Proceedings of the ARGE Sensorik PhD-Summit 2011Proceedings of the ARGE Sensorik PhD-Summit 2011...

101
Proceedings of the ARGE Sensorik PhD-Summit 2011 June 29-30, 2011 Johannes Kepler University Linz, Science Park, Room MT 226/1 Edited by Bernhard Jakoby (Johannes Kepler University Linz)

Transcript of Proceedings of the ARGE Sensorik PhD-Summit 2011Proceedings of the ARGE Sensorik PhD-Summit 2011...

  • Proceedings of the

    ARGE Sensorik PhD-Summit 2011

    June 29-30, 2011 Johannes Kepler University Linz, Science Park, Room MT 226/1

    Edited by Bernhard Jakoby (Johannes Kepler University Linz)

  • ii

    Chairmen of the Workshop: Bernhard Jakoby (Johannes Kepler University Linz), Michiel Vellekoop (Vienna University of Technology), Franz Kohl (Austrian Academy of Sciences) Proceedings Editor: Bernhard Jakoby (Johannes Kepler University Linz) Contact: Bernhard Jakoby Institute for Microelectronics and Microsensors Johannes Kepler University Linz Altenberger Strasse 69 A4040 Linz, Austria Published electronically in September 2011 © remains with the authors of the individual contributions ISBN: 978-3-9502856-1-1 (Online-Publication)

  • iii

    Content Note: Page numbers in arabic numerals refer to the page numbers given at the bottom of the respective pages (in red color if you view or print in color) - these were electronically imprinted on the documents provided by the authors (some contributions use independent page numbering) Preface ..................................................................................................................... iv Workshop Program....................................................................................................v Selected Contributions ............................................................................................. vi

    Polymer-based photonic label-free biosensor, R. Bruck et al .........................1 Quantum dots in plasmonic systems for optochemical sensors, N. Reitinger.....................................................................................................7 Modeling of an LFE piezoelectric fluid sensor as layered structure in the spectral domain, T. Voglhuber-Brunnmaier ..................................................14 A Highly Uniform Lamination Micromixer with Wedge Shaped Inlet Channels for Time Resolved Infrared Spectroscopy, W. Buchegger et al .......................................................................................20 Thermoelectric energy harvesting in aircraft for wireless sensors, D. Samson et al ............................................................................................29 Capacitive Icing Detection and Capacitive Energy Harvesting on a 220kV HV Overhead Power Line, M. Moser et al .........................................38 Sensor integration in digital microfluidic systems, T. Lederer .......................47 Label-Free Cell Analysis: An Infrared Sensor for CH2 stretch Ratio Determination, S. van den Driesche .............................................................57 Composition monitoring in a gas phase polymerization process, J. Sell et al ....................................................................................................67 Accelerated Statistical Inversion and Bayesian Calibration for Electrical Tomography, M. Neumayer...........................................................79 Yet another precision impedance analyzer - Readout electronics for resonating sensors, A.O. Niedermayer....................................................91

  • iv

    Preface The Austrian Working Group on Sensors (ARGE Sensorik) was founded in 2006 aiming at the optimization of the joint utilization of sensor know-how and associated technology distributed over Austria. One major goal of the ARGE Sensorik is the initiation of joint research networks also involving industrial partners. The ARGE now serves as platform representing various facets of interdisciplinary sensor research in Austria. Its members are research institutes and centers of competence working on sensors or dealing with problems where sensors play a major role. The activities of the ARGE have been stimulated and financially supported by the Austrian Research Association (Österreichische Forschungsgemeinschaft, ÖFG) from the very beginning. One of the main activities of the ARGE is the organization of workshops featuring the presentation of current research topics by major Austrian players in sensor research and leading to scientific exchange among them. This is done in plenary workshops but also in topically focuses small groups. For more information on the ARGE and current activities, please visit www.arge-sensorik.at . In 2009 the ARGE steering committee decided to have a plenary meeting where young researchers, in particularly those who are about to or have recently finished their PhD theses present their work. Due to the success of that event (held in Vienna) we decided to continue with another young researcher meeting in 2011, this time in Linz. The ARGE Sensorik Award was also presented at this occasion where the jury selection was based on the presentations at the workshop and one journal publication per participant submitted before the workshop. The award was presented to Roman Bruck and two special awards have been given to Norbert Reitinger and Thomas Voglhuber-Brunnmaier. A selection of the contributions is presented in this electronic Proceedings volume. At this occasion I would like to thank all individuals who helped to organize this event (in particular staff at the Institute of Microelectronics and Microsensors), our financial sponsors (Johannes Kepler University Linz, Austrian Center of Competence in Mechatronics ACCM, Österreichische Forschungsgemeinschaft ÖFG), and of course the contributors for presenting and discussing their work! Linz, September 2011 Bernhard Jakoby

  • v

    Workshop Program Time Name Affiliation Topic* 09:00 B. Jakoby JKU Welcome and Introduction 09:15 Roman Bruck AIT Integrated polymer-based Mach-Zehnder interferometer

    label-free streptavidin biosensor compatible with injection molding

    09:35 Norbert Reitinger UG Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA

    09:55 Thomas Voglhuber JKU Modeling of an LFE piezoelectric fluid sensor as layered structure in the spectral domain

    10:15 Wolfgang Buchegger TUW A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy

    10:35 Coffee Break 11:00 Dominik Samson TUW Wireless sensor node powered by aircraft specific

    thermoelectric energy harvesting 11:20 Lukas Richter AIT Monitoring Cellular Stress Responses to Nanoparticles

    using a Lab-on-a-Chip 11:40 Michael Moser TUG Strong and Weak Electric Fields Interfering: Capacitive

    Icing Detection and Capacitive Energy Harvesting on a 220 kV High-Voltage Overhead Power Line

    12:00 Lunch Break 13:00 Michael Rosenauer

    (ARGE Sensorik Award Winner 2010)

    Osram Introduces his research associated with the ARGE Sensorik Award 2010 and his current work with OSRAM

    13:20 Moritz Eggeling AIT Low spin current-driven dynamic excitations and metastability in spin-valve nanocontacts with unpinned artificial antiferromagnet

    13:40 Thomas Lederer JKU Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform

    14:00 Sander van den Driesche

    TUW A label-free indicator for tumor cells based on the CH2-stretch ratio

    14:20 Coffee Break 14:40 Johannes Sell ACCM,

    JKU Real-time monitoring of a high pressure reactor using a gas density sensor

    15:00 Markus Neumayer TUG Accelerated Markov Chain Monte Carlo Sampling in Electrical Capacitance Tomography

    15:20 Nicola Moscelli TUW An Imaging System for Real-Time Monitoring of Adherently Grown Cells

    15:40 Alexander Niedermayer

    ACCM, JKU

    Yet another precision impedance analyzer (YAPIA)—Readout electronics for resonating sensors

    16:00 Short Break (Jury Meeting) 16:15 B. Jakoby, M.J.

    Vellekoop, F. Kohl JKU, TUW,ÖAW Presentation of the ARGE Sensorik Awards 2010 (M.

    Rosenauer) and 2011 (to be announced at this moment) 16:30 B Jakoby JKU Closing Discussion

    *indicated topics are titles of papers submitted for the ARGE Sensorik Award 2011, topics of talks may vary.

  • vi

    Selected Contributions Polymer-based photonic label-free biosensor, R. Bruck et al Quantum dots in plasmonic systems for optochemical sensors, N. Reitinger Modeling of an LFE piezoelectric fluid sensor as layered structure in the spectral domain, T. Voglhuber-Brunnmaier A Highly Uniform Lamination Micromixer with Wedge Shaped Inlet Channels for Time Resolved Infrared Spectroscopy, W. Buchegger et al Thermoelectric energy harvesting in aircraft for wireless sensors, D. Samson et al Capacitive Icing Detection and Capacitive Energy Harvesting on a 220kV HV Overhead Power Line, M. Moser et al Sensor integration in digital microfluidic systems, T. Lederer Label-Free Cell Analysis: An Infrared Sensor for CH2 stretch Ratio Determination, S. van den Driesche Composition monitoring in a gas phase polymerization process, J. Sell et al Accelerated Statistical Inversion and Bayesian Calibration for Electrical Tomography, M. Neumayer Yet another precision impedance analyzer - Readout electronics for resonating sensors, A.O. Niedermayer Notes:

    In this electronic compilation, the page format has not been unified but has been kept as provided by the individual authors. Thus in the remainder of this document the page format (size) varies, which may have to be kept in mind when printing selected contributions.

    In the following, page numbers are given at the bottom of the respective pages (in red color if you view or print in color) - these were electronically imprinted on the documents provided by the authors (some contributions use independent page numbering).

  • Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Polymer-based photonic label-free biosensor

    AIT Austrian Institute of Technology GmbHDonau-City-Straße 1 | 1220 Vienna | AustriaT +43(0) 50550-4309 | F +43(0) [email protected]

    R. Brucka, E. Melnika, P. Muellnera, R. Hainbergera,M. Lämmerhoferb

    a AIT Austrian Institute of Technology GmbH, Health & Environment Department, Nano Systemsb University of Vienna, Department of Analytical Chemistry

    Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Polymer-based photonic label-free biosensor

    What is a biosensor and what are it’s applications?

    Measurement principle & sensor concept

    Experimental results

    Outline:

    1

  • Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Polymer-based photonic label-free biosensor

    Sensor for detection of biomolecules

    • Proteins• DNA/RNA• Antibodies

    Applications

    Medical diagnosis:• Detection of

    proteins/antibodies in blood• DNA analysis

    Environmental monitoring:• Pollutant detection

    Quality control issues:• Synthesis of proteins/DNA

    Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Polymer-based photonic label-free biosensor

    Label-free: direct measurement of

    biomolecular binding

    One-step process

    State-of-the-art diagnostic test:

    measurements of labels

    Two-step-process:1) immobilization of biomolecules2) attaching of (fluorescent,

    radioactive, magnetic,…) labels

    End-point measurements (no access to dynamic properties of binding process)

    Time-consuming (hours), therefore expensive

    Online measurements possible

    Fast (minutes)

    2

  • Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Polymer-based photonic label-free biosensor

    Advantages:• Highly sensitive• Instantaneous sensor

    response• Online measurement

    capability• small device footprint• parallel measurements

    Using the properties of light to detect changes in

    the surrounding

    No classical optics:Photonic sensors use new properties of light arising only when employing sub-wavelength structures

    Evanescent waveguide sensor in aMach-Zehnder interferometer configuration

    Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Polymer-based photonic label-free biosensor

    cost efficient mass production (disposable devices in medicine!)

    powerful technology platform for polymer processing , e.g. injection molding (e.g. CDs, DVDs, …) and spin coating

    limited range of refractive indices (1.4-1.7),

    therefore limited sensitivity

    3

  • Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Measurement principle:

    Biosensitive layer on top of waveguide providesselective binding and an enrichment ofbiomolecules on the sensor surface.

    binding events change propagation of light in the measurement window

    waveguide side view:

    analyte dissolved in sample fluid, nc ≈ 1.33

    substrate ns

    core layer, nwg

    sensing layer, nsl

    biomolecules (DNA, proteines, …)

    twgLightintensity

    tsl

    • Highly sensitive• Simple & low-priced read-

    out system

    )cos1( ���� inout PP

    Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    substrate (n=1.46)PMP: injection moldingSiO2: in this work

    Polyimide waveguide layer (n=1.65)spin coating

    single mode waveguides(inverted ribs)

    MZI sensor for surface sensing

    lateral tapers

    Device design:

    grating couplersSiO2

    Ormoclad

    Polyimid

    4

  • Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    MZI – measurement setup:

    Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Biotin-streptavidin measurements:Biotin – streptavidin binding on non-blocked surfaces

    smallest concentration measured: 0.1 μg/ml = 1.6 nMol = 30 ppb

    5

  • Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    Biotin-streptavidin measurements:Reproducability – blocking – specificity

    Standard deviation ~ 5%Sensor sensitivity varies max. 2%

    Blocking:Signal reduced by about 40%BUT:No non-specific binding!

    Polymer-based photonic label-free biosensor

    30.6.2010– Roman Bruck

    A vision:

    Price of read-out system: from 100k€ � k€Cost per test: from €s � cents

    Time to result: from days � 10’s of minutes

    Point-of-care diagnostics

    Preventive screening

    Applications in developing countries

    6

  • � �������������������������������������������������������������������������������������������������������������� ����!�����"������#������������������$����"���$���!�%�&�����'�(�����&������)*++,����-*��)*++� ������������������������������������������������ ���!!������� �� ���� "��#��������$���%&'()*&'+�,)(*%-.��'%/0)�*%+��1&0'2'.&)0%-.��3%020(-'/4445-/0&'.6.27/&')5*&7

  • � ������������������������������������������������ ���!!������� �� ���� "��#��������$���%&'()*&'+�,)(*%-.��'%/0)�*%+��1&0'2'.&)0%-.��3%020(-'/,1&0.3'4-.*2�/'%/0)/�5*/'+�0%�672*8')�4'45)*%'/�9�72�:')�5*/'+��0)/;� ������������������� ���������� ������������������������������������ ��! "�#�!� $%��&����!�����!�������'��!����(���"�!!���"�!����!����!��� � ""���� !���)�*�������!����+,-,.-/,00111123415������617189:15����1/,00 11 1111 ;��

  • � �������������������������������������������������������������� �� ���� ��!������������"#$%%&%'()*+#,(-+*.#*/,(.0+)$#,(+,1&,)�+,#*%.2+0#2&*%�*)�$�#+3.2$11&%,�/+*2,&%�"(1$3,+�)+*-�4$#&110.�./5$,+.�6�7,%2,+�)*+�8$%*9&*2,#5%*1*'3:�;%&�?//1&,>�@&),�"#&,%#,.:�A&,%%$:�?0.2+&$� ���������������������������������������������������� �� ���� ����������������� �!���"���# �!���"���#9

  • � ���������������� ������������������������������� !"!#��$��#"�%"��������&$���'���������(%%�)*+*,+-*..����/012�34��5�6�7���3899��-*.. �� ���� :��;���0�

    <��32=>?@�����A����#���$B����&���>?��#���$� C�B'$������������D�������������D�������$���� ���������������������������������������������������� ������������� �� ���� !������������"���10

  • � ����������������������� ��������������������������������������� �!"# �"$�%&�'()*)+*,)������-�.��/� '&012�3�45%�/"$$1��,)�� �� ���� 6&0��0����1�1 7�0�89�:�����;������9���9�>�9��,)?

  • � ����������������������������������������������������������� �� ���� ��� �������!������ ���� ���������������

    ��������������������������

    ���������������� �!"#$%&'(&)(&�"*!&+*,&�*'�'#*+-."&�-'�'&)'$%�/#-)+*+0 �.#+�*)+&%1%&+-+*$)�$!�2&(-0�(#%3&'�(-)�.&�2*!!*(#"+ �*)3&'+*4-+*$)�$!�&)&%40�+%-)'!&%�.&+5&&)�678' �*)+&%-(+*$)�.&+5&&)�678'�-)2�,&+-"12

  • � ������������������������������������������������������������������������� �!�""####$%&'#()*+�,-�#.#/01#(�22-�#!�"" ## #### 3�,4),�#%)-�-*5),#�6������7���89�:��

    7�

    ���;;���

    ���<���������;���:������=6�6��;�������������;��

    �7����89����!7@:AB:�6��.�)�/7��B:�1!�=)!7�9:�;C5)�)7��:�$���)�)..7�$:�D)�"�)!7�@:�>!)���0%�� A&�"���7�1!�?2E:�E�+)��+)!7�E:�>F�"�)!7�9:�*�=�"��+��0@ ���)�-�*)�)�!�+�G�'5B7�1!�?28:�>���?7�

  • Modeling of an LFE piezoelectric fluid sensor as layered structure

    in the spectral domain

    Thomas Voglhuber-BrunnmaierInstitute for Microelectronics and Microsensors,

    Johannes Kepler University, Linz, Austria

    Liquid sensing

    • Measure the parameters of a fluid E.g.: density, viscosity, permittivity, conductivity

    • Thickness field excitation (TFE) vs. lateral field excitation (LFE)

    • Modeled utilizing a semi-numeric spectral method

    14

  • Sensing utilizing piezoelectric structuresSauerbrey (1959) (mass loading)

    A...face area Δm…mass loadingρ...density c…shear modulus

    mass loading

    Kanazawa, Gordon (1985) (viscous fluid loading)

    ρ‘...liquid density µ…shear viscosity

    electrode

    λ/2

    Thickness Field vs. Lateral Field ExcitationTFE:

    E-fieldx

    z

    y

    stresses:piezoelectricity(Quartz):

    Vz

    LFE:

    E-field

    V

    yx

    E-field:

    Couplingfactors 330µm AT-Cut quartz :

    (i.e., coupling strength between electrical and mechanical fields)

    extensionalfast shear

    slow shear

    15

  • Thickness Field vs. Lateral Field Excitation

    V

    i

    d

    de

    dq

    TFE:

    liquidμf, ρf

    E-field

    ● only TFE - modes excited● electric field confined in the piezo● sensitivity to viscosity and density

    liquid

    LFE:

    μf, ρf, εf, σf● also LFE modes excited● electric field propagates into liquid● sensitivity also to permittivity and conductivity

    Vi

    d

    de

    dg dq

    electrodes

    zy x

    Modeling of the physical domainspiezoelectric equations + quasistatic approximation + equation of motion

    linearized Navier Stokes + electrostatic Maxwell Eqn.

    time-harmonic, layered structure: 3 systems of ODEs of 1st order of dim 8:

    air piezo liquid

    spectral domain method

    16

  • Modeling of the electrodes: Green’s function

    admittance spectrum

    -1V +1V

    charge distribution

    ● electrodes modeled as purely electrical(mechanic loading of electrodes is neglected)

    ● Green’s function (G) is potential response due to point charge (G obtained from coupled ODEs in the spectral domain)

    air

    liquid

    piezo

    ● determine the charge distribution necessary to produce the prescribed potential.

    charge distributionelectric potential

    Green‘s function

    field variables

    displacements stresses

    el. potential el. displacement

    deconvolution (Method of Moments)

    xz

    y

    Results for AT-cut quartz (ZXwlt 0°/54.75°/0°):slow thickness-shear-mode (c-mode) fast thickness-shear-mode (b-mode)

    piezoelectric disc: 330 µm AT-cut quartz 5 MHz, shear displacement in xsample liquid: pure (σ = 5 µS/m) and tap water (σ = 50 mS/m). Shear viscosity of water (µ = 1 mPa s) varied to µ = 0.5 mPa s and µ = 5 mPa s.

    slow shear mode shows good sensitivity to viscosity changes

    high cross-sensitivity to conductivity

    extensional and fast shear mode not useable

    k=8.8% k=6.2%

    Coupling factors are not sufficient! Also geometry has to be considered!

