PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

download PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

of 43

Transcript of PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    1/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    PSE Seminar

    Chemical Engineering Department

    Center for Advanced Process Design-making (CAPD)

    Carnegie Mellon University

    October, 2012. Pittsburgh (USA)

    Juan A. Reyes-Labarta ([email protected])

    Some Examples of Modeling in Chemical Engineering:

    Thermal treatment of polymers, Phase equilibrium

    calculations and Process design

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 2

    Problems and limitations of the phase equilibrium calculations (complex

    condensed systems: LV, LL, LS, LLS, LLSh)

    Problems and limitations of the phase equilibrium calculations (complex

    condensed systems: LV, LL, LS, LLS, LLSh)

    Analysis and simulation (kinetic modeling) of thermal treatments and

    thermal degradations of polymer mixtures

    Analysis and simulation (kinetic modeling) of thermal treatments and

    thermal degradations of polymer mixtures

    Simulation-optimization approaches for process design Simulation-optimization approaches for process design

    Some Examples of Modeling in Chemical Engineering:

    Thermal treatment of polymers, Phase equilibrium

    calculations and Process design

    Some Examples of Modeling in Chemical Engineering:

    Thermal treatment of polymers, Phase equilibrium

    calculations and Process design

    Outline

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    2/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 3

    Analysis and simulation of thermal treatments and thermal degradations

    of polymer mixtures

    Analysis and simulation of thermal treatments and thermal degradations

    of polymer mixtures

    Crosslinking process (formation of chemical bonds between adjacent molecularchains, to form a three-dimensional network, that improve the mechanical properties of the

    final product, reducing also the possible migration of some components)

    Foaming process (to produce low-density polymeric materials: such as soles ofsport shoes, toys, nautical buoys, gymnasium floors, hygienic stable floors, etc. =>

    reducing the weight of the final product obtained)

    Thermal treatment of foamed and crosslinked polymer mixtures (studied

    by DSC: differential scanning calorimeter)

    Combustion (presence of oxygen)

    Pyrolysis (catalytic or non-catalytic; inert atmosphere: e.g. nitrogen)

    Thermal degradation (studied by TGA: Themogravimetric analysis)

    (kinetic modeling)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 4

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal treatment (studied by DSC):

    (kinetic modeling)what process do we want to reproduce?

    D S C P E p uro

    0

    1

    2

    3

    4

    5

    6

    7

    5 0 1 0 0 1 5 0 2 0 0T e m p e ra t u ra ( C )

    dQ/dT(J/gK

    d Q / d T e x p .

    d Q / d T c a l .

    d Q / d T c a l . s i n

    c o n t r i b u c i n d e C p

    [ ]n

    CHCH22

    Temperature (C)

    PE (Polyethylene)

    dQ/dT without Cp

    contribution

    Variation of heatcapacities withtemperature

    Evolution of the heat exchanged along the process

    Asymmetric(n

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    3/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 5

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal treatment (studied by DSC):[ ]

    nCHCH

    22

    mCHCH

    O

    OC

    CH

    =

    2

    3(kinetic modeling: multiple peaks and processes)

    EVA (ethylene vinyl acetate copo lymer)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 25 50 75 100 125 150 175 200 225 250

    Temperature (C)

    dQ(dT(J/gK)

    TMAX= 49 C

    TMAX= 72 C

    TMAX= 113C

    Marcilla et al. Polymer

    (2004) 45(14), 4977-

    4985.

    http://dx.doi.org/10.1016

    /j.polymer.2004.05.016

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 6

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal treatment (studied by DSC):

    D S C A g e n te E s p u m a n te p uro

    -5 0

    -4 0

    -3 0

    -2 0

    -1 0

    0

    1 0

    2 0

    1 2 5 1 5 0 1 7 5 2 0 0 2 2 5 2 5 0 2 7 5

    T e m p e ra t u ra ( C )

    dQ/dT(J/gK

    d Q / d T e x p

    d Q / d T c a l

    ADC (azodicarbonamide: foaming agent)

    Temperature (C)

    (kinetic modeling: multiple peaks and processes)

    Reyes-Labarta and Marcilla. Journal of Applied Polymer Science (2008) 107(1), 339-346.

    http://hdl.handle.net/10045/24682

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    4/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 7

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal treatment (studied by DSC): Crosslinked and foamed EVA-PE

    mixtures (components: ADC, CA, EVA, PE)

    CA,DCA,DCA,DCA,D

    CA,D G)s1(Rsk

    CA +

    (M)PEk

    PE

    (M)EVAk

    (T)EVAk

    EVA

    PEM,

    EVAM,EVAT,

    General scheme of reactions in DSC experiments.

    ADC thermal decomposition:

    2 H4N4C2O2 H6N4C2O2 + 2 HNCO + N2 (r.1)2 H4N4C2O2 H3N3C2O2 + 2 HNCO + NH3 + N2 (r.2)H4N4C2O2 + 2 HNCO H4N4C2O2(HNCO)2* (r.3)H

    4

    N4

    C2

    O2

    (HNCO)2

    * H6

    N4

    C2

    O2

    + N2

    +2 CO (r.4)

    H3N3C2O2 Gr.5 (r.5)H6N4C2O2 Gr.6 (r.6)

    D SC PE pur o

    0

    1

    2

    3

    4

    5

    6

    7

    5 0 1 0 0 1 5 0 2 0 0Te m pe r a t ur a ( C )

    dQ/dT(J/gK

    d Q / d T e x p .

    d Q / d T c a l .

    d Q / d T c a l . s i n

    c o n t r i b u c i n d e C p

    EVA (ethylene vinyl acetate)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 25 50 75 100 125 150 175 200 225 250

    Temperature (C)

    dQ

    (dT(J/gK)

    TMAX= 49C

    TMAX= 72C

    TMAX= 113C

    D S C A g e n t e E sp u m a n t e p u r o

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    1 2 5 1 5 0 1 7 5 2 0 0 2 2 5 2 5 0 2 7 5

    T e m p e r a t u r a ( C )

    dQ/dT(J/gK)

    d Q / d T e x p

    d Q / d T c a l

    Auto-acceleratingeffect

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    2

    3 0 0 3 1 5 3 3 0 3 4 5 3 6 0 3 7 5 3 9 0 4 0 5 4 2 0 4 3 5 4 5 0 4 6 5 4 8 0 4 9 5 5 1 0 5 2 5 5 4 0

    Temperature (K)

    dQ/dT(J/gK)

    CA(TBPPB)

    (kinetic modeling: multiple peaks and industrial processing)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 8

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal treatment (studied by DSC): Crosslinked and foamed EVA-PE

    mixtures (components: ADC, CA, EVA, PE)

    PMSm,ADC

    DSC

    ADC

    m,CA

    DSC

    CA

    m,PE

    DSC

    PE

    m,EVA

    DSC

    EVA

    PSS

    DSC

    m C)w1(dT

    dQ

    dT

    dQ

    dT

    dQ

    dT

    dQCw

    dT

    dQ+++++=

    cTbTaC 2P

    ++=

    = =

    = 4

    1m

    2

    N

    1i.calc

    DSC

    m

    .exp

    DSC

    m

    dT

    dQ

    dT

    dQ.F.O

    ( )100

    D

    PN.F.O

    (%)RSD.av.exp

    =

    =

    ==

    ref

    jn

    j

    H

    j,ref

    j

    j

    H

    jj

    j

    j

    T

    1

    T

    1

    R

    Eaexpw

    kH

    dt

    dwH

    dT

    dwH

    dT

    dQi

    (kinetic modeling: multiple peaks and processes)

    n-order kinetics andArrhenius type behaviour

    Reyes-Labarta and Marcilla. I&ECR (2011) 50(13), 7964-7976.http://dx.doi.org/10.1021/ie200276v

    Reyes-Labarta and Marcilla. Journal of Applied Polymer Science

    (2008) 110(5), 3217-3224. http://hdl.handle.net/10045/13312

    Reyes-Labarta et al. Journal of Applied

    Polymer Science (2006).http://hdl.handle.net/10045/24680

    Reyes-Labarta et al. Polymer

    (2006) 47(24) 8194-8202.

    http://dx.doi.org/10.1016/j.polymer.

    2006.09.054

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    5/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    DSC first run (variation of ADC content)

    0

    0.5

    1

    1.5

    2

    2.5

    300 325 350 375 400 425 450 475 500 525 550

    Temperature (K)

    dQ/dT(J/gK)

    0

    1

    2

    3

    4

    5

    6

    dQ/dT(J/gK)[purePE]

    EVAEP(10)C(1.5)A(1)Z(1.5)

    EP(10)C(1.5)A(2)Z(1.5)

    EP(10)C(1.5)A(4)Z(1.5)

    PE

    Ethylene

    domains

    Vinyl acetate

    domains

    ADC

    p3

    p1+p2

    pure PE

    9

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal treatment (studied by DSC): Crosslinked and foamed EVA-PE

    mixtures

    DSC results (1st runs) for the mixtures studied with various ADC contents:1, 2 and 4 phr.

