,althoughsomeexhibitanunexplaineddouble-humpedstructure[2].

    [1]M.Gu[ormsenetal.Phys.Rev.Le[.,109,162503(2012)[2]T.G.Tornyietal.Phys.Rev.C,89,044323(2014)

  • Comparing strength functions

    SimilarPSFfromdifferentexcitaZonregionsvalidatesBrink’shypothesis.

    CurrentPSFcomparedto181Ta(3He,3He’)181Ta[1]data.

    [1]K.L.Malatji.Master’sthesis,UniversityoftheWesternCape,2016.

  • Giant dipole resonances

    The Giant magnetic dipole resonance is induced by spin oscillation of the proton and neutron distributions

  • Extraction cuts

    TheupperexcitaZonenergyboundissetattheSn-energyresoluZonwhichis5.9MeVfor182Taand3.8MeVfor181Ta.

  • Extraction cuts

    Below2.5MeVexcitaZonenergysomediscretestatescansZllbeobserved.ThelowerbandissetatEx=2.5MeVforboth182Taand181Tatoensurethatonlyeventsfromthequasi-conZnuumregionareusedsothatBrink’shypothesisisvalid.

  • Extraction cuts

    DuetothesystemaZcssomeoverandundersubtracZonareobservedasverZcallinesatlowenergies.Thelowerboundforthe𝛾-energyissetat950keVfor182Taand800keVfor181Ta.