    17

  • For AT-quartz only TFE mode is usable: PSEUDO-LFE

    strongweak

    very weak

    Wang, W.; Zhang, Z.; Zhang, C.; Liu, Y.; Wang, W.; Zhang, Z.; Zhang, C.; Liu, Y.; FengFeng, G. & Jing, G. , G. & Jing, G. PseudoPseudo--LFE study in ATLFE study in AT--cut quartz for sensing applications cut quartz for sensing applications Proc. Proc. IEEE Sensors, IEEE Sensors, 20082008, 1548, 1548--1551 1551

    Experimental data from:

    Results for AT-cut quartz

    5.02 5.025 5.03 5.0350.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    f in MHz

    |Y| i

    n m

    S

    0

    321

    81322

    35

    100

    60

    5

    Admittance for Admittance for variingvariing conductivities of the liquid in conductivities of the liquid in mS/mmS/m..

    A pure LFE sensor: lithium niobate (YXwl 60°/58°)

    18

  • Summary+ Method yields reasonable admittance spectra and fields+ Fluid-structure interaction is fully modeled.

    - mechanical and electrical loading

    + Additional material layers can be applied easily- e.g. shielding electrode at bottom

    + Arbitrary piezoelectric materials and fluids can be simulated

    pseudo LFE

    19

  • A Highly Uniform Lamination Micromixer with Wedge Shaped Inlet Channels for Time Resolved Infrared Spectroscopy

    W. Buchegger1, C. Wagner2, B. Lendl2, M.Kraft3, M. Vellekoop1

    1Institute of Sensor and Actuator Systems2Institute of Chemical Technologies and Analytics

    Vienna University of Technology3CTR Carinthian Tech Research AG

    Outline

    • Background

    • Motivation

    • Micromixer requirements

    • Mixer designs and simulation

    • Material and fabrication

    • Measurement results

    • Conclusion

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    20

  • Background

    • Many chemical and bio-chemical reactions have so far unknown transition states or kinetics (e.g. protein folding)

    • Infrared Spectroscopy is a powerful method for time resolved analysis

    • Current technologies Step-Scan

    Rapid-Scan

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    Background

    • Step Scan Precise external trigger

    Cyclic reactions

    • Rapid Scan Limited mirror velocity

    Resolution 10ms

    t1

    t2

    t3

    x

    t4

    Rapid Scan

    x1

    x2

    x3

    t

    x4

    Step Scan

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    21

  • Motivation

    • Continuous flow micromixer to observe chemical reactions

    • Mixing by diffusion (passive) in the low millisecond range

    • Real-time information about reaction mechanisms and conformation changes of an analyte

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    Micromixer requirements

    • IR Spectroscopy requires shallow channels for aqueous solutions (about 10μm)

    • Measurement spot of about 150x150μm²

    • Strictly laminar flow

    • Mixing strongly depends on diffusion length

    • Materials for mid-infrared wavelength

    Dl

    t diff2

    mix D... diffusion coefficientldiff... diffusion length

    1Re :number Reynolds

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    22

  • Micromixer design

    • Two fluid channels

    • Mixing channel on top

    • Transparent cover

    Two fluid layers are formed

    Mixing times 5-10 ms

    IR-Beam

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    • Distribution network splits 2 liquid feeds into 4 streams

    • Velocity optimized for each stream Resulting in layers with

    different thickness

    Accounts for diffusion layers

    Micromixer design

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    23

  • Simulation results

    Straight shaped inlets create non-uniform fluid layers

    Wedge shaped inlets form uniform layers, shortening the diffusion length

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    Materials and Fabrication

    • Channel structures on silicon wafer by DRIE (20:1 aspect ratio)

    • Mixing channel in WL5150 (8μm)

    • Optical and IR transparent Cover for microscopic analysis: CaF2 (1mm)

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    24

  • Measurement principle

    • Each measurement spot equals a time stamp

    • Spot size about 150x150 μm²

    • Flow rate determines the time between spots and the overall time range

    IR

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    Characterization

    • Wedge shape

    Mixing times of

  • Characterization

    • Straight shape

    Mixing times of >3.5ms

    • Testreaction:

    Iron (III) [Fe3+] and thiocyanate [SCN−] form a dark complex

    • Flow rates ranging from 1-30μl/min

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    Characterization

    • Testreactions:

    Fluorescent dyes to visualize the individual fluid layers

    • Micromixer with a 25μm channel height

    • Formation of fluid layers equals simulation results

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    26

  • Time resolved FTIR Measurement

    • Sodium sulfite Na2SO3 and formaldehyde solution HCHO

    • Three changing bands (942cm-1 , 1025cm-1, 1180cm-1)

    • 86 recorded spectra in about 80 milliseconds

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    Conclusion

    • Passive mixing device applicable for IR-Spectroscopy enables continuous spectral analysis

    • Short mixing times due to individual fluid layers formed by the distribution network and the wedge shaped inlets

    • Mixing times in low millisecond range for aqueous solutions enable investigation of many chemical reactions

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    27

  • Dr. Artur Jachimowicz Dr. Hannes Schalko Edda Svasek Peter Svasek Ewald PirkerAndreas Rigler

    Competence Center Program

    Thank you for your attention!

    Acknowledgements

    ARGE Sensorik PhD Summit 30. Juni 2011 Wolfgang Buchegger

    28

  • Thermoelectric energy harvestingin aircraft for wireless sensors

    Dominik Samson (EADS),

    Thomas Becker (EADS),

    Ulrich Schmid (TU Wien)

    Linz, Austria 30/06/2011

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 2

    14 July 2011

    Scenario

    Maintenance check by wireless sensor

    29

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 3

    14 July 2011

    Scenario

    How does Energy come to the sensor?

    By cable:- heavy- difficult to install- expensive to plan

    By batterie:- may not always work- maintenance

    Solution:local power production at the sensor = energy harvesting

    [2]

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 4

    14 July 2011

    Content

    Introduction

    Aircraft energy harvesting principles

    Thermoelectric theory

    Thermoelectric energy harvesting

    Power management

    Flight test

    Conclusion

    30

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 5

    14 July 2011

    EADS and IW

    IW Staff (2009)Headcount : 524PhD/Thesis : 62

    AirbusEurocopter EADS Astrium Cassidian

    EADS

    Airbus Military

    Innovation Works

    Prof. Schmid

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 6

    14 July 2011

    Energy harvesting

    Possibilities for energy harvesting

    Vibration Harvester

    Thermoelectricgenerator

    Solar cell Windmill Triboelectricity

    • Sunlight- External

    • Airflow- External

    • vibrations- in aircraft not large

    • Airflow- Fixed

    • In/outside ∆T

    [3]

    31

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 7

    14 July 2011

    Thermoelectric theory

    Origin of the thermoelectricity

    Seebeck effect:

    Thermoelectric Generator (TEG):

    ∆Τ⋅= QU

    ( ) TQQU AB ∆⋅−=

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 8

    14 July 2011

    Model of Thermodiffusion:

    [4]

    Thermoelectric theory

    !!Source of thermoelectricity is the thermodiffusion!!