    Auto-acceleratingeffect

    (kinetic modeling: multiple peaks and processes)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    DSC (first run)

    -0.75

    -0.25

    0.25

    0.75

    1.25

    1.75

    2.25

    300 325 350 375 400 425 450 475 500 525 550

    Temperature (K)

    dQ/dT(J/gK)

    EP(10)C(3)A(2)Z(1.5) cal. EP(10)C(3)A(2)Z(1.5) exp.

    Contribution EVA(M) Contribution EVA(T)

    Contribution PE(M) Contribution CpS

    Contribution CpM ADC decomposition

    CA decomposition

    ADC

    EVA(M)

    EVA(T)

    CpMCpS

    PE(M)

    Vinyl acetate domains

    Ethylene domains

    CA

    10

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal treatment (studied by DSC): Crosslinked and foamed EVA-PE

    mixtures

    Experimental and calculated DSC curves (first run)

    with the diff erent contribution of each component f or the mixture the mixture EP(10)C(3)A(2)Z(1.5)

    (kinetic modeling: multiple peaks and industrial processing)

    Reyes-Labartaand Marcilla.

    I&ECR (2012)

    51(28), 95158-

    9530.

    http://dx.doi.org

    /10.1021/ie300

    6935

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    6/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    300 350 400 450 500 550 600 650 700 750 800

    Temperature (K)

    Weightfraction

    PE

    EVACA

    ADC

    11

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal degradation (studied by TGA): Crosslinked and foamed EVA-PEmixtures

    Experimental TGA curves for the pure components: CA (TBPPB), ADC (azodicarbonamide), EVA and PE

    Evolutionof theweight

    lostalong theprocess

    One reactionTwo decomposition

    reactions

    Multiple decomposition

    reactions

    (kinetic modeling: multiple peaks and processes)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 12

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal degradation (studied by TGA): Crosslinked and foamed EVA-

    PE mixtures

    ADC thermal decomposition:

    2 H4N4C2O2 H6N4C2O2 + 2 HNCO + N2 (r.1)2 H4N4C2O2 H3N3C2O2 + 2 HNCO + NH3 + N2 (r.2)H4N4C2O2 + 2 HNCO H4N4C2O2(HNCO)2* (r.3)H4N4C2O2(HNCO)2* H6N4C2O2 + N2 +2 CO (r.4)H3N3C2O2 Gr.5 (r.5)H6N4C2O2 Gr.6 (r.6)

    CA,DCA,DCA,DCA,D

    CA,D G)s1(RskCA +

    DP1DP1

    *

    DP1DP1 G)s(1EVAsk

    EVA +

    DP2DP2DP2DP2DP2* G)s(1RskPEEVA + +

    (kinetic modeling: multiple peaks and processes)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    7/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 13

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal degradation (studied by TGA): Crosslinked and foamed EVA-

    PE mixtures

    m,ADC

    TGA

    *ADCm,CA

    TGA

    CAm,PE

    TGA

    PEm,EVA

    TGA

    EVA

    TGA

    m

    dtdwdtdwdtdwdtdwdtdw +++=

    =

    +

    +

    +

    =

    2DP

    R

    2DP

    EVA

    1DP

    EVA

    1DP

    EVA

    TGA

    EVA

    dt

    dw

    dt

    dw

    dt

    dw

    dt

    dw

    dt

    dw ED

    **

    ( ) ( )2DP

    n

    *EVA2DP1DP

    n

    EVA1DP s1wks1wk 2DP1DP =

    ( ) ( ) 2DP2DP nPE2DP2DP

    PE2DP

    RPE

    TGA

    PE wks1dt

    dws1

    dt

    dw

    dt

    dw

    dt

    dw==+=

    ( ) ( )

    ==

    +=

    r

    n

    CACA,D,refCAD,

    CA

    CAD,

    RCA

    TGA

    CA

    T

    1

    T

    1

    R

    Eaexpwks1

    dt

    dws1

    dt

    dw

    dt

    dw

    dt

    dw CA,DCA,DCA,D

    ( ) ( ) *ADC,D***ADC,D** n *ADC*ADC,D*ADCD,ADC,DADC,DRADC

    TGA

    ADC wks1dt

    dws1

    dt

    dw

    dt

    dw

    dt

    dw==+=

    (kinetic modeling: multiple peaks and processes)

    n-order kineticsand Arrheniustype behaviour

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    300 350 400 450 500 550 600 650 700 750 800

    Temperature (K)

    Weightfraction

    EVA

    EP(10)C(1.5)A(1)Z(1.5)

    EP(10)C(1.5)A(2)Z(1.5)

    EP(10)C(1.5)A(4)Z(1.5)

    14

    Analysis and simulation of thermal treatmentsand degradations of polymer mixtures

    Thermal degradation (studied by TGA): Crosslinked and foamed EVA-

    PE mixtures

    (kinetic modelling)

    Experimental TGA curves for the mixtures studied with various ADC contents: 1, 2 and 4 phr

    0.95

    0.955

    0.96

    0.965

    0.97

    0.975

    0.98

    0.985

    0.99

    0.995

    1

    300 350 400 450 500 550 600 650

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    8/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    TGPYROLYSIS

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    200 250 300 350 400 450 500 550 600 650Temperature (C)

    w/wo

    TGExp. 5 K/min

    TGcal. 5K/min

    TGExp. 10K/min

    TGCal. 10 K/min

    TGExp. 25 K/min

    TGCal. 25 K/min

    15

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal degradation (studied by TGA):

    TGCOMBUSTION

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    200 250 300 350 400 450 500 550 600 650

    Temperature (C)

    w/wo

    TGExp. 5 K/min

    TGcal. 5K/min

    TGExp. 10K/min

    TGCal. 10 K/min

    TGExp. 25 K/min

    TGCal. 25 K/min

    Pyrolysis and Combustion

    of polycoated cartons(tetra bricks) recycling

    (kinetic modeling: multiple processes)

    Chemicals and new fuels from biomass pyrolysis!!

    Reyes et al. JAAP (2001) 58-59, 747-763.

    http://dx.doi.org/10.1016/S0165-2370(00)00123-6

    Conesa et al. JAAP (2004) 71, 343-352.

    http://dx.doi.org/10.1016/S0165-2370(03)00093-7

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 16

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal degradation (studied by TGA): catalytic pyrolysis of EVA and

    PP with MCM41, ZSM5, E-cat

    1*k G)s1(EVAsEVA 1 +

    22k* GEVA

    CcGCEVA)c1(CcEVA 34k*vk* +++

    dt

    dG

    dt

    dG

    dt

    dG

    dt

    C*dEVA

    dt

    dC

    dt

    *dEVA

    dt

    dEVA

    dt

    dw 321 =+++=

    1n

    1EVAk

    dt

    dEVA= 4

    3n2n1 n*

    v

    *

    2

    n

    1

    *

    CEVAkEVAkEVAskdt

    dEVA=

    543n n*

    4

    n*

    v CEVAckCEVAck

    dt

    dC+= 543

    n n*

    4

    n*

    v

    *

    CEVAk)c1(CEVAk)c1(dt

    CdEVA++=

    ==

    ref

    ii,refoii,oi

    T

    1

    T

    1

    R

    Eexpk)RT/Eexp(kk

    oF

    o3

    vCK

    Ckk

    +

    =constant

    initial amountof catalyst

    (kinetic modeling: multiple processes)

    Marcilla et al. JAAP (2003)

    http://dx.doi.org/10.1016/S0165-2370(03)00036-6

    Marcilla et al. Trends in Polymer Science (2003)

    http://dx.doi.org/10.1002/chim.200601239

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    9/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 17

    Analysis and simulation of thermal treatmentsand thermal degradations of polymer mixtures

    Thermal degradation (studied by TGA): catalytic pyrolysis of EVA with

    MCM41Sample 1

    0

    20

    40

    60

    80

    100

    500 550 600 650 700 750 800 850

    Temperature (K)

    Weightloss(%) 40 K/min-9.33% M CM -41, exp.

    40 K/min-9.33% M CM -41, cal.

    10 K/min-9.10% M CM -41, exp.

    10 K/min-9.10% M CM -41, cal.

    40 K/min-No M CM -41 exp.

    40 K/min-No M CM -41 cal.

    10 K/min-No M CM -41 exp.

    10 K/min-No M CM -41 cal.

    TG curves at two heating rates and for the thermal and catalytic processes

    (kinetic modeling: multiple processes)

    Differentheatingrates

    Differentamount

    of catalyst

    Marcilla et al. Polymer Deg. and Stability (2003)

    http://dx.doi.org/10.1016//S0141-3910(02)00403-2

    Marcilla et al. Polymer (2001)

    http://dx.doi.org/10.1016//S0032-386(01)00277-4

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 18

    Calculation of phase equilibrium (complex systems: LV, LL, LS, LLS, LLSh) Calculation of phase equilibrium (complex systems: LV, LL, LS, LLS, LLSh)

    Empirical equations

    Limitations of the actual models (e.g. NRTL)

    LVE inconsistencies

    GAP where solutions for homogeneous binary behavior are not found

    Typical problems in complex LL and LLS equilibrium calculations

    New strategies for coherent and simultaneous correlation

    Topology of the Gibbs energy of mixing function

    Applications: Optimal design of separation processes: distillation column and LL

    extraction sequences, calculation of distillation boundaries

    Multicomponent LLE and non-ideal LVE

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    10/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 19

    Calculation of complex LL and LLS phase equilibrium

    RT

    GM

    M

    C

    D

    M

    G

    H

    M

    EF

    ix

    Global Mixture

    ABM

    Liquid phases in equilibrium

    1) Possibility of different false solutions

    RT

    GM

    0

    xIi xII

    i

    2) Uncertainty in the final solution

    xIi xIIi

    TYPICAL PROBLEMS LLE!!TYPICAL PROBLEMS LLE!!

