ProtectionRelayLE KoosTheron DIGSILENT Pacific

18
DIgSILENT Pacific Users‘ Group Meeting June 2007 1 Protection Relay Load Encroachment DIgSILENT Pacific Melbourne Office Suite 310 · 370 St Kilda Road · Melbourne · Victoria · 3004 · Australia Perth Office Suite 11 · 189 St Georges Terrace · Perth · Western Australia · 6000 · Australia

description

DIGSI

Transcript of ProtectionRelayLE KoosTheron DIGSILENT Pacific

Page 1: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 1

Protection Relay Load Encroachment

DIgSILENT Pacific

Melbourne Office

Suite 310 · 370 St Kilda Road · Melbourne · Victoria · 3004 · Australia

Perth Office

Suite 11 · 189 St Georges Terrace · Perth · Western Australia · 6000 · Australia

Page 2: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 2

Protection Relay Load Encroachment

Managing the risk of distance protection load encroachment during contingencies

• Traditional use of software tools by protection engineers• Modelling of relays considered time consuming/complex• Benefit of relay simulation not apparent• Unsure of accuracy/reliability of data• Hesitance to use DPL• Force of habit

• Typical project example• Project specific confidential• Risk of load encroachment due to network configuration changes• Risk of incorrect directional EF relays due to contingencies• Altered source impedance impact on all OC and EF relays• Impact on breaker failure requirement• Formulation of approach • Network model: Transformer vector groups

Page 3: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 3

Protection Relay Load Encroachment

Protection relay mix• Many older electro-mechanical distance relays• Some modern distance relays (SEL 311, SEL 321)• External starters• Mixture of OC and EF relays and elements in distance relays• No documentation was available for some older relays

Project was ideally suited for automation• Large number of contingencies to consider (>40)• Very complex interconnected 66 kV network• Different operating conditions (12 base cases)• Large number of relays (124 relays modelled)• Various load flow and fault conditions to evaluate (3)• 40 x 12 x 124 x 3 = 178,560!• Difficult enough to make sense of such a large number of tests

Page 4: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 4

Protection Relay Load Encroachment

Far reaching starter elements for breaker failure backup

General Load

2-W

indi

ng..

2-W

indi

ng..

D

Ext

erna

l ..

Ext

erna

l Grid

Line(1)Line(1)LineLine

C

B

A

DIg

SILE

NT

Page 5: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 5

Protection Relay Load Encroachment

238.225.213.200.188.175.163.150.138.125.113.100.87.575.062.550.037.525.012.5-12.5-25.0-37.5-50.0-62.5 [pri.Ohm]

188.

175.

163.

150.

138.

125.

113.

100.

87.5

75.0

62.5

50.0

37.5

25.0

12.5

-12.5

-25.0

-37.5

-50.0

[pri.Ohm]

Cubicle lne(9)\REL 15080

REL 15080Zl A 139.897 pri.Ohm 10.73°Zl B 139.897 pri.Ohm 10.73°Zl C 139.897 pri.Ohm 10.73°Zl A 139.897 pri.Ohm 10.73°Zl B 139.897 pri.Ohm 10.73°Zl C 139.897 pri.Ohm 10.73°Z A 139.897 pri.Ohm 10.73°Z B 139.897 pri.Ohm 10.73°Z C 139.897 pri.Ohm 10.73°Fault Type: -Tripping Time: 9999.999 s

DIg

SILE

NT

Page 6: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 6

Protection Relay Load Encroachment

Initial study• Simply measured load without system modification• Repeated study with system modification• Report load flow for each case and try to make a comparison• Percentage change meaningless for small loads• Absolute value meaningless for large loads• Report concluded that system change would not impact on load encroachment• Some doubt remained

Page 7: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 7

Protection Relay Load Encroachment

36.033.030.027.024.021.018.015.012.09.006.003.00-3.00-6.00-9.00-12.0-15.0-18.0-21.0-24.0-27.0-30.0-33.0-36.0 [sec.Ohm]