    32

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 9

    14 July 2011

    Thermoelectric Energy Harvesting

    Static harvesting

    inside: 24°C

    outside: -20°C

    + constant energy output

    - difficult to install

    Dynamic harvesting

    ground: 20°C

    cruise: -20°C

    - peaked energy output

    + easy to install

    Outside fuselage

    Airspeedand

    temperature

    Isolation

    TEG

    PCM

    Inside fuselage

    10 20 30 40 50 60 70 80-40

    -30

    -20

    -10

    0

    10

    20

    30

    04/10/09: Bilge skin Cargo skin

    04/27/09: Wall skin Crown skin E-bay skin Approximation

    Tem

    pera

    ture

    [°C

    ]

    Time [min][6]

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 10

    14 July 2011

    Thermoelectric phase changer

    COMSOL FEM simulations for design parameters and energy output using general heat equation

    Energy output from 10g H2O ~ 6.5 mWh

    33

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 11

    14 July 2011

    Thermoelectric phase changer

    Optimization of the TEG heat conductivity

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 12

    14 July 2011

    Thermoelectric phase changer

    34

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 13

    14 July 2011

    Sucessful test in climate chamber, from one flight cycle sensor worked 2.5h @ 189 µW

    Power management & Sensor node

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 14

    14 July 2011

    Power management & Sensor node

    Ciruit to store and provide the power is necessary:

    ⇒ conversion efficiency up to 55%

    35

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 15

    14 July 2011

    Flight test

    Flight test of the harvester:

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 16

    14 July 2011

    Flight test

    Flight test of the harvester:

    36

  • EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 17

    14 July 2011

    Flight test

    Flight test of the harvester:

    EADS Innovation Works - TCC4 "Sensors, Electronics & Systems Integration"

    Page 18

    14 July 2011

    Conclusion

    • energy harvesting in aircraft is possible

    • thermoelectricity is the most promissing candidate

    • efficient power management is needed

    • flight test proved the concept

    References[1] Airline financial detail report.[2] Wiring tips up A380 schedule. International Herald Tribune, June,14th 2006.[3] Darren FYE Shashank PRIYA, Chih-Ta CHEN and Jeff ZAHND. Piezoelectric windmill: A novel solution to remote sensing. Japanese Journal of Applied Physics, 44(3):104–107, 2005.[4] Ingo Hüttl Rolf Pelster, Reinhard Pieper. Thermospannungen - Vielgenutzt und fast immer falsch erklärt! Physik und Didaktik in der Schule und Hochschule PhyDid, 1/4:10–22, 2005.[6] http://www.ametyst-projekt.de/

    37

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Capacitive Icing Detection and Capacitive Energy Harvesting

    on a 220kV HV Overhead Power Line

    Institute of Electrical Measurementand Measurement Signal Processing

    Head of the Institute & Supervisor: Univ.-Prof. DI Dr. Georg Brasseur

    in collaboration with

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Introduction

    What is „Icing of Overhead Power Lines“?

    Source: NOAA, WRH, http://www.wrh.noaa.gov

    – atmospheric icing(aggregation of iceand/or snow)

    – onto the surface of overhead conductors

    – posing additional weightload (up to severalkg/m) to the supportingtowers

    38

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Countermeasures

    Source: Manitoba Hydro, www.hydro.mb.ca

    Source: Hydro Quebechttp://www.hydroquebec.com

    Source: http://www.lopour.czFurther measures:

    - AC and DC currents- dielectric coatings, hydrophobic coatings (CIGRÈ)

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    How to detect icing?

    • Weather monitoring on OHL towers• Optical, ultrasonic, microwave thickness or line sag measurement:• Conductor weight measurement• Optical inspection

    • Aims for a new approach: • Measurement on the surface of the conductor• Measurement of minimal quantities of ice• Autonomous, versatile device• Idea: Capacitive Measurement?

    39

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Field Simulationfor a Capacitive Measurement Setup

    0 1 2 3 4 5 60

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    Layer thickness [cm]

    Ca

    pa

    cita

    nc

    e[p

    F]

    Ice (short distance)Ice (long distance)Water (short distance)Water (long distance)

    0 1 2 3 4 5 60

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    Layer thickness [cm]

    Ca

    pa

    cita

    nc

    e[p

    F]

    Ice (short distance)Ice (long distance)Water (short distance)Water (long distance)

    Source: M.J. Moser, B. George, H. Zangl and G. Brasseur: „Icing Detector for OverheadPower Transmission Lines“, Proceedings of the 2009 IEEE Instrumentation and Measurement Technology Conference, pp. 1105-1109

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Challengeswith capacitive measurement

    In general:

    - Large offset + small signal changes

    - Disturbers/EMC- Ambiguities (Shielding and Coupling effects)

    - Presence of metal (surfaces) adds additional offsets

    Here:- All of the above!- Field Gradient: measurement of fF in an AC kV environment!

    40

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Laboratory Testbed

    Melting of clear iceIcing from droplets

    Clear ice layer

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Laboratory Results

    M.J. Moser, B. George, H. Zangl and G. Brasseur:, „Icing Detector for Overhead Power Transmission Lines“, Proceedings of the 2009 IEEE Instrumentation and MeasurementTechnology Conference, pp. 1105-1109

    41

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Energy HarvestingHow to get energy for autonomous operation?

    - Batteries. Only for lowest power demands.

    - Current Transformer. Depends on a minimum current in the line.

    - Solar panels. Depend on sunlight, need much space, arecomparatively inefficient. Suffer from pollution.

    - Capacitive Energy Harvesting?

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Capacitive Energy Harvester

    This device just needs a live power line but the line does not need to transport power (compared with current transformers).

    Source:

    42

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Power Demand

    Source: M.J. Moser, T. Bretterklieber, H. Zangl and G. Brasseur: „Strong and Weak Electrical FieldInterfering: Capacitive Icing Detection and Capacitive Energy Harvesting on a 220-kV High-VoltageOverhead Power Line“, IEEE Transactions on Industrial Electronics, Vol. 58, No. 7, July 2011, pp. 2597-2604

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    HV Laboratory Test Setup

    Measurement Setup

    43

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    HV Laboratory Test Setup (cont‘d)

    Eisblock

    Zuleitungen Sensor

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Field Test on a 220 kV Line

    44

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Results

    -> Conductor temperature is around 0°C for a short period of time

    -> A thin layer of soft rime is forming @ 3 a.m. and melts again @ 9 a.m.

    0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00-2

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Time-of-day on February 18th, 2011

    Con

    duct

    orT

    empe

    ratu

    re/ °

    C

    0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:000.9995

    1

    1.0005

    1.001

    Time-of-day on February 18th, 2011

    0.1

    0

    0.05

    -0.05

    Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Summary• Approach is feasible, icing events were successfully detected.

    • Evaluation of multiple capacitances allows estimation of thethickness of the ice layer.

    • High sensitivity occurs for thin layers of ice – good for timelyapplication of comparatively simple counter measures.

    • Field Test until 05/2011

    • Industrialization, first installations planned in winter 2011/12

    45

  • Institute of Electrical Measurement and Measurement Signal Processing

    Professor Horst Cerjak, 19.12.2005Michael J. Moser PhD Summit 2011, Linz, 30.6.2011

    Acknowledgment

    • Herbert Lugschitz & Gerhard Bernhard

    • Hubert Zangl, Thomas Bretterklieber & theSensors&Instrumentation Working Group

    Thank you for your valuable support:

    46

  • Sensor Integration in digital microfluidic systems

    PhD Summit ARGE SensorikThomas Lederer

    Outline

    MicrofluidicsMicrofluidics

    EWOD

    QCM

    R lt (+O tl k)Results (+Outlook)

    Impedance spectroscopypeda ce spect oscopy

    Results (+Outlook)

    Sensor Integration in digital microfluidic systems 1 / 17

    47

  • Micro fluidics

    MicrofluidicsInvestigation of Properties as well as manipulationsInvestigation of Properties as well as manipulationsof small amounts of fluids (

  • EWOD Realisation

    EWOD Translation

    Sensor integration

    4 / 17Sensor Integration in digital microfluidic systems

    Quarz Crystal Microbalance

    Sauerbrey Equation:y q

    ρµ/2 20 mff ∆−=∆

    Frequency shift dependent onthe square of the fundamental resonance frequency f0y

    R C diti f/ ρµ

    Thi R t !Resonance Condition: hf 20ρµ

    = Thin Resonators !