    Topology of the Gibbs EnergyFunction (binary LLE)

    (minor common tangent plane criterion )

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 20

    Tangent

    Planes

    Solid

    Solid

    Tie

    Lines

    ((minor common tangent plane criterionminor common tangent plane criterion ))

    Topology of the Gibbs Energy Surface (ternary LLSE)

    Solid

    Inog.

    Salt

    Organic

    Solvent

    (A)

    Water (B)

    Calculation of complex LL and LLS phase equilibrium

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    11/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 21

    Solid

    Inog.

    Salt

    Organic

    Solvent

    (A)

    Water (B)

    Topology of the Gibbs Energy Surface (ternary LLSE)((minor common tangent plane criterionminor common tangent plane criterion ))

    Calculation of complex LL and LLS phase equilibrium

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    1L

    Solid

    Tangent planes tothe GM surface

    Only 1 tangentpoint each plane

    22

    Solid

    Inog.

    Salt

    Organic

    Solvent

    (A)

    Water (B)

    2L

    Tie line

    Solid

    1L+1S

    Tie line

    Solid

    2 common points

    2L+1S

    Tie

    Triangle

    Solid

    3 common points

    Topology of the Gibbs Energy Surface (ternary LLSE)((minor common tangent plane criterionminor common tangent plane criterion ))

    Calculation of complex LL and LLS phase equilibrium

    coherent and robust equilibrium calculations

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    12/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 23

    a) Using the second derivative of the GM function

    NEW STRATEGIES to avoid typical convergence problemsNEW STRATEGIES to avoid typical convergence problems

    Advantages:

    Less time consuming

    Trivial solution is avoided

    Limit the equilibrium composition space for the LLE root determination

    1x

    g M

    2

    1

    2

    x

    gM

    Mg

    A1x

    B1x

    I1x

    II

    1x1x

    g M

    2

    1

    2

    x

    gM

    Mg

    0 1

    +

    -A1x

    B1x

    I1x

    II

    1x

    Restricted regions forequilibrium compositions

    searching

    Minimum common

    tangent

    Calculation of complex LL and LLS phase equilibrium

    Marcilla et al. Fluid Phase Equilibria (2010)

    http://dx.doi.org/10.1016/j.fluid.2009.12.026

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 24

    b) Using an unambiguous definition of the plait point (pp) of the solubility curve

    in ternary systems

    NEW STRATEGIES

    Limit the equilibrium composition space for the LLE root determination

    Determinant of the

    Hessian matrix of

    the GM function

    =0)

    LL

    L

    Calculation of complex LL and LLS phase equilibrium

    pp

    Marcilla et al. IEC&R 51(13), 5098-

    5102 (2012).http://dx.doi.org/10.1021/ie202793r

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    13/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 25

    Limit the equilibrium composition space for the LLE root determination

    NEW STRATEGIES

    c1) Using a geometrical approach very good approximation to the ELL solution

    MAXIMUM DISTANCE

    PLANE -SURFACE

    Plane generation points Maximum distance points

    PREVIOUS

    TIE -LINE

    ESTIMATED

    TIE -LINE

    gM

    x2

    x3

    ((sequential series of minor cutting planes)sequential series of minor cutting planes)

    Correlation of complex LL and LLS phase equilibria

    1. Starting with the binary LLE, twoseparated zones, where the

    conjugated compositions must be

    located, are found by intersection

    between an adequate plane and the

    GM surface.

    2. The maximum distance point to

    the intersection plane is located in

    each one of these zones.

    3. The conjugated points obtained

    are used to generate a new plane

    and they are also a very good

    approximation to the tie-line.

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 26

    Limited composition space for the LLLE root determination

    NEW STRATEGIES

    c2) Using a geometrical approach very good approximation to the LLLE solution

    A B

    C

    LL LL

    LL

    LLL

    L

    L

    L

    a

    b

    c

    tie-triangle

    ((sequential series ofsequential series of

    minor cutting planes)minor cutting planes)

    e.g. 1-nonanol + nitromethane + water (23 C)1-hexanol + nitromethane + water (21 C)

    Calculation of complex LL and LLS phase equilibrium

    ((minor common tangent plane criterionminor common tangent plane criterion ))

    Marcilla et al. Fluid Phase Equilibria 281, 87-95 (2009). http://dx.doi.org/10.1016/j.fluid.2009.04.005

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    14/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 27

    Empirical constraints for NRTL binary parameters

    NEW STRATEGIES

    766.908A1.20662A2.9574510A4.4656410)f(AA ji2

    ji

    43

    ji

    8

    jiij +++==

    Border line between L and LL regions for the NRTL model

    -2000

    -1000

    0

    1000

    2000

    3000

    -2500 -1500 -500 500 1500 2500 3500

    Aji

    Aij

    MISCIBLE (1L)

    PARCIALLY MISCIBLE

    )f(AA jiijHeterogeneous (LL)

    LType island systems:

    A12+ A210

    A23+ A32>0

    Calculation of complex LL and LLS phase equilibrium

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 28

    Different objective functions

    NEW STRATEGIES

    a) Minimum of the overall Gibbs Energy of mixing

    =

    c

    1i

    LiL

    i

    Sliquid

    MSMoverall

    RTxs1

    RTs

    RT

    G

    RT

    G

    RT

    G

    1L+1S

    *Line defined by a constantratio xOrganicSolvent/xwater

    -0,8

    -0,75

    -0,7

    -0,65

    -0,6

    -0,55

    -0,50 0,05 0,1 0,15 0,2

    s

    GMoverall

    Calculation of the Minimum of the overallGibbs Energy of mixing, along a concreteline* for each experimental point.

    Correlation of complex LL and LLS phase equilibria

    Reyes et al. IEC&R 40,902-907 (2001).

    http://dx.doi.org/10.1021/ie000435v

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    15/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 29

    Different objective functions

    NEW STRATEGIES

    ( ) 0).(.23

    1

    == =i

    II

    i

    I

    i aaaFOa) Isoactivity criterium

    c) Isoactivity + Minor common tangent condition

    d) A modification of the initial vector method

    M

    1 3

    2

    I

    II

    gTL

    a

    a b

    a, b

    I, II

    liquid phases of thebinary 1-3

    liquid phases ofa potential tie line

    0.0E+00

    1.0E-05

    2.0E-05

    3.0E-05

    4.0E-05

    5.0E-05

    6.0E-05

    7.0E-05

    8.0E-05

    3.13 3.14 3.15 3.16 3.17 3.18 3.19

    -angle

    Obje

    ctivefunction

    O.F.(a)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    16/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 31

    NEW STRATEGIE RESULTS:

    CORRELATION OF (uncorrelated) COMPLEX LL SYSTEMS (NRTL)

    TYPE I

    Calculation of complex LL and LLS phase equilibrium

    Reyes-Labarta et al. Fluid Phase Equilibria 278, 9-14 (2009). http://hdl.handle.net/10045/24683

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 32

    NEW STRATEGIE RESULTS:

    CORRELATION OF (uncorrelated) COMPLEX LL SYSTEMS (NRTL)

    30,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

    2

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    1

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    experimental ( )

    calculated ( )

    water Tetrahydrofuran

    Dimethyl sulfoxide

    T=20C

    30,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

    2

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    1

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    experimental ( )

    calculated ( )

    experimental ( )

    calculated ( )

    water Tetrahydrofuran

    Dimethyl sulfoxide

    T=20CTYPE 0

    TYPE II

    TYPE III

    Calculation of complex LL and LLS phase equilibrium

    Marcilla et al. Fluid

    Phase Equilibria 281,

    87-95 (2009) .

    http://hdl.handle.net/10045/13315

    Olaya et al. Fluid

    Phase Equilibria

    265, 184-191

    (2008).

    http://hdl.handle.net/10045/24681

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    17/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 33

    using the NRTL

    binary parameters

    published in theDECHEMA

    Chemistry Data

    Series

    Consistent

    Inconsistent

    Calculation of complex LL and LLS phase equilibrium

    NEW STRATEGIE RESULTS:

    CORRECTION OF SOME (NRTL) INCONSISTENCIES IN LL (type I-II) SYSTEMS

    Reyes-Labarta et al.

    Fluid Phase Equilibria278, 9-14 (2009).

    http://hdl.handle.net/10045/24683

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 34

    Illustrating example of a clear limitation for NRTL (constant alpha)

    If we realize a systematic study on the GM function for a totally miscible binary system,

    there exist a GAP where solut ions for homogeneous binary behavior are not found.