36.0

33.0

30.0

27.0

24.0

21.0

18.0

15.0

12.0

9.00

6.00

3.00

-3.00

-6.00

-9.00

-12.0

-15.0

-18.0

-21.0

[sec.Ohm]

Cubicle lne(4)\REL 32001

DIg

SILE

NT

SEL 321

Page 8: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 8

Protection Relay Load Encroachment

4.203.903.603.303.002.702.402.101.801.501.200.900.600.30-0.30-0.60-0.90-1.20-1.50-1.80-2.10-2.40-2.70-3.00 [sec.Ohm]

5.40

5.10

4.80

4.50

4.20

3.90

3.60

3.30

3.00

2.70

2.40

2.10

1.80

1.50

1.20

0.90

0.60

0.30

-0.30

[sec.Ohm]

Cub_1\Relay A

DIg

SILE

NT

RX-plotRazoastarter

Page 9: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 9

Protection Relay Load Encroachment

Methodology• Import network model from PSS/E or other source• Create relay models not available (made use of generic models)• Model and set all relay elements• Set up all load flow cases to be considered• Prepare DPL script to export all RX plots• Prepare DPL script for contingency events and reporting (relay identification an

operating time; graphics and/or spreadsheet)• Prepare DPL script for sensitivity analysis and reporting• Analyse results (relay operation for load flow) and write report

Challenges• Non-standard relay models• Lack of protection scheme understanding (no substation level SLD)• Accurate settings database (StationWare!)• Complex relay responses

Page 10: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 10

Protection Relay Load Encroachment

RAZOA Starter• Current measurement is always phase current• Voltage measurement is either phase to phase (2 or 3 phase faults) or phase

to ground (in case of all faults to ground)• Applied setting measures correct for phase to ground fault with K0 = 1 (Zf =

Uan/Ian) where K0 = (Z0 – Z1)/3Z1

• For a single phase fault with K0 = 1; Z0 = 4 x Z1

• Zf = (2 x Z1 + Z0)/3 = 2 x Z1

• For a 3-phase fault (similar to load encroachment)• Z’f = Ubc/Ib = √3 Z1|- 30°|• Hence Z’f = √3/2 x Zf |-30°|• The measurement of the “fault” impedance is therefore less than the setting

and hence the relay can overreach the setting to compensate for under-measurement

• Similarly Zf = 2 x Z1 for a phase to phase fault

Page 11: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 11

Protection Relay Load Encroachment

RAZOA Starter continued

3.603.303.002.702.402.101.801.501.200.900.600.300.00-0.30-0.60-0.90-1.20-1.50-1.80-2.10-2.40-2.70-3.00-3.30-3.60 [sec.Ohm]

5.40

5.10

4.80

4.50

4.20

3.90

3.60

3.30

3.00

2.70

2.40

2.10

1.80

1.50

1.20

0.90

0.60

0.30

[sec.Ohm]

Cub_1\Relay ACub_1\Relay B

Relay BZl A 2.429 sec.Ohm 85.08°Zl B 2.429 sec.Ohm 85.08°Zl C 2.429 sec.Ohm 85.08°Zl A 2.429 sec.Ohm 85.08°Zl B 2.429 sec.Ohm 85.08°Zl C 2.429 sec.Ohm 85.08°Z A 2.429 sec.Ohm 85.08°Z B 2.429 sec.Ohm 85.08°Z C 2.429 sec.Ohm 85.08°Fault Type: ABCTripping Time: 9999.999 sRelay AZl A 2.429 sec.Ohm 85.08°Zl B 2.429 sec.Ohm 85.08°Zl C 2.429 sec.Ohm 85.08°Zl A 2.429 sec.Ohm 85.08°Zl B 2.429 sec.Ohm 85.08°Zl C 2.429 sec.Ohm 85.08°Z A 2.429 sec.Ohm 85.08°Z B 2.429 sec.Ohm 85.08°Z C 2.429 sec.Ohm 85.08°Fault Type: ABCTripping Time: 3.01 s

DIg

SILE

NT

Page 12: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 12

Protection Relay Load Encroachment

RAZOA Starter Implementation Options• Special polarising element• Relay logic• Self polarised with parameter characteristics

Page 13: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 13

Protection Relay Load Encroachment

Large spreadsheets were prepared with fields:– Relay name– Base case tripping times– Contingencies– Contingencies tripping times

Open columns clearly shows where load flows did not converge.