    5 / 17Sensor Integration in digital microfluidic systems

    49

  • QCM integration

    6 / 17Sensor Integration in digital microfluidic systems

    Possible Applications

    • density/viscosityy y

    • mass deposition (sedimentation)

    • binding of molecules(unspecific/ specific)

    7 / 17Sensor Integration in digital microfluidic systems

    50

  • Detection of binding bio-moleculesal

    SAMHSHS 5.077

    5.078x 10

    7Shift of resonance frequency due to bio-specific binding

    PBS∆ k

    ingManual removal

    rtz

    crys

    ta HSHSHSHSHS 5 075

    5.076ue

    ncy/

    Hz 1m∆

    plet

    stic

    kof droplet

    qua HS

    HS

    HS

    HS 5.074

    5.075

    nanc

    e fr

    equ

    Lipids PBS2m∆

    Dro

    5.072

    5.073

    Res

    o

    St t idi

    PBS

    2

    0 2 4 6 8 10 12 14 16 18 205.071

    Samples in chronlogical order

    Streptavidin

    Samples in chronological order

    8 / 17Sensor Integration in digital microfluidic systems

    Optical measurement of the contact angle

    Observed decrease of the contact angle du to specific binding on Bio-functionalized surfaceBio functionalized surface

    -2

    0

    2

    -6

    -4

    hang

    e in

    °

    PBS

    -12

    -10

    -8

    onta

    ct a

    ngle

    ch

    Phospho lipids

    -18

    -16

    -14

    Co

    Streptavidin

    0 1 2 3 4 5 6 7 8 9 10-20

    Time in minutes

    9 / 17Sensor Integration in digital microfluidic systems

    51

  • Discussion

    - Detection of bio-molecules by measuring the shift of the resonance frequencyof the resonance frequency

    - Sticking problem due binding of the bio-molecules

    Outlook

    Releasing the bio molecules by washing with

    Outlook

    -Releasing the bio-molecules by washing with detergents

    D l t hi- Droplet pushing

    10 / 17Sensor Integration in digital microfluidic systems

    Impedance Spectroscopy

    Impedance function between two ports ( ) ( ) ( )( ) ( ) ( )ωωω ''' jZZZ +=

    11 / 17Sensor Integration in digital microfluidic systems

    52

  • Material Selection

    Bode plots of impedance of a DI-Water droplet onto dielectric materials

    108

    Ω ε = 9 d= 150nmεr= 3 d= 300nm

    104

    106

    edan

    ce/ Ω

    εr= 18 d= 100nm

    direct contact

    εr = 9 d= 150nm

    100

    102

    104

    106

    108

    1010

    1012

    100

    102

    Impe direct contact

    10 10 10 10 10 10 10

    Frequency/ rad s-1

    12 / 17Sensor Integration in digital microfluidic systems

    Measurement sequence

    13 / 17Sensor Integration in digital microfluidic systems

    53

  • Measurement (Temperature)

    105

    5°18°24°30°45°60°

    IZI

    /Ω

    102

    103

    104

    105

    106

    104

    Frequency in Hz

    Frequency/ Hz

    -40

    -20

    0

    e /°

    -80

    -60

    Pha

    se

    102

    103

    104

    105

    106

    -100

    Frequency /Hz

    14 / 17Sensor Integration in digital microfluidic systems

    Measurement (Sedimentation)

    105

    t= 0 mint= 2 mint= 4 mint= 6 min

    103

    104

    t= 8 min

    IZI

    /Ω

    102

    103

    104

    105

    106

    107

    108

    10

    Frequenz in Hz

    Frequency/ Hz

    -40

    -20

    0

    -80

    -60

    0

    Pha

    se

    102

    103

    104

    105

    106

    107

    108

    100

    Frequency /Hz

    15 / 17Sensor Integration in digital microfluidic systems

    54

  • Measurement (Ion concentration)

    105

    106

    Gold pur

    0.0%0.9%0.01%0.05%0 1%

    103

    104

    0.1%26,4%

    IZI

    /Ω

    101

    102

    103

    104

    105

    106

    107

    108

    109

    102

    Frequenz in Hz

    Frequency/ Hz

    -30

    -20

    -10

    0

    -70

    -60

    -50

    -40

    Pha

    se

    101

    102

    103

    104

    105

    106

    107

    108

    109

    -90

    -80

    Frequency /Hz

    16 / 17Sensor Integration in digital microfluidic systems

    Discussion

    - All electric measurement of various chemical and physical parametersphysical parameters

    - Suitable for online-measurements of chemical tireactions

    Outlook

    -Measurement on biologic samples

    Outlook

    g p

    - Combination with RF-heating or with a dielectrophoretic concentration setupwith a dielectrophoretic concentration setup

    17 / 17Sensor Integration in digital microfluidic systems

    55

  • Sensor Integration in digital microfluidic systemsin digital microfluidic systems

    Thank You for Your AttentionAttention

    56

  • 01/07/2011

    1

    Label‐Free Cell Analysis:An Infrared Sensor for CH2‐stretch Ratio 

    Determination

    Sander van den DriescheInstitute of Sensor and Actuator Systems

    Vienna University of [email protected]

    ARGE Sensorik PhD Summit, 30. June 2011

    ‐ 2 ‐

    01 July 2011 Sander van den Driesche

    • Motivation and objectives

    • Sensor design and realisation

    • Label‐free tumour screening

    • Conclusions

    Overview

    57

  • 01/07/2011

    2

    ‐ 3 ‐

    01 July 2011 Sander van den Driesche

    Tumour screening: Biopsy• Labelling and stainingmethods based on morphological interpretation

    • High number of false positives and false negatives

    • Early detection and accurate staging of the primary tumour will increasethe overall survival rate tremendously

    Motivation

    ‐ 4 ‐

    01 July 2011 Sander van den Driesche

    1) to design a novel tumour cell indicator based on the cells physical properties

    2) to design and realise a sensor system

    Objectives

    58

  • 01/07/2011

    3

    ‐ 5 ‐

    01 July 2011 Sander van den Driesche

    Sensor design and realisation

    S. van den Driesche, W. Witarski, S. Pastorekova, and M. J. Vellekoop,Meas. Sci.Technol., vol. 20, pp. 124015, 2009 .

    S. van den Driesche, W. Witarski, and M. J. Vellekoop,in Proc of SPIE vol. 7362, Dresden, Germany, May 2009, pp. 73 620Y–73 620Y–9.

    S. van den Driesche, W. Witarski, C. Hafner, H. Kittler, and M. J. Vellekoop,in Proc IEEE Sensors, Christchurch, New‐Zealand, Oct. 25‐28, 2009, pp. 1562–1566.

    S. van den Driesche and M. J. Vellekoop, Utility model, DE 20 2009 006 771.8, AT 11722(U1), 2009.

    S. van den Driesche, C. Haiden, W. Witarski, and M. J. Vellekoop,in Proc of SPIE vol. 8066, Prague, Czech Republic, April 2011,pp. 80660E–80660E‐8.

    c: LEDd: plano convex lense: narrow band‐pass   filter

    f:  plano convex lensg: beam‐splitterh: samplei:  LEDj:  photodiode

    ‐ 6 ‐

    01 July 2011 Sander van den Driesche

    The CH2‐stretchesInfrared absorbance spectra comparison of normal and tumour cells (colorectal, breast, oesophagus, blood, melanocytes, and brain) show differences in the wavelength region between 3 and 4 µm

    Wavelength (µm)  Function3.423.51

    CH2‐antisymmetric stretchCH2‐symmetric stretch

    • Functional infrared absorbance bands:

    59

  • 01/07/2011

    4

    ‐ 7 ‐

    01 July 2011 Sander van den Driesche

    The CH2‐stretch ratioRecord IR absorbance values at specific functional wavelengths

    Cell‐type discrimination by comparing peak ratio’s

    baseline correction required due to watercontent and sample thickness

    ‐ 8 ‐

    01 July 2011 Sander van den Driesche

    Baseline correction

    Different baseline procedures have a very small influence on the CH2‐stretch ratio

    60

  • 01/07/2011

    5

    ‐ 9 ‐

    01 July 2011 Sander van den Driesche

    Quadruple‐wavelength sensor system

    ‐ 10 ‐

    01 July 2011 Sander van den Driesche

    Quadruple‐wavelength sensor system

    61

  • 01/07/2011

    6

    ‐ 11 ‐

    01 July 2011 Sander van den Driesche

    CH2‐stretch ratio measurementFour spots per cell line measured 

    100µm

    MDCK

    100µm

    Caki‐1

    normal

    carcinoma

    ‐ 12 ‐

    01 July 2011 Sander van den Driesche

    Label‐free tumour screening

    S. van den Driesche, W. Witarski, and M. J. Vellekoop, in IFMBE Proceedings, vol. 25/VIII, Munich, Germany, Sept. 2009 , pp. 15–18.