    (with ij =0.2)

    LIMITATIONS OF THE ACTUAL MODELSLIMITATIONS OF THE ACTUAL MODELS

    -5.5

    -4.5

    -3.5

    -2.5

    -1.5

    -0.50 0.2 0.4 0.6 0.8 1

    x2

    gM

    gap

    400.gMmin =

    -5.5

    -4.5

    -3.5

    -2.5

    -1.5

    -0.5 0 0.2 0.4 0.6 0.8 1

    x2

    gM

    450 .gMmin =

    Calculation of complex LL and LLS phase equilibrium

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    18/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 35

    Illustrating example of a clear limitation for NRTL (constant alpha )

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    0.050

    0.0 0.2 0.4 0.6 0.8 1.0

    x3

    x2

    interpolated experimental data

    interpolated among the calculated compositions

    calculated compositions

    experimental data

    opposite slopes!

    A12=873.57 =0.2

    A21=-1245.0 =4.08

    A13=578.07

    A31=578.07

    A23=-987.32

    A32=-856.11

    Data and parameters from Dechema. Sorensen and Artl, W.Chemistry Data Series; Vol. V/2, DECHEMA, 1980. Page 129.

    A) LLE: Methanol(1) + difenilamine(2) + cyclohexane(3) at 298K

    Phase Equilibrium calculations. Limitations of the actual models

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    T(x,y)

    0

    20

    40

    60

    80

    100

    120

    0 0.2 0.4 0.6 0.8 1

    x,y

    T

    exp

    Selected VLE

    data point

    Calculated

    VLE data point

    Lexp Vcal Vexp

    T

    GM

    Lexp Vexp

    GM vapor

    GM liq

    gap

    (DECHEMA,Vol 1,Part 1a,p.256)

    1 data All data (DECHEMA)

    A12 = -53.57 K A12 = -136.05

    A21 = 293.90 K A21 = 402.92

    =3.0 =2.8

    +=i i

    iioi

    i

    V,M

    ylny)T(p

    Plny

    RT

    G

    650

    4721

    .RT/G

    .dx

    )RT/G(d

    expx

    L,M

    expx

    L,M

    =

    =

    Vcal

    GMliqDECHEMA

    Phase Equilibrium calculations. Limitations of the actual models

    B) LVE: water + 1,2-propanediol at 25 mmHg

    36

    it is impossible to obtain a good

    correlation and also to correlate

    only one LVE point

    Illustrating example of a clear limitation for NRTL (constant alpha )

    There is nosolution(NRTL)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    19/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Phase Equilibrium calculations. More limitations of the actual models

    C) LVE: water + 1-propanol at 760 mmHg

    37

    Illustrating example of a clear limitation for NRTL (constant alpha )

    (DECHEMA,Vol 1,Part 1a,p.286292)

    7dataseriesat 760mmHg,with different

    NRTLconstant:

    A12(cal/mol)

    A21(cal/mol)

    -13,0045 1872,0758 0,2803

    619,3422 2708,5773 0,6185

    294,7832 1893,5152 0,4276

    152,5084 1866,3369 0,3747

    412,0253 1735,4304 0,4465

    444,3339 1997,5504 0,4850

    152,5084 1866,3369 0,3747

    Type

    3+type5

    Type

    3+type5

    Type

    3+type5

    Just one set of these data pass the

    thermodynamic test of consistency,

    however, the corresponding NRTL

    parameters predict an incoherent

    behavior

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    PITFALLS OF THE TERMODINAMIC CONSYSTENCY TESTS

    D) LVE: SOME CONSISTENCY TEST USE THERMODYNAMIC MODELS AS NRTL TOVALIDATE THE VLE EXPERIMENTAL DATA, e.g. Frenkel-NIST point-to-pointtest (van Ness)

    38

    Illustrating example of a clear limitation for NRTL (constant alpha )

    Acetone (1) + water (2) at 2570 mmHg

    (DECHEMA, Vol. I-1a Sup. 1, p. 197)

    Metilvinilcetone (1) + water (2) at 743 mmHg

    (DECHEMA Vol . I-1, p. 355).

    BUT. WHAT HAPPENDS IF WE CANNOT FIND A GOOD CORRELATION?

    ARE THE DATA INCONSISTENT OR IS THE MODELUNCAPABLE OF REPRESENTING THE

    EXPERMIENTAL BEHAVIOUR?

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    20/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 39

    Phase Equilibrium calculations

    A) Possib le modif ication for NRTL model:

    =

    i

    l lli

    j

    jjiji

    ii

    E

    xG

    xG

    xFRT

    G

    -4.5

    -4

    -3.5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0 0.2 0.4 0.6 0.8 1

    x1

    gM

    -3.000

    -3.200

    -3.5

    -4

    -2.98

    -0.25

    -0.22

    -0.35

    -0.38

    -0.4

    -0.500

    -1

    -1.5

    -2

    -2.5

    -2.8

    The init ial GAP is completed!The init ial GAP is completed!

    Experimental data

    correlation is

    considerably improved

    for several sys tems, evenisland types!

    Experimental data

    correlation is

    considerably improved

    for several systems, even

    island types!

    But What can we do in the meanwhile?But What can we do in the meanwhile?New factors

    Effective molecular weights

    Marcilla et al. The Open Thermodynamics

    Journal - Special Issue. 5, 48-62 (2011).

    http://hdl.handle.net/10045/19865

    Marcilla et al. I&ECR 49(20), 10100-10110 (2010).

    http://dx.doi.org/10.1021/ie1010383

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 40

    B.1) EMPIRICAL EQUATIONS

    LLE FOR QUATERNARY SYSTEMS (TYPE 1)

    and are the composition (components i,j,k) and transformed enthalpy (l) of vapor and liquid phase,respectively, and C=cte.

    LVE FOR TERNARY SYSTEMS (including composition and enthalpy data)

    Aqueous phase(x)

    Organic phase(y)

    Calculation of complex LL and LLS phase equilibrium

    (Logarithmic eq.)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    21/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 41

    Marcilla et al. IEC&R 38(8), 3083-3095 (1999).

    http://dx.doi.org/10.1021/ie9900723

    +

    +

    ++

    +

    +=

    1

    2

    2

    2

    4,

    2

    4,,

    2

    2

    4,

    2

    4,,

    '

    'log

    '

    '

    '

    '

    '

    '

    '

    '

    '

    'log

    x

    x

    x

    xf

    x

    xed

    x

    xc

    x

    xba

    y

    ypkpkpkpkpkpk

    p

    k

    +

    ++

    2

    1

    2

    2

    2

    4,

    2

    4,,

    '

    'log

    '

    '

    '

    '

    x

    x

    x

    xi

    x

    xhg pkpkpk

    Four equations with four variables !!

    Ciyiy += )()('

    1)2('

    )3('log k

    y

    y=

    2

    )1('

    )2('log k

    y

    y=

    3

    )3('

    )4('log k

    y

    y=

    Cyyyy +=+++ 41)4(')3(')2(')1('

    EMPIRICAL CORRELATIONS

    Calculation of complex LL and LLS phase equilibrium

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 42

    B.2) EMPIRICAL EQUATIONS (Polynomial eq.)

    LVE FOR NON-IDEAL AND AZEOTROPIC TERNARY SYSTEMS (y vs x)

    =

    =

    =

    = c

    1qc

    1jjj,q

    q

    c

    1jjj,i

    i

    i

    xa

    x

    xa

    x

    y

    where xi and yi are the composition of the conjugated liquid and vapourphases in equilibrium, and the subscripts i,j and q refer to the differentcomponent of the mixture. ai,j represent the correlation parameters of theequation, which are independent of the composition. Such parameters mustbe obtained by correlation of the experimental data.

    =

    ++

    +

    ++

    +

    +++

    +++

    = c

    1q1c

    qj1jjj2c2,q

    c

    qjjqj1c,q

    c

    ijjj,qq

    q

    1c

    ij1jjj2c2,i

    c

    ijjij1c,i

    c

    ijjj,ii

    i

    i

    xxaxxaxax

    x

    xxaxxaxax

    x

    y

    Calculation of complex LL and LLS phase equilibrium

    Marcilla et al. VIII Iberoamerican Conference on Phase Equilibria and Fluid Properties for Process Design

    (2009). http://hdl.handle.net/10045/14276

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    22/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 43

    LVE FOR NON-IDEAL AND AZEOTROPIC TERNARY SYSTEMS (T vs x)

    ==

    +=3

    1i3

    1j

    jj,i

    ii0

    xa

    xTTT

    =

    ++

    +

    +++

    +=c

    1i1c

    ij

    1jjj2c2,i

    c

    ij

    jij1c,i

    c

    ij

    jj,ii

    ii0

    xxaxxaxax

    xTTT

    It is necessary to introduce the mathematical constraints corresponding tothe azeotropic points!!!

    B.2) EMPIRICAL EQUATIONS (Polynomial eq.)