Page 14: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 14

Protection Relay Operation

Direction OC and EF Test• Fault at both sides of each line/feeder• Single phase to earth fault with 0 Ohm; 50 Ohm and 500 Ohm resistance• Monitor both forward and reverse relay operation• List for each relay all elements that operate as well as operating times• Flag relays that operate for “reverse” faults – some would be non-directional• Flag relays that do not operate for forward faults – could be according to

element class• Repeat test for all operating conditions and contingencies• Analyse 178,560 relay operations times the number of relay elements

Challenges• Script took only two days to prepare• Long run time 2 hour per base case• Information overload• Testing of non-standard relay types

Page 15: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 15

Protection Relay Operation

Again large spreadsheets with columns:– Contingency– Line– Relay– Relay type– Relay polarity relative to fault (forward/reverse)– Busbar names– 0; 50 and 500 ohms fault resistance tripping times– Name of element picking up for each fault– Repeat the list for second/remote busbar.

Page 16: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 16

Protection Relay Operation

Time – distance diagram• Easily interpreted as long as not too many relays are involved

57.08845.67034.25322.83511.4180.0000 [pri.Ohm]

4.00

3.00

2.00

1.00

0.00

[s]

36501 MWTS/B.. 36505 SLE 36513 MFA 36502 MWTS/B..

57.088 45.670 34.253 22.835 11.418 0.0000[pri.Ohm]

4.00

3.00

2.00

1.00

0.00

[s]

36502 MWTS/B..36513 MFA36505 SLE36501 MWTS/B..

x-Axis: Impedance Cubicle lne(5)\REL 9421 Cubicle lne(5)\REL 12067 Cubicle lne(5)\REL 12066Cubicle lne\REL 31594 Cubicle lne\REL 32796 Cubicle lne\REL 32796 Dir EF Cubicle lne(1)\REL 31598Cubicle lne(1)\REL 31597 Cubicle lne(1)\REL 31599 Cubicle lne(1)\REL 31448 Cubicle lne(1)\REL 31449Cubicle lne(1)\REL 31450 Cubicle lne\REL 31974 Cubicle lne\REL 31458 Cubicle lne(4)\REL 12079Cubicle lne(4)\REL 9152 Cubicle lne(4)\REL 12080

DIg

SILE

NT

Page 17: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 17

Protection Relay Operation

Time – distance diagram• Ideal for grading evaluation between OC, EF and distance relays• Ideally a time – distance diagram consisting of two line lengths each• Repeated definition of paths and diagrams• Typically 4 relays per cubicle – long paths not sensible

8.17636.54104.90583.27051.63530.0000 [pri.Ohm]

3.00

2.00

1.00

0.00

[s]

36502 MWTS/B.. 36941 YPS/B1 36499 LV1/TE

8.1763 6.5410 4.9058 3.2705 1.6353 0.0000[pri.Ohm]

3.00

2.00

1.00

0.00

[s]

36499 LV1/TE36941 YPS/B136502 MWTS/B..

x-Axis: Impedance Cubicle lne(6)\REL 24772 Cubicle lne(1)\REL 32721 Cubicle lne\REL 32711Cubicle lne\REL 32716 Cubicle lne\REL 33278

loc_name Ph-Ph 1

loc_name Ph-Ph 4

DIg

SILE

NT

Page 18: ProtectionRelayLE KoosTheron DIGSILENT Pacific

DIgSILENT Pacific Users‘ Group Meeting June 2007 18

Protection Relay Operation

Lessons learnt• Scope of exactly what tests and how to test needs to be clearly defined• Lack of client knowledge about what is possible• Client has no idea of what tasks are labour intensive and what not• Interpretation of vast amounts of data could be difficult• Understanding of PowerFactory relay elements• Access to good relay manuals not guaranteed