    S. van den Driesche, W. Witarski, S. Pastorekova, H. Breiteneder, C. Hafner, and M. J. Vellekoop,Analyst, 2011.

    human melanocytes

    62

  • 01/07/2011

    7

    ‐ 13 ‐

    01 July 2011 Sander van den Driesche

    Epithelial kidney carcinoma

    normal

    malignant

    Investigation of normal and carcinoma kidney cell lines

    ‐ 14 ‐

    01 July 2011 Sander van den Driesche

    MelanomaInvestigation of melanocytes and melanoma cell lines

    normal

    malignant

    63

  • 01/07/2011

    8

    ‐ 15 ‐

    01 July 2011 Sander van den Driesche

    Mechanism investigationNormal mammalian plasma membranes consist of about 20‐25% lipid mass cholesterol

    A decreased concentration of membrane stabilizing cholesterol per area has been found for malignant breast cells and melanocytes compared to their normal cells

    => An increase in the CH2‐stretch ratio of normal cells is expected when reducing the cholesterol concentration

    ‐ 16 ‐

    01 July 2011 Sander van den Driesche

    Mechanism investigationReducing the average plasma membrane cholesterol concentration yielded in a higher CH2‐stretch ratio

    phospholipid cholesterolHeller et al. 1993

    MDCK cells

    64

  • 01/07/2011

    9

    ‐ 17 ‐

    01 July 2011 Sander van den Driesche

    Suspended melanoma cellsInvestigation of in phosphate‐buffered‐saline melanoma cell lines

    3.5mm

    ‐ 18 ‐

    01 July 2011 Sander van den Driesche

    The realised IR sensor system was successfully tested for normal and various malignant cell lines, both in driedcondition and in suspension

    The CH2‐stretch ratio based cell discrimination method can aid physicians in the diagnosis of suspicious tissues

    Conclusions

    65

  • 01/07/2011

    10

    ‐ 19 ‐

    01 July 2011 Sander van den Driesche

    Acknowledgements• Prof. Dr. Michael Vellekoop and Prof. Dr. Peter Verhaert• Master students Dietmar Puchberger‐Enengl, Vivek Rao, Christoph Haiden, 

    and Helene Zirath• Colleagues at the Institute of Sensor and Actuator Systems, TU Wien• Group of S. Pastorekova, Institute of Virology, SAS Bratislava• C. Hafner, Institute for Pathophysiology, Medical University of Vienna• Group of B. Lendl, Analytical Biotechnology, TU Wien• Colleagues of the CellCheck consortium• The work was part of the EU Marie Curie Research Training Network, 

    MRTN‐CT‐2006‐035854, On‐Chip Cell Handling and Analysis “CellCheck”

    Thank you for your attention!

    66

  • Austrian Center of Competence in Mechatronics

    Composition monitoring in a gas phase polymerization process

    Institute for Microelectronics und MicrosensorsJohannes Sell, Alexander Niedermayer, Bernhard Jakoby

    Borealis Polyolefine GmbH Sebastian Babik, Christian Paulik

    Austrian Center of Competence in Mechatronics

    Contents

    • Problem/Motivation

    • Density measurement

    • IR

    • Conclusion

    67

  • Austrian Center of Competence in Mechatronics

    Polymerization ProcessMFC Hydrogen

    MFC Ethen

    MFC Propen

    Process controlT, p, MF, rpm

    Typcial polymerization reactor

    Polymerization: Bonding of monomers to polymers

    Monomers (e.g. propene)

    Catalysts

    Polymers

    Cooperation of ACCM and Borealis

    Austrian Center of Competence in Mechatronics

    Polymerization ProcessMFC Hydrogen

    MFC Ethen

    MFC Propen

    Process controlT, p, MF, rpm

    ObjectiveMonitoring of the gas composition during the process• Measurement time: < a few seconds• Integration into the polymerization reactor

    2 measurements to measure composition of a 3 component gas• Density• IR Absorption

    Approach

    Typcial polymerization reactor

    Problem

    Different monomers are integrated into polymer chain with different probability.=> Concentration ratio changes during reaction

    68

  • Austrian Center of Competence in Mechatronics

    Density measurement

    Test system• Pressure vessel

    – temperature– pressure

    • Gases– propene– ethene– CF4– N2

    Austrian Center of Competence in Mechatronics

    • Equivalent Circuit Model of a quartz tuning fork resonator [1]

    Density measurement

    [1] L.F. Matsiev, Proc. IEEE Ultrasonics Symposium (2000), 427-434

    = + ( 1/( )) = =

    69

  • Austrian Center of Competence in Mechatronics

    Density measurement

    • Measure frequency shift and motional resistance in dependence on pressure

    pressure in bar

    Austrian Center of Competence in Mechatronics

    Density measurement – Pressure Dependence

    Remove viscosity dependence

    1, = 1 R R = + 1 0 5 10 15 20 252.362.362

    2.364

    2.366

    2.368

    2.37

    2.372

    2.374

    2.376

    2.378

    2.38x 10-11

    density in kg/m3

    1/s2

    in s

    2

    1/ s2 vs. gas density

    C2H4C3H6CF4

    Measured resonance frequency of the motional branch

    influence of viscous damping

    = = + +

    70

  • Austrian Center of Competence in Mechatronics

    Density measurement – Pressure Dependence

    Consider additional pressure dependent impedance

    0 5 10 15 20 252.36

    2.365

    2.37

    2.375

    2.38

    2.385x 10-11

    density in kg/m3

    1/sc2

    corrected 1/omegasc2 vs. gas density

    C2H4C3H6CF4

    1, = + 1= 1 R R /Modeled by additional impedance =

    By measurement of R0, fsm0 and p, density and viscosity can be calculated

    Austrian Center of Competence in Mechatronics

    Determine fs and R1 by fitting the model to impedance spectra

    Long measurement time (about 1 min)

    3.266 3.268 3.27 3.272 3.274 3.276 3.278 3.28x 104

    6

    6.5

    7

    7.5

    8

    8.5

    9x 104 impedance spectra of tuning fork resonator in ethene

    impe

    danc

    e in

    frequency in Hz

    71

  • Austrian Center of Competence in Mechatronics

    Measurement system

    • Normal operation: Continuous measurement of R1 at fs

    Fast and accurate measurement

    • Main components:• Digital signal processor• Direct Digital Synthesizer• Analog-To-Digital Converter• Serial Connection to PC

    • Compensation techniques:• digital• Analog

    Frequency tracking system, based on Impedance Analyzer [2]

    [2] A.O. Niedermayer, E.K. Reichel and B. Jakoby, "Yet Another Precision Impedance Analyzer (YAPIA) For Resonating Sensors", Eurosensors 2008

    Austrian Center of Competence in Mechatronics

    Density measurement – Accuracy

    Relative error in density measurement

    0 5 10 15 20 25 30 35-5

    -4

    -3

    -2

    -1

    0

    1

    2

    3x 10-3 relative error of density measurement in dependence on density

    rela

    tive

    erro

    r

    nominal density in kg/m3

    C2H4C3H6N2

    72

  • Austrian Center of Competence in Mechatronics

    Viscosity measurement

    Accuracy is limited by reference data(viscosity: 5%, density 0.05%)

    0 5 10 15 20 25 30 350.8

    1

    1.2

    1.4

    1.6

    1.8

    2x 10-5

    nominal density in kg/m3

    visc

    osity

    on

    Pa

    s

    C2H4C3H6N2

    0 10 20 30 40-0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    density in kg/m3

    rela

    tive

    erro

    r of v

    isco

    sity

    C2H4C3H6N2

    Austrian Center of Competence in Mechatronics

    IR

    • IR absorption of ethene and propene

    C2H4C3H6

    73

  • Austrian Center of Competence in Mechatronics

    IR

    Measurements with FTIR Spectrometer

    Measurement cell• Integrated T-sensor• Pressure sensor• CaF2 window

    (pressure tested to 50 bar)

    Transmission path 0.75 mm

    Austrian Center of Competence in Mechatronics

    Can concentration be measured

    • 1:1 mol sample provided by Borealis

    1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 32000

    20

    40

    60

    80

    100

    120

    140IR-Spektrum

    wavenumber / cm-1

    trans

    mis

    sion

    in %

    C2H4C3H6Mix C2H4: 10.295 bar

    C3H6: 7.80 barMix: ca. 9 bar

    74

  • Austrian Center of Competence in Mechatronics

    Can concentration be measured

    Analysis

    2800 2900 3000 3100 3200-3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0Vgl. messung u. fit

    wavenumber cm-1

    log(

    I/I0)

    2800 2900 3000 3100 3200-0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06relative Abweichung

    wavenumber cm-1

    (Afit

    - A

    mea

    )/Am

    ea

    2800 2900 3000 3100 3200-0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05l

    l

    wavenumber cm-1

    C2H4C3H6Mix

    = log ( ) = +Solve: =

    mol-ratio: 1.000 : 1.343 (Ethen - Propen)density: eth=4.640 kg/m3, prop= 9.348 kg/m3

    Austrian Center of Competence in Mechatronics

    Can concentration be measured

    1600 1620 1640 1660 1680-1

    -0.8

    -0.6

    -0.4

    -0.2

    0Vgl. messung u. fit

    wavenumber cm-1

    log(

    I/I0)

    1600 1620 1640 1660 1680-0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06relative Abweichung

    wavenumber cm-1

    (Afit

    - A

    mea

    )/Am

    ea

    1600 1620 1640 1660 1680-0.1

    -0.09

    -0.08

    -0.07

    -0.06

    -0.05

    -0.04

    -0.03

    -0.02

    -0.01

    0l

    l

    wavenumber cm-1

    fit1

    C2H4C3H6Mix

    Bande: 1620-1670 cm-1 =

    prop = 9.438 kg/m3

    75

  • Austrian Center of Competence in Mechatronics

    GC validation (Reference Method)