    ( ) )ln()ln())(()()( 22112

    2

    1

    12111,2,1, xxDxxCxxxxBAxTTTT nn

    bbb +++=

    ( )( ) ( )

    ( ) ( )

    =

    az,2az,12

    2

    2

    az,2az,1

    12

    2

    az,2az,1

    21

    2

    az,2az,12

    1

    2

    az,2az,1

    x,xx

    Tx,x

    xx

    T

    x,xxx

    Tx,x

    x

    T

    x,xH

    Calculation of complex LL and LLS phase equilibrium

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Ternary azeotrope (AT): yi,az = xi,az and depending on the type of ternary azeotrope:

    AT with minimum boiling temperature: H(x1,az, x2,az) > 0 and

    In this case, it is important to remark that it is necessary to introduce the mathematical

    restrictions corresponding to the azeotropic points:

    Binary azeotropes: yi,az= xi,az and

    44

    Phase Equilibrium calculations

    LVE FOR NON-IDEAL TERNARY SYSTEMS (T vs x)

    ( ) 0xdx

    dTaz

    1

    =

    ( ) 0x,xx

    Taz,2az,12

    1

    2

    ( ) ( ) ( )

    ( ) ( )

    =

    az,2az,12

    2

    2

    az,2az,1

    12

    2

    az,2az,1

    21

    2

    az,2az,12

    1

    2

    az,2az,1

    x,xx

    Tx,x

    xx

    T

    x,xxx

    Tx,xx

    T

    x,xH

    AT with maximum boiling temperature: H(x1,az, x2,az) > 0 and

    AT with intermediate boiling temperature: H(x1,az, x2,az)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    23/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 45

    Optimal design of separation process

    EMPIRICAL EQUATIONS APPLICATIONS

    1. EXTENTION OF CLASICAL TRAY BY TRAY METHOD FOR THE DESIGN OF

    DESTILLATION COLUMNS from binary to multicomponent systems

    GOAL: to

    avoid theoptimaldesign ofdistillationcolumns byrepeatedsimulations

    Marcilla et al. Latin American Applied Research International Journal 27(1-2), 51-60

    (1997). http://hdl.handle.net/10045/24679

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 46

    Optimal design of separation process

    EMPIRICAL EQUATIONS APPLICATIONS

    1. EXTENTION OF THE GRAPHICAL METHODS

    McCABE-THIELE AND HENGSTEBECK METHOD FOR THE DESIGN OF

    MULTICOMPONENT DESTILLATION COLUMNS

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1EQUILIBRIUM (y vs x) AND McCABE DIAGRAM (MOLAR)

    x

    y

    yeq

    diagonal

    Eq.pisos

    BM-Roperat.

    XD,XB

    R.Op.1

    R.Op.2

    R.Op.3

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

    Marcilla et al. Review and

    extension of the McCabe-

    Thiele method covering

    multiple feeds, products and

    heat transfer stages (2012).

    http://hdl.handle.net/10045/2

    3195

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    24/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 47

    Optimal design of separation process

    EMPIRICAL EQUATIONS APPLICATIONS

    2. GRAPHICAL CONCEPTS TO ORIENTATE THE MINIMUM REFLUX RATIO

    CALCULATION

    GOAL: tosimplify therigorouscalculation ofthe minimumreflux ratio

    Reyes-Labarta et al. IEC&R 39(10),3912-3919 (2000).http://dx.doi.org/10.1021/ie9907021

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 48

    Optimal design of separation process

    EMPIRICAL EQUATIONS APPLICATIONS

    3. OPTIMAL DESIGN OF MULTICOMPONENT LL EXTRACTION COLUMNS

    (using tray by tray methods)

    Marcilla et al. IEC&R, 38(8), 3083-3095 (1999).

    http://dx.doi.org/10.1021/ie9900723

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    25/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Optimal design of separation process

    EMPIRICAL EQUATIONS APPLICATIONS

    E1

    R0 Rdef

    1 2 n-1

    j

    n

    ELn=E0

    R1

    E2Initial Solvent Feed

    Initial

    Raffinate

    Feed

    Final

    Raffinate

    Product

    Final ExtractProduct

    EL1 EL2 ELn-1

    Side Solvent Feeds

    R0,byp

    Bypass

    R0,ext

    RLk,byp

    RLk

    Side

    Feed

    Streams PLq

    Side

    Product

    Streams

    4. OPTIMAL SYNTHESIS OF LIQUID-LIQUID MULTISTAGE EXTRACTORS using

    MINLP Techniques or Generalized Disjunctive Programming (GDP)

    49

    Reyes-Labarta & Grossmann,

    AIChE 47(10), 2243-2252 (2001).http://dx.doi.org/10.1002/aic.690471011

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Rdef

    E11

    R1o R1n1

    EL11 EL1n1-1

    1 2 n1-1 n1i

    E1o

    R2o

    E21 E2o

    EL21 EL2n2-1

    1 2 n2-1 n2i

    R2n2

    Multiple Interconnected Extractors

    4. OPTIMAL SYNTHESIS OF LIQUID-LIQUID MULTISTAGE EXTRACTORS usingGeneralized Disjuntive Programming (GDP)

    Reyes-Labarta & Grossmann,

    Computer Aided Chem.Eng.

    (2001).

    http://dx.doi.org/10.1016/S1570-

    7946(01)80076-650

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    26/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    The selection of the stages in the optimal extraction cascade will be performed

    using the following stage existence disjunction.

    51

    4. OPTIMAL SYNTHESIS OF LIQUID-LIQUID MULTISTAGE EXTRACTORS usingGeneralized Disjuntive Programming (GDP)

    stageexistingnonstageexisting

    j

    Rj-1

    Ej Ej+1

    equilibriumRj

    Rj-1= Rj

    Ej= Ej+1

    j

    For existing stages:

    i) Total and individual mass transfer balances.

    ii) Nonlinear equilibrium equations.

    iii) Relation between total and individual flowrates (bilinear terms).

    For non-existing stages the equations considered are simply input-output

    relations in which no mass transfer takes place (inlet and outlet flows are

    the same for each phases).

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 52

    4. OPTIMAL SYNTHESIS OF LIQUID-LIQUID MULTISTAGE EXTRACTORS usingGeneralized Disjuntive Programming (GDP)

    Zj

    is a boolean variable which can be true or false depending if the stage j is

    selected or not.

    =

    =

    =

    =

    =

    =

    =

    +

    +

    0;0

    0;0

    0;0

    ;

    ;

    ;

    :

    0),(:

    ,

    ,,,

    ,,,

    ,1,,1

    ,1,,1

    ,1,,1,

    ,,

    ,,

    cjj

    cjqjq

    cjkjk

    cjcjcjj

    cjcjcjj

    cjcjcjcj

    j

    cjjcj

    cjcj

    j

    ELEL

    PLPL

    RLRL

    RRRR

    EEEE

    yyxx

    Z

    uFFtermsBilinear

    xymEquilibriu

    Z

    j

    NT

    c

    COMP

    k

    K

    q

    Q

    F

    {R, E, PLq

    ,

    RLk, EL, Rdef}

    u = {x or y}

    To avoid equivalent solutions that are due to the multiplicity of representation

    for a given number of trays, the following logic constraints are added:

    1jj ZZ

    j

    NINT

    Solution strategy: an logic-based OuterApproximation algorithm (NLPsubproblems-MILP master problem).

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    27/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 53

    COMPLEX EXTRACTOR DESIGN (GDP)

    http://newton.cheme.cmu.edu/interfaces/extractor/main.html

    4. OPTIMAL SYNTHESIS OF LIQUID-LIQUID MULTISTAGE EXTRACTORS usingGeneralized Disjuntive Programming (GDP)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 54

    LV Equilibria (P = cte). Homogeneous Ternary Azeotropic Systems

    A

    BE

    BA

    E

    A B

    E

    B

    A

    AAA

    AAA

    BBB

    BBB

    E

    EEE

    EEE

    Introduction: Topology Azeotropic Liquid-Vapour Equilibrium

    Gmez et al. Ingeniera

    Qumica, 379, 253-262

    (2001)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    28/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 55

    x,y

    T

    Heterogeneous

    lquids at boiling

    temperature

    L

    V

    LL

    Solubility

    surface

    Heterogeneous

    azeotropic

    binaryLLV

    PP

    V-Lhet CurveLast V-Lhet

    point

    ..

    .

    Ternary system with:

    1 heterogeneous binary azeotrope

    1 LLV region (tie triangles)

    3

    21

    Introduction: Topology Azeotropic Liquid-Vapour Equilibrium

    Gmez et al. Ingeniera Qumica, 377, 219-229 (2001)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 56

    Optimal design of separation process

    EMPIRICAL EQUATIONS APPLICATIONS

    5. DESTILLATION BOUNDARIES CALCULATION

    -0.2 0 0.2 0.4 0.6 0.8 1 1.2-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2System Methanol-Acetone-Hexane. Distillation curves

    Methanol (1)

    Acetone(2)

    *

    AB13min

    AB12min

    AB23min

    ATmin

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    29/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 57

    Topological concept used:

    when there exists , the trajectory of a

    distillation boundary continuously

    contains not only the composition of theliquid phase, but also the composition

    of the vapor phase in equilibrium

    x0

    y0x

    1

    y1

    x2

    y2x

    3 y3

    x4

    L-V tie lines

    distillation boundary trajectory

    5. DESTILLATION BOUNDARIES CALCULATION

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 58

    Mathematical algorithm:

    Endyes

    no

    Singular points

    Trajectory: origin/end, nipt and function (nincs or n )

    Independent variable (e.g. x2)

    Compositions: x2,k(k=1,2,,nipt)

    Initial values for parametersAj (or cs nodes, x1,k)

    ycal1,k=yceq

    1,k?

    New values for parameters Aj or (cs nodes: x1,kk=1,2,, nincs)

    Compositions: xcal1,k(k=1,2,,nipt)

    Compositions: yeq1,k(k=1,2,,nipt)

    Compositions: ycal1,k(k=1,2,,nipt)

    DISTILLATION BOUNDARIES CALCULATION

    X1,k(k=1,2,, nincs)

    X2,k (k=1,2,nipt)

    Stable node

    *

    *

    *

    *

    -

    -

    -

    -

    --

    -

    -yeqi,k

    ycal1,k^

    y1,kcal=f(y2)

    Unstable

    node

    trajectory to test

    x1,kcal=f(x2)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    30/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 59

    NUMERICAL EXAMPLES: Ternary Distillation Boundaries (LV)

    Benzene(1)-Cyclohexane(2)-Toluene(3) System at 760 mm Hg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00x1

    x2

    Ethanol(1)-Benzene(2)-Water(3) System at 760 mmHg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

    X1

    X2

    Dietilether(1)-Ethanol(2)-Water(3) System at 2156.3 mmHg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

    x1

    x2

    2-Butanol(1)-2-Butanone(2)-Water(3) System at 760 mm Hg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,20 0,40 0,60 0,80 1,00x1

    x2

    5. DESTILLATION BOUNDARIES CALCULATION

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 60

    Water(1)-Ethanol(2)-Toluene(3) System at 760 mmHg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

    x1

    x2

    Methanol(1)-Acetone(2)-Chloroform(3) System at 760 mmHg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,20 0,40 0,60 0,80 1,00

    X1

    X2

    2-Propanol(1)-Benzene(2)-Water(3) System at 760 mmHg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

    x1

    x2

    Acetone(1)-Meth anol(2)-Cyclo hexane(3) System at 760 mmHg

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,90

    1,00

    0,00 0,20 0,40 0,60 0,80 1,00

    X1

    X2

    NUMERICAL EXAMPLES: Ternary Distillation Boundaries (LV)

    5. DESTILLATION BOUNDARIES CALCULATION

    Reyes-Labarta et al. I&ECR, 50(12), 7462-7466 (2011). http://dx.doi.org/10.1021/ie101873g

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    31/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 61

    Heterogeneous ternary system with:

    1 heterogeneous azeotropic binary composition

    2 homogeneous azeotropic binary compositions

    1 homogeneous azeotropic ternary composit ion

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Benzene

    Isopropanol

    NUMERICAL EXAMPLES: Ternary Distillation Boundaries (LV)

    5. DESTILLATION BOUNDARIES CALCULATION

    Reyes-Labarta et al. Computer Aided Chem.Eng.

    28(C), 643-648 (2010).

    http://dx.doi.org/10.1016/S1570-7946(10)28108-7

    Escape20: http://hdl.handle.net/10045/14203

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 62

    Acetone

    Methanol

    Water

    i-propanol

    Acetone

    Methanol

    Water

    i-propanol

    Homogeneous quaternary system with:

    2 homogeneous azeotropic binary compositions

    The quaternary distillation boundary curve is formed by the two different distillation

    boundary surfaces, that intersect in one curve.

    NUMERICAL EXAMPLES: Quaternary Distillation Boundaries (LV)

    5. DESTILLATION BOUNDARIES CALCULATION

    Ternary DistillationBoundary (curve)

    Quaternary Distillation

    Boundary (surface)

    Quaternary DistillationBoundary (curve)

    (1)

    (2)(3)

    (4)

    BA3,4

    BA1,2

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    32/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 63

    Simulation-optimization approaches for process design Simulation-optimization approaches for process design

    Optimal design of absorption systems including LCA

    Optimal design of generalized distillation columnsn=i

    EV

    cond

    RSSS

    Compp-H

    Reb

    F

    IHER

    D

    QD

    QR

    Ln,RS

    V1,SS

    Ws

    QIHT

    -QIHT

    Ln,RS

    (high pressure)

    (low pressure)

    Design of Internally Heat-Integrated Distillation Columns (HIDiC)

    Reyes-Labarta et al.. Computer Aided Chemical

    Engineering. 2012, 30, 1257-1261.

    http://dx.doi.org/10.1016/B978-0-444-59520-1.50110-X

    Reyes-Labarta et al. Computer Aided Chemical Engineering.

    2011, 29, 301-305. http://dx.doi.org/10.1016/B978-0-444-

    53711-9.50061-4

    Reyes-Labarta et al. AIChE Meeting 2012.https://aiche.confex.com/aiche/2012/webprogram/Paper267732.html

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 64

    Generalized scheme of a distillation column Generalized scheme of a distillation column

    n=i

    Optimal design of generalized distillation columns

    Lk,n+1

    Vk,n+1-(VGFk)

    Vk,n+2

    (LGFk)

    Lk,n(=Lk,NTk) (Lk+1,0)

    k= k (or k+1)

    Hysys Flowsheet (tray by tray calculations)

    Multiple side streams (feeds,products or intermediate

    heat exchangers)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    33/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Schematic representations of the internal existing

    streams at the zone connecting consecutive sectors in

    the case of a generalized feed side stream (GFk).

    65

    Optimal location of all the side streams:

    Optimal design of generalized distillation columns

    Intermediate Heat exchanger

    Side product stream (liquid or vapor)

    (two phases) Side feed stream

    where zopt refers to the phase

    composition at the optimal change

    point of sector k. L and H are the

    indexes for light and heavy key

    components, respectively.

    Marcilla et al. Review and extension of the McCabe-Thiele

    method covering multiple feeds, products and heat transfer

    stages (2012). http://hdl.handle.net/10045/23195

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 66

    Optimal design of absorption systems including LCA

    Water-Ammonia Absorption CycleWater-Ammonia Absorption Cycle

    Novel framework for theoptimal design ofsustainable thermodynamiccycles

    The problem is mathematically formulated as a multi-objective mixed-integer non-linear programming (moMINLP) problem (that simultaneouslyaccounts the minimization of the total annualized cost and the totalenvironmental performance of the cycle)

    Combined the use of A)rigorous process simulationtools, B) optimizationsoftware and C) LCA (Lifecycle assessment)

    DistillationColumn

    (binary variables)

    { }

    =

    =

    =

    0),,(

    0),,(

    0),,(..

    ),,(),...,,,(1min

    DE

    DE

    DI

    DnD

    x

    xuxg

    xuxh

    xuxhts

    xuxfxuxfzD

    Solution strategy: an logic-based OuterApproximation algorithm (MILP master problem[Gams]-NLP subproblems[Matlab-Aspen])

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    34/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 67

    Optimal design of absorption systems including LCA

    Water-Ammonia Absorption Cycle: Flowchart of the proposed algorithm

    Brunet, R. et al.

    Computers and

    ChemicalEngineering, 2012,

    46, 205-216.

    http://hdl.handle.net/

    10045/24678

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 68

    Optimal design of absorption systems including LCA

    Water-Ammonia Absorption Cycle: Objective Functions

    =b

    bbdd LCIdfdamagetalEnvironmen

    opPkeDkqpHXSDopc t)WCQC(fcr)CCC(CCTAC == ++++=+=

    Environmental

    Impact category

    Unit Steam [kg] Electricity [kWh] Steel [m2]

    1 Carcinogencis Points/Unit 1.1810-4 4.3610-4 7.8310-1

    2 Climate change Points/Unit 1.6010-3 3.6110-6 1.70

    3 Ionising radiation Points/Unit 1.1310-3 8.2410-4 3.3010-2

    4 Ozone depletion Points/Unit 2.1010-6 1.2110-4 1.0010-3

    5 Respiratory effects Points/Unit 7.8710-7 1.3510-6 10.2

    6 Acidification Points/Unit 1.2110-4 2.8110-4 1.24

    7 Ecotoxicity Points/Unit 2.8010-3 1.6710-4 2.40

    8 Land occupation Points/Unit 8.5810-5 4.6810-4 3.1110-1

    9 Fossil fuels Points/Unit 1.2510-2 1.2010-3 8.64

    10 Mineral extraction Points/Unit 8.8210-6 5.7010-6 9.1110-1

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    35/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 69

    Optimal design of absorption systems including LCA

    Water-Ammonia Absorption Cycle: e.g. Contribution of each component

    Environmental Impact category

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 70

    Design of Internally Heat-Integrated Distillation Columns (HIDiC)

    PossibleHeatIntegration!!

    Conventional distillation column

    Feed

    Distillate

    Residue

    LD

    ...