    Validation of concentration with gas chromathograph

    Obtained ratios:1.51, 1.37, 1.35, 1.33

    ratio = (1.39 +- 0.08):1

    IR & GC measurement agree

    Reference Method is not very accurate

    Austrian Center of Competence in Mechatronics

    • 2nd Mixture

    2800 2900 3000 3100 3200-3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0Vgl. messung u. fit

    wavenumber cm-1

    log(

    I/I0)

    2800 2900 3000 3100 3200-0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06relative Abweichung

    wavenumber cm-1

    (Afit

    - A

    mea

    )/Am

    ea

    2800 2900 3000 3100 3200-0.18

    -0.16

    -0.14

    -0.12

    -0.1

    -0.08

    -0.06

    -0.04

    -0.02

    0

    0.02l

    l

    wavenumber cm-1

    mol-ratio: 2.69:1(Ethene: Propene)density: eth = 15.184 kg/m3

    prop = 8.479 kg/m3

    76

  • Austrian Center of Competence in Mechatronics

    • 2nd Mixture

    1600 1620 1640 1660 1680-0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1Vgl. messung u. fit

    wavenumber cm-1

    log(

    I/I0)

    1600 1620 1640 1660 1680-0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06relative Abweichung

    wavenumber cm-1

    (Afit

    - A

    mea

    )/Am

    ea

    1600 1620 1640 1660 1680-0.07

    -0.06

    -0.05

    -0.04

    -0.03

    -0.02

    -0.01l

    l

    wavenumber cm-1

    prop = 8.361 kg/m3

    Austrian Center of Competence in Mechatronics

    • GC measurement

    • M1: r=3.05• M2: r= 2.96

    1.6 1.8 2 2.2 2.4 2.6-1

    0

    1

    2

    3

    4

    5

    6x 10

    6

    t / min

    fid re

    spon

    se /

    A.U

    .

    77

  • Austrian Center of Competence in Mechatronics

    Questions

    • Is GC accurate?– Measurement of more samples necessary for accurate value

    • Is absorption coefficient proportional to total pressure? Does it depend on the partial pressures of the gas components?– Measurement of mixtures with exactly known concentration ratios.– due to limited accuracy of GC measurement many iterations are

    necessary

    • Are specific wavenumbers suitable for concentration measurement without FTIR?– See above– PLS regression

    Austrian Center of Competence in Mechatronics

    Conclusion• Density measurement with quartz tuning forks

    – continuous monitoring– accuracy: ~0.075 kg/m³ (~ 0.5 %)– Waiting for integration into polymerization reactor

    • IR measurement– direct concentration of propene and/or ethene– More work needed….

    78

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Accelerated Statistical Inversion

    and Bayesian Calibration for

    Electrical Tomography

    M. Neumayer

    Institute of Electrical Measurement and Measurement Signal Processing,

    Kopernikusgasse 24/4, A-8010 Graz, Graz University of Technology

    30. 6. 2011

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    1 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    OutlineInverse Problems.

    What are Inverse Problems

    Statistical Inversion.

    Model Errors.

    Computational methods.Fast Computational Methods.

    Approximation Techniques.

    Case StudiesShape Reconstructions.

    Gibbs Sampling.

    Different Calibration Approaches

    D. Watzenig, M. Neumayer and C. Fox 2011 Accelerated Markov Chain Monte Carlo Sampling in Electrical Capacitance

    Tomography, Compel.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    2 / 24

    79

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Inverse ProblemsDetermine x from

    d̃ = P(x)+v , (1)

    Forward map (model) F : x 7→ y .

    y = F(x) (2)

    F(x) = P(x) ∀x, (3)

    Where does the name come from:

    x = F−1(d̃), (4)

    Does not work as inverse problems are ill posed. → Use Regularizationterms or Prior knowledge to stabilize F−1(·)

    F−1(d̃). (5)

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    3 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Statistical Inversion

    Bayes Law:

    π(x |d̃) =π(d̃ |x)π(x)

    π(d̃)∝ π(d̃ |x)π(x). (6)

    The approach is applicable to any forward problem.

    No derivatives have to be computed.

    Available prior knowledge can be incorporated in a natural way.

    Information about the measurement noise can be added in the same

    natural way.

    The result is a probability density function. Hence, complete

    information about the uncertainty of the result is available.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    4 / 24

    80

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Statistical Inversion 2Meaningful point estimates:

    xML = argmaxπ(d̃ |x), (7)

    xMAP = argmaxπ(x |d̃). (8)

    ... can be formulated as optimization problem.

    xCM =∫

    xπ(x |d̃)dx, (9)

    → high dimensional integral.

    Analytic solution is often not possible.

    Also not suitable for quadrature techniques.

    Solution: Monte Carlo integration → support points are generated from thedensity itself.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    5 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Metropolis Hastings Algorithm

    1 Pick the actual state x = X n from the Markov chain.

    2 With proposal density q(x,x ′) generate a new state x ′.

    3 Compute the likelihood ratio α = min[

    1,π(x ′|d̃)q(x ′,x)

    π(x|d̃)q(x,x ′)

    ]

    .

    4 With probability α accept x ′ and X n+1 = x′, otherwise reject x ′ and

    set X n+1 = x .

    Slow as every proposal requires an evaluation of the forward map.

    Proposals can be rejected.

    Samples are highly correlated (large IACT τint ).

    Problem with multi modal distributions.

    Speedup possible with Delayed Acceptance MH (DAMH) algorithm (F ∗(x)).

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    6 / 24

    81

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Gibbs Sampler

    1 Pick the actual state x = X n from the Markov chain.

    2 For every element i of the vector x :

    1 Set xi of x as independent variable, while all other

    elements are fixed.

    2 Calculate Φi(t) =∫ t−∞ π(x)dxi .

    3 Draw u ∝ U ([0,1]) and set the i-th component of xas xi = Φ

    −1i (u).

    3 Set X n+1 = x .

    Every proposal is accepted.

    Evaluation of the conditional distribution is expensive.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    7 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Calibration and Model Errors

    Useful approach to test the inversion algorithm

    F−1(F(x)+v). (10)

    ... is called Ïnverse Crime”. Fine if everything also works directly with real

    data ... but sometimes it completely fails!

    Reason

    F(x)≈ P(x). (11)

    Absolute imaging

    Differential imaging

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    8 / 24

    82

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Calibration of Computer Models 1

    Approach:

    P(φ)≈ ρF(x)+c. (12)

    Hyperparameter ξ = {ρ ,c}.

    π(x ,ξ |d̃ ,dc) = π(d̃ ,dc |x,xc ,ξ )π(x)π(ξ ), (13)

    Product rule:

    π(x ,ξ |d̃ ,dc) = π(x |ξ , d̃ ,dc)π(ξ |d̃ ,dc) (14)

    → ξ depends on the data!

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    9 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Calibration of Computer Models 2

    How to use calibration information

    Empirical Bayes: fix ξ

    ξ = arg minξ={ρ ,c}

    ||ρF(xc)+c−dc ||22 (15)

    Mutual inference: treat also ξ as random variable.

    Bayesian Forward map:

    Y = F̃(x)+D(·). (16)

    Say F̃(x) is the best available forward map and build an inadequacyfunction D(·) to incorporate error knowledge form calibrationmeasurements.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    10 / 24

    83

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Electrical Capacitance Tomography

    PVC tube

    Inclusion

    Shield

    Ω: whole domain

    ΩROI : interior of the pipe.

    ∂ΩROI : interior of the pipe.

    PDE:

    ∇ · (ε0εr ∇V ) = 0, (17)

    BC:

    V∂Ω = 0, (18)

    VΓj = VΓj , (19)

    VΓi = 0 ∀i 6= j, (20)

    Gauss law:

    Ci,j =−1

    VΓj

    Γi

    ε0εr ∇Vj ·~ndΓ.

    (21)

    Gives a Nelec ×Nelec matrix.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    11 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Standard Computations: F : ε 7→ C

    Finite element system:

    K =Ne

    ∑i=1

    εiK e,i , (22)

    With BC:

    K̂v = r . (23)

    Charge method:

    Qelec = ∑nelec

    (Kv)nelec , (24)

    Derivatives:

    dCi,j = γTj

    [[∂ r

    ∂εk

    ]

    [∂ K̂

    ∂εk

    ]

    v i

    ]

    dεk , (25)

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    12 / 24

    84

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Solution with Greens FunctionsPDE: Lu = f solve by u = L−1f or u = Gf

    Jacobian operation J : ε 7→ Q:

    dQ = −GTQK̂ dε GQ (26)

    dQ = −GTQ

    [p

    ∑l

    W ldE WTl

    ]

    GQ. (27)

    Jacobian transpose operation JT : Q 7→ ε

    JT q =−

    (p

    ∑l=1

    (GTQW l

    )T⊗(QGTQW l

    )

    )

    , (28)

    Low rank updates

    Neumayer and Fox 2011 Fast Forward Map Framework for Electrical Capacitance Tomography, submitted to IEEE Transactions

    on Magnetics.M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    13 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Low Rank UpdatesHow is Q effected when a low number of elements are updated?