    ...

    n=1

    n=N

    LD+DQD

    QRQ B

    (bottom)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    36/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 71

    Design of Internally Heat-Integrated Distillation Columns (HIDiC)

    Inter-Condenser and inter-reboiler benefits (McCabe-Thiele Method)

    B

    F 2

    Q DL 1, 0+ D

    2

    3

    L 1, 0

    Q

    1 QE1

    xB xDB,xB

    D,xD

    y

    zF

    s1

    s2

    s3

    xB

    F

    QEyF

    xF

    xopt,F

    D

    yQE

    yQE

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 72

    Design of Internally Heat-Integrated Distillation Columns (HIDiC)

    Inter-Condenser and inter-reboiler benefits (McCabe-Thiele Method)

    B

    F 1

    Q D

    L 1, 0+ D

    2

    3

    L 1, 0

    Q

    1

    QA2

    xQA zFxB xDB,xB

    D,xD

    y

    s1

    s2

    s3

    xB

    F

    QA

    yF

    xF

    xopt,F

    D

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    37/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 73

    Design of Internally Heat-Integrated Distillation Columns (HIDiC)

    General representation of an internally heat-integrated distillation columnGeneral representation of an internally heat-integrated distillation column

    B,xBB

    F 2

    Q D

    D

    L 1, 0+ D

    3

    4

    L 1, 0

    Q

    2

    QA3

    1 Q E1

    DD,xD

    InternalHeat

    Integration

    (high pressure)

    (low pressure)

    Rectifying sector

    (light components)

    Stripping sector

    (heavy components)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 74

    Design of Internally Heat-Integrated Distillation Columns (HIDiC)

    EV

    cond

    RSSS

    Comp

    p-H

    Reb

    F

    IHER

    D

    QD

    QR

    Ln,RS

    V1,SS

    Ws

    QIHT

    -QIHT

    Ln,RS

    (high pressure)

    (low pressure)

    General configuration of an internally heat-integrated distillation columnGeneral configuration of an internally heat-integrated distillation column

    B

    QB

    PSO algorithm

    Rectifying SectorStrippingSector

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    38/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 75

    Design of Internally Heat-Integrated Distillation Columns (HIDiC)

    Condenser and reboiler duties, and compressor shaft work vs overallinternal heat transfer (QIHT)

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    500

    1000

    1500

    2000

    2500

    QIHT (kW)

    Q(kW)

    QDQR

    WS

    It is possibleto optimize the TAC!!!

    But the solutiondepends stronglyon the cost of theelectricity and thesystem studied, purityof the final products,etc.!!

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 76

    Design of sustainable processes

    General configuration of a vapour recompression distillation column (VRC)General configuration of a vapour recompression distillation column (VRC)

    EV

    cond

    Comp

    Reb

    F1

    B

    D

    Qp-cond

    Qp-H

    QIHT

    (high pressure)

    (low pressure)

    R=L1,0

    Ws

    F2

    p-H

    p-cond

    Mainly for systems with smalltemperature difference between the top

    and bottom products

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    39/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Reyes-Labarta, J.A.*; Marcilla, A. Thermal Treatment and Degradation of Crosslinked Ethylene VinylAcetate-Polyethylene-Azodicarbonamide-ZnO Foams. Complete Kinetic Modelling and Analysis. Industrial& Engineering Chemistry Research. 2012, 51(28), 9515-9530 (http://dx.doi.org/10.1021/ie3006935).

    Reyes-Labarta, J.A.*; Marcilla, A.; Sempere, J. Kinetic Study of the Thermal Processing and Pyrolysis ofCrosslinked Ethylene Vinyl Acetate-Polyethylene Mixtures. Industrial & Engineering Chemistry Research,

    2011, 50(13), 79647976 (http://dx.doi.org/10.1021/ie200276v)Reyes-Labarta*, J.A.; Marcilla, A. Differential Scanning Calorimetry Analysis of the Thermal Treatmentof Ternary Mixtures of Ethylene Vinyl Acetate, Polyethylene and Azodicarbonamide. Journal of AppliedPolymer Science, 2008, 110(5), 3217-3224 (http://dx.doi.org/10.1002/app.28802). RepositorioInstitucional RUA: http://hdl.handle.net/10045/13312.

    Reyes-Labarta, J.A.; Marcilla, A. Kinetic Study of the Decompositions Involved in the ThermalDegradation of Commercial Azodicarbonamide. Journal of Applied Polymer Science(http://dx.doi.org/10.1002/app.26922). Repositorio Institucional RUA:http://hdl.handle.net/10045/24682.

    Reyes-Labarta, J.A. ; Olaya, M.M.; Marcilla, A. DSC Study of the Transitions Involved in the Thermal

    Treatment of Foamable Mixtures of PE and EVA Copolymer with Azodicarbonamide. Journal of AppliedPolymer Science, 2006, 102(3), 2015-2025 (http://dx.doi.org/10.1002/app.23969). RepositorioInstitucional RUA: http://hdl.handle.net/10045/24680.

    Reyes-Labarta, J.A. ;Olaya, M.M.;Marcilla, A. DSC and TGA Study of the Transitions Involved in theThermal Treatment of Binary Mixtures of PE and EVA Copolymer with a Crosslinking Agent. Polymer,2006, 47(24), 8194-8202 (http://dx.doi.org/10.1016/j.polymer.2006.09.054)

    77

    Biography (I. Kinetic modelling)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Marcilla, F.J. Sempere y J.A. Reyes-Labarta. Differential Scanning Calorimetry of Mixtures of EVA andPE. Kinetic Modeling. Polymer, 2004, 45(14), 4977-4985(http://dx.doi.org/10.1016/j.polymer.2004.05.016)

    Conesa, J.A.; Caballero, J.A.; Reyes-Labarta, J.A. Artificial Neural Network for Modelling ThermalDecompositions. Journal of Analytical and Applied Pyrolysis, 2004, 71, 343-352(http://dx.doi.org/10.1016/S0165-2370(03)00093-7)

    Reyes-Labarta, J. A.; Herrero, M.; Mijangos, C.; Reinecke. H. Wetchemical Surface Modification ofPlasticized PVC. Polymer, 2003, 44, 2263-2269 (http://dx.doi.org/10.1016/S0032-3861(03)00140-X)

    Marcilla, A.; Gmez, A.; Reyes-Labarta, J.A.; Giner, A.; Hernndez, F. Kinetic study of polypropylenepyrolysis using ZSM-5 and an equilibrium fluid catalytic cracking catalyst. Journal of Analytical andApplied Pyrolysis, 2003, 68-69, 467-480 (http://dx.doi.org/10.1016/S0165-237(03)00036-6)

    Marcilla, A., Gmez, A., Garca, A.N., Beltrn, M., Reyes-Labarta, J.A., Menargues, S., Olaya, M.M.,Hernndez, F., Giner, A., Valds, F. The use of zeolites and other acid solids as catalysts in the pyrolysisof polymers in N2 and air. Trends in Polymer Science, 2003, 8, 1-25(http://dx.doi.org/10.1002/chin.200601239)(http://www3.interscience.wiley.com/cgi-bin/fulltext/112194285/HTMLSTART)

    Marcilla, A.; Gmez, A.; Reyes-Labarta, J.A.; Giner, A. Catalytic pyrolysis of polypropylene using MCM-41. Kinetic model. Polymer Degradation and Stability, 2003, 80, 233-240(http://dx.doi.org/10.1016/S0141-3910(02)00403-2).

    78

    Biography (I. Kinetic modelling)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    40/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh.

    Marcilla, A.; Reyes, J. A.; Sempere, F. J. DSC Kinetic Study of the Transitions Involved in the ThermalTreatment of Polymers. Methodological Considerations. Polymer, 2001, 42(12), 5343-5350(http://dx.doi.org/10.1016/S0032-3861(00)00925-3)

    Marcilla, A.; Gmez, A.; Reyes, J. A. MCM-41 Catalytic Pyrolysis of Ethylene-Vinyl Acetate Copolymers.

    Kinetic Model. Polymer, 2001, 49(19), 8103-8111(http://dx.doi.org/10.1016/S0032-3861(01)00277-4)

    Reyes, J. A.; Conesa, J. A.; Marcilla, A. Pyrolysis and combustion of polycoated cartons recycling. kineticmodel and ms analysis. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 747-763(http://dx.doi.org/10.1016/S0165-2370(00)00123-6)

    Sempere, J. Estudio de los Procesos de Reticulado, Espumado y Descomposicin Trmica deFormulaciones Industriales de Copolmeros de EVA y PE. Anlisis Cintico . Biblioteca Virtual Miguel deCervantes (Universidad de Alicante), 2003.

    http://www.cervantesvirtual.com/FichaObra.html?Ref=9612http://hdl.handle.net/10045/10130

    79

    Biography (I. Kinetic modelling)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 80

    -Marcilla, A.; Reyes-Labarta, J.A.; Olaya, M.M.; Serrano M.D. Simultaneous Correlation of LL, LS andLLS Equilibrium Data for Water + Organic Solvent + Salt Ternary Systems. Hydrated Solid PhaseFormation. Industrial & Engineering Chemistry Research, 47, 2100-2108 (2008).http://dx.doi.org/10.1021/ie071290w

    -Olaya, M.M.; Marcilla, A.; Serrano,M.D.; Botella A.; Reyes-Labarta, J.A. Simultaneous Correlation of LL,LS and LLS Equilibrium Data for Water + Organic Solvent + Salt Ternary Systems. Anhydrous SolidPhase. Industrial & Engineering Chemistry Research, 46, 7030- 7037 (2007).http://dx.doi.org/10.1021/ie0705610

    -Reyes, J.A.; Conesa, J.A.; Marcilla, A.; Olaya, M.M. Solid-Liquid Equilibrium Thermodynamics: checkingstability in multiphase systems using Gibbs Energy Function. Industrial & Engineering ChemistryResearch, 40, 902-907 (2001). http://dx.doi.org/10.1021/ie000435v