    Purpose: line search, conditional sampling

    Woodburry Formula:

    B−1 = (A+LU)−1 = A−1 −A−1L(I +UA−1L

    )−1UA−1

    ︸ ︷︷ ︸

    update term

    , (29)

    How can we use this:

    B = K̂ new = K̂ old + γp

    ∑l=1

    W l∆E WTl = K̂ old + γLU (30)

    With GQ to replace A−1 = K̂

    −1old

    ∆Q =−γGTQL(I + γU :,CGC,CLC,:)−1

    UGQ, (31)

    Neumayer and Fox 2011, to be published.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    14 / 24

    85

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    A Speed Comparison

    Operation/Method tmesh1 tmesh2ms ms

    Forward problem standard 96 640

    Forward problem new 4.8 26

    Standard material update 35.5 230

    Fast material update 0.039 2

    Matrix inversion 3.3 19

    Jacobian by AVM 360 > 2000

    Jacobian op. J : ε 7→ Q 0.48 3.9

    Jacobian transp. op. JT : Q 7→ ε 3.3 15.5Exact low rank update (1 elem.) 3.5 16.3

    WSW T Woodburry (1 elem.) 0.66 4.2

    Exact low rank update (20 elem.) 11.6 55.4

    WSW T Woodburry (20 elem.) 2.7 14.1

    Exact update 1 elem × 20 5.6 18

    WSW T Woodburry 1 elem × 20 1.1 3Domain d. by Schur c. 23.8 66

    Schur c. with Cho. 2.9 8

    Woodb. for Schur c. with Chol. 0.895 17.1

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    15 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Approximation Techniques F ∗(x)

    First order approximation.

    F(x +∆x)≈ F(x)+∂F(x)

    ∂x

    ∣∣∣∣x

    ∆x, (32)

    Polynomial approximation.

    F(x)≈ Px̃, (33)

    Adaptive version

    pk+1 = pk+1 +µ(F(x)−pTk x̃)x̃, (34)

    Reduced physical model

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    16 / 24

    86

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Adaptive Error Learning within

    DAMHHow can the evaluation of F(·) be used:

    en = F(·)−F∗(·) (35)

    µe,n =1

    n

    (

    (n−1)µe,n−1 +en)

    , (36)

    Ce,n = Ce,n−1 +eneTn , (37)

    Σe,n =1

    n−1

    (

    (n−1)Ce,n −nµe,nµTe,n

    )

    . (38)

    Likelihood function:

    πx∗(x|d̃) = exp

    {

    −1

    2

    (

    y∗+µe,n − d̃)T

    (Σv +Σe,n)−1 (

    y∗+µe,n − d̃)

    }

    .

    (39)

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    17 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    RBF Shape ModelContour description by

    f (z) =N

    ∑j

    λiφ(||z −x j ||)+P(z), (40)

    Thin plate RBF:

    φ(r) = r2 · log(r), (41)Prior:

    π(x) = exp

    (

    −1

    2σ2pr

    c(x)√

    πΓ(x)

    )

    I(x), (42)

    Moves:

    (a) Trans-

    lation.

    (b) Ro-

    tation.

    (c) Scale. (d) Cor-

    ner move.M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    18 / 24

    87

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Some DAMH ResultsTrue inculsion

    Scatter data

    (e) Standard MH, εr =3.5.

    True inculsion

    Scatter data

    (f) Jacobian, εr = 3.5

    True inculsion

    Scatter data

    (g) Affine map, εr = 3.5.

    True inculsion

    Scatter data

    (h) Adapt. affine map,

    εr = 3.5.

    True inculsion

    Scatter data

    (i) Red. model, εr = 3.5.

    True inculsion

    Scatter data

    (j) Standard MH, εr =80.

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    19 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Gibbs Sampler for ECT

    π(x |d̃) ∝ exp

    (

    −1

    2eTΣ−1v e

    )

    exp

    (

    −1

    2αxT LT Lx

    )

    I(x) (43)

    Bimodal Distributions

    Arbitrary Distributions: requires

    some support points of the

    conditional distribution.

    → low rank updates mandatory for effi-cient sampling.

    IACT: τint = 1 !

    Neumayer and Fox 2011 to be published

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    20 / 24

    88

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Incorporation of Calibration

    Information

    Observations:

    Low level representations cover most calibration effects.

    Shape determination suffers for inclusions with high permittivities.

    How to find a better set of calibration parame-

    ters ξ ?

    Or is there another way to incorporate calibra-

    tion information?

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    21 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Mutual Inference Approaches

    π(d̃ ,d(N)c |x,ξ ,x

    (N)c ) ∝ exp

    {

    −1

    2

    (

    ρy +c− d̃)T

    Σ−1v

    (

    ρy +c− d̃)

    −1

    2

    Nc

    ∑i=1

    (

    ρyc,i +c−dc,i)T

    Σ−1c

    (

    ρyc,i +c−dc,i)

    }

    .

    (44)

    Implementation: sample from ξ with a Gibbs sampler.

    True inculsion

    Scatter data

    (k) εr = 3.5.

    True inculsion

    Scatter data

    (l) εr = 80.

    True inculsion

    Scatter data

    (m) εr = 3.5.

    True inculsion

    Scatter data

    (n) εr = 80.

    Decreased IACT but the gain in quality is comparatively low.M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    22 / 24

    89

  • tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Bayesian Forward MapUse calibration measurements to build

    Y = F̃(x)+G PDe(·). (45)

    [

    ece

    ]

    = N

    (

    0,

    [

    Σ(xc,r ,xc,r ) Σ(xc,r ,x r )Σ(x r ,xc,r ) Σ(x r ,x r )

    ])

    , (46)

    True inculsion

    Scatter data

    (o) No Bayesian

    Forward Map (Ex-

    treme high IACT).

    True inculsion

    Scatter data

    (p) With Bayesian

    Forward Map

    (Low IACT).

    Neumayer and Fox 2011 to be published

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    23 / 24

    tugraz

    Institute of Electrical Measurement and Measurement SignalProcessing

    www.emt.tugraz.at

    Thank you for your attention!

    M. Neumayer 30. 6. 2011 ARGE Sensorik PhD-Summit

    24 / 24

    90

  • Institute for

    Microelectronics and

    Microsensors

    Yet another precision impedance analyzer

    Readout electronics for resonating sensors

    Alexander O. Niedermayer

    Institute for Microelectronics and Microsensors,

    Johannes Kepler University, Linz

    Institute for

    Microelectronics and

    Microsensors

    Modeling

    penetration depth

    5 mm

    91

  • Institute for

    Microelectronics and

    Microsensors

    Modeling

    unloaded

    resonator

    viscous

    loading

    motional branch resistance

    of harmonic number N:

    [S. Martin ’94]

    sensor admittance

    Institute for

    Microelectronics and

    Microsensors

    Circuit Concept

    ADC

    synthesizer

    signal

    processor

    CLK

    sE

    sT

    sensor

    16 bitSPI

    filter

    ADSP 21262

    AD 9959

    AD 9460

    Synchronous subsampling

    92

  • Institute for

    Microelectronics and

    Microsensors

    Demodulation

    Synchronous sampling Goertzel Algorithm

    z-1

    z-1

    +

    + +

    Institute for

    Microelectronics and

    Microsensors

    Sensor admittance

    AT-cut QCR, f1 = 1.8432 MHz, N=3, in Isopropanol

    93

  • Institute for

    Microelectronics and

    Microsensors

    ADC

    synthesizer

    signal

    processor

    CLK

    sE

    sT

    sensor

    16 bitSPI

    filter

    sC

    Circuit Concept

    ADSP 21262

    AD 9959

    AD 9460

    Institute for

    Microelectronics and

    Microsensors

    AT-cut QCR, f1 = 1.8432 MHz, N=3, in Isopropanol, t = 12 s

    Sensor admittance

    94

  • Institute for

    Microelectronics and

    Microsensors

    Applying compensation signal

    AT-cut QCR, f1 = 1.8432 MHz, N=3, in Isopropanol, t = 12 s

    Institute for

    Microelectronics and

    Microsensors

    Conclusion

    • phase resolution is very important

    • wide frequency range (subsampling)

    • handle higher harmonics

    • various types of resonating sensors

    • very compact design

    95

    1_Roman Bruck_Polymer based photonic lable-free biosensor_2_ReitingerNorbert_proc3_Voglhuber_Folien ARGE4_ARGE_PhD Summit 2011_Buchegger Proceedings5_Samson_publishable6_phd_folien_moser7_phd_summit2011_lederer8_vdDriessche_ARGE Sensorik PhD Summit9_Sell_phd_summit_handout_2p10_PhDSummit_Neumayer211_PhD_Summit_2011_Niedermayer_2