    -Reyes-Labarta, J.A.; Olaya, M.; Velasco, R.; Serrano M.D.; Marcilla, A. Correlation of the Liquid-LiquidEquilibrium Data for Specific Ternary Systems with One or Two Partially Miscible Binary Subsystems.Fluid Phase Equilibria 278, 9-14 (2009). http://hdl.handle.net/10045/24683

    -Marcilla, A; Olaya, M.; Serrano M.D.; Velasco, R.; Reyes-Labarta, J.A. Gibbs Energy Based Procedurefor the Correlation of Type 3 Ternary Systems Including a Three-Liquid Phase Region. Fluid PhaseEquilibria 281, 87-95 (2009). http://hdl.handle.net/10045/13315

    -Olaya, M.M.; Reyes-Labarta, J.A.; Velasco, R.; Ibarra, I.; Marcilla A. Modelling Liquid-Liquid Equilibriafor Island Type Ternary Systems. Fluid Phase Equilibria 265, 184-191 (2008).

    http://hdl.handle.net/10045/24681

    -Marcilla, A; Olaya, M.; Serrano M.D.; Reyes-Labarta, J.A. Methods for Improving Models for CondensedPhase Equilibrium Calculations. Fluid Phase Equilibria 296(1), 15-24 (2010).http://hdl.handle.net/10045/13314

    Biography (II. Phase equilibria)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    41/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 81

    -Reyes, J.A.; Olaya, M.M.; Gmez, A.; Marcilla, A. Calculation of liquid-vapor and liquid-liquid equilibriumin multicomponent systems using correlations of equilibrium data. V Iberoamerican Conference on PhaseEquilibria and Fluid Properties for Process Design. EQUIFASE 99 Book of Abstracts.http://hdl.handle.net/10045/2687

    -Olaya, M.M.; Reyes-Labarta, J.A.; Serrano, M.D.; Marcilla, A. Vapor-Liquid Equilibria using the Gibbs

    Energy and the Common Tangent Plane Criterion. Chemical Engineering Education 44(3), 236-244 (2010).http://hdl.handle.net/10045/24677

    -Olaya, M.M.; Ibarra, I.; Reyes-Labarta, J.A.; Serrano, M.D.; Marcilla, A. Computing Liquid-Liquid PhaseEquilibria: An exercise to understand the nature of false solutions and how to avoid them. ChemicalEngineering Education 41 (3), 218-224 (2007). http://hdl.handle.net/10045/14277

    -Gmez, A.; Ruiz, F.; Marcilla, A.;Reyes, J.; Menargues, S. Diseo de la separacin de mezclas ternarias(I). Conceptos grficos del equilibrio entre fases . Ingeniera Qumica, 377, 219-229 (2001).

    -Gmez, A.; Ruiz, F.; Marcilla, A.;Reyes, J.; Menargues, S. Diseo de la separacin de mezclas ternarias(II). Aplicacin de conceptos grficos a la separacin de mezclas azeotrpicas. Ingeniera Qumica, 379,253-262 (2001).

    -Marcilla, A.; Olaya, M.M.; Reyes, J.; Gmez, A. Graphical analysis of the phase equilibria diagram. VIberoamerican Conference on Phase Equilibria and Fluid Properties for Process Design. EQUIFASE 99Book of Proceedings, pag. : 3 10. Vigo (Espaa), 1999 (http://hdl.handle.net/10045/2482).

    Biography (II. Phase Equilibria)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 82

    -Reyes-Labarta, J.A.; Caballero, J.A.; Marcilla, A. Numerical Determination of Distillation Boundaries forMulticomponent Homogeneous and Heterogeneous Azeotropic Systems. Computer Aided Chem.Eng.28(C), 643-648 (2010). http://dx.doi.org/10.1016/S1570-7946(10)28108-7

    Escape20: http://hdl.handle.net/10045/14203

    -Reyes-Labarta, J.A.; Serrano, M.D.; Velasco, R.; Olaya, M.M.; Marcilla, A. Approximate Calculation ofDistillation Boundaries for Ternary Azeotropic Systems. Industrial & Engineering Chemistry Research,50(12), 7462-7466 (2011). http://dx.doi.org/10.1021/ie101873g

    -Marcilla, A.; Serrano, M.D.; J.A. Reyes-Labarta. J.A.; Olaya, M.M. Checking Liquid-Liquid Critical PointConditions and their Application in Ternary Systems. Industrial & Engineering Chemistry Research51(13), 5098-5102 (2012). http://dx.doi.org/10.1021/ie202793r

    - Marcilla, A.; Reyes-Labarta, J.A.; Serrano M.D.; Olaya, M.M. GE Models and Algorithms for CondensedPhase Equilibrium Data Regression in Ternary Systems: Limitations and Proposals. The OpenThermodynamics Journal - Special Issue. 5, 48-62 (2011). http://hdl.handle.net/10045/19865

    -Marcilla, A; Olaya, M.M.; Serrano M.D.; Reyes-Labarta, J.A. Aspects to be considered for thedevelopment of a correlation algorithm for condensed phase equilibrium data for ternary systems.I&ECR 49(20), 10100-10110 (2010). http://dx.doi.org/10.1021/ie1010383

    -Marcilla, A.; Reyes-Labarta J.A.; Velasco, R.; Serrano, M.D.; Olaya, M.M. Explicit Equation to Calculate

    the Liquid-Vapour Equilibrium for Ternary Azeotropic and Non Azetropic Systems. VIII IberoamericanConference on Phase Equilibria and Fluid Properties for Process Design (2009).http://hdl.handle.net/10045/14276

    Biography (II. Phase Equilibria)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    42/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 83

    -Reyes-Labarta, J.A. Diseo de Columnas de Rectificacin Y Extraccin Multicomponentes. BibliotecaVirtual Miguel de Cervantes (Universidad de Alicante), 1998.

    http://www.cervantesvirtual.com/FichaObra.html?Ref=4845&ext=pdf

    http://hdl.handle.net/10045/10023

    -A. Marcilla, A. Gmez, J.A. Reyes, M.M. Olaya.; New Method for Quaternary Systems Liquid-liquidExtraction Tray to Tray Design. Industrial & Engineering Chemistry Research, 38, 3083-3095 (1999).http://dx.doi.org/10.1021/ie9900723

    -A. Marcilla, A. Gmez, J.A. Reyes; New Methods for Designing Distillation Columns of MulticomponentMixtures. Latin American Applied Research and International Journal of Chemical Engineering, 27, 51-60 (1997). http://hdl.handle.net/10045/24679

    -Reyes, J.A.; Gomez, A.; Marcilla, A. Graphical concepts to orient the minimum reflux ratio calculation onternary mixtures distillation. Industrial & Engineering Chemistry Research 39(10),3912-3919 (2000).http://dx.doi.org/10.1021/ie9907021

    -J.A. Reyes-Labarta, I.E. Grossmann; Disjunctive Programming Models for the Optimal Design Of Liquid-liquid Multistage Extractors and Separation Sequences. AIChE Journal. 2001, 47 (10), 2243-2252.

    http://dx.doi.org/10.1002/aic.690471011

    - J.A. Reyes-Labarta y I.E. Grossmann. Optimal Synthesis of Liquid-liquid Multistage Extractors.Escape-11 (European Symposium of Computer Aided Process Engineering), Capec (Computer AidedProcess Engineering Center). ISBN: 0-444-50709-4 (Dinamarca, 2001). http://dx.doi.org/10.1016/S1570-7946(01)80076-6

    Biography (III. Unit operations)

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 84

    -Reyes-Labarta, J.A.; Caballero, J.A.; Marcilla, A. A Novel Hybrid Simulation-Optimization Approach forthe Optimal Design of Multicomponent Distillation Columns. Computer Aided Chemical Engineering. 2012,30, 1257-1261. http://dx.doi.org/10.1016/B978-0-444-59520-1.50110-X

    -Reyes-Labarta, J.A.; Brunet, R.; Caballero, J.A.; Boer, D.; Jimnez, L. Integrating process simulationand MINLP methods for the optimal design of absorption cooling systems. Computer Aided ChemicalEngineering. 2011, 29, 301-305. http://dx.doi.org/10.1016/B978-0-444-53711-9.50061-4

    -Brunet, R.; Reyes-Labarta, J.A.; Guilln-Goslbez, G.; Jimnez, L.; Boer, D. Combined Simulation-Optimization Methodology for the Design of Environmental Conscious Absorption Systems. Computersand Chemical Engineering, 2012, 46, 205-216 http://hdl.handle.net/10045/24678

    -Marcilla et al. Review and extension of the McCabe-Thiele method covering multiple feeds, productsand heat transfer stages (2012). http://hdl.handle.net/10045/23195

    -Reyes-Labarta, J.A.; Navarro M.A.; Caballero, J.A. A Hybrid Simulation-Optimization Approach for theDesign of Internally Heat-Integrated Distillation Columns. AIChE 2012 Annual Meeting (EnergyEfficiency by Process Intensification).https://aiche.confex.com/aiche/2012/webprogram/Paper267732.html

    Biography (III. Unit operations)

  • 7/24/2019 PSE v80i3 Seminar JAReyesLabarta CAPD CMU2012

    43/43

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburgh. 85

    Thanks very much for your attention

    Any question?

    Juan A. Reyes-Labarta. PSE Seminar, CAPD-CMU. October, 2012. Pittsburghweb: http://iq.ua.es/~jareyes/