Problem as Term o

download Problem as Term o

of 28

Transcript of Problem as Term o

  • 7/24/2019 Problem as Term o

    1/28

    INSTITUTO TECNOLGICO DE PACHUCA

    MAESTRA EN INGENIERA MECANICA

    FUNDAMENTOS DE INGENIERA MECNICA(TERMOFLUDOS)

    UNIDAD II CICLOS TERMODINMICOS

    ASESOR:

    DR. ABDIEL GMEZ MERCADO

    YUNUN LPEZ GRIJALBA

    30 NOVIEMBRE 2009

  • 7/24/2019 Problem as Term o

    2/28

    917E An air-standard cycle with variable specific heats is executed in a closed system

    and is composed of the following four processes:1-2 v = constant heat addition from 14.7 psia and 80F in the amount of 300 Btu/lbm2-3 P = constant heat addition to 3200 R3-4 Isentropic expansion to 14.7 psia4-1 P= constant heat rejection to initial state(a) Show the cycle on P-v and T-s diagrams.(b) Calculate the total heat input per unit mass.(c) Determine the thermal efficiency.

    Consideraciones:

    Se aplica la condicin de are-estndar

    Las energas cintica y potencial son despreciables, considerando un procesoreversible.

    Se considera el are como gas ideal con calor especfico variable.

    Diagramas P-V y T-s

    V

    P

    1

    2 3

    4

    Qin

    Qin

    Qout

    14.7psi

    57.61psi

  • 7/24/2019 Problem as Term o

    3/28

    T

    1

    23

    4Qin

    Qin

    Qout340R

    3400R

    Partimos del Edo. 1 al Edo. 2 para obtener los datos para ste ltimo:

    T1 = 80F = 540R

    u1 = 92.04 BTU/lbm

    h1 = 129.06 BTU/lbm

    Edo.2 de la Tabla A-17E

    T2 = 2116.04 R

    u2 = 392.04 BTU/lbm

    h2 = 537.103 BTU/lbm

    Considerando el are como un gas ideal tenemos que:

    y ;

    Para el Edo. 3

    T3 = 3200 R

    u3 = 630.12 BTU/lbm

    h3 = 849.48 BTU/lbm

    Pr3 = 1242

    u2 Q12 u1 300 BTU

    lbm92.04

    BTU

    lbm392.04

    BTU

    lbm

    P2V2

    T2

    P1V1

    T1 V2 V1

    P2

    T2

    P1

    T1P2

    P1 T2

    T1

    14.7 psi 2116.27 R

    540 R57.6095 psi

  • 7/24/2019 Problem as Term o

    4/28

    Para el Edo.4

    h4 = 593.176 BTU/lbm

    Pr4 = 316.9165

    Del balance de energa, tenemos que,

    La eficiencia trmica del sistema es:

    923 An air-standard Carnot cycle is executed in a closed system between thetemperature limits of 350 and 1200K. The pressures before and after the isothermal

    compression are 150 and 300 kPa, respectively. If the net work output per cycle is 0.5kJ, determine (a) the maximum pressure in the cycle, (b) the heat transfer to air, and(c) the mass of air. Assume variable specific heats for air.Consideraciones:

    Se aplica la condicin de are-estndar

    Las energas cintica y potencial son despreciables, considerando un proceso

    reversible.

    Se considera el are como gas ideal con calor especfico variable.

    Diagramas T-s

    Pr4

    P4

    Pr3

    P3Pr4

    Pr3 P4

    P3

    1242 14.7 psi

    57.6095 psi316.9165; P1 P4 y P3 P2

    Q23in h3 h2 849.28 BTU

    lbm537.103

    BTU

    lbm312.377

    BTU

    lbm

    Qintotal Q12 Q23 300BTU

    lbm

    312.377BTU

    lbm

    612.377BTU

    lbm

    Qout h4 h1 593.176 BTU

    lbm129.06

    BTU

    lbm464.116

    BTU

    lbm

    TH 1 Qout

    Qin1

    464.116 BTUlbm

    612.377 BTUlbm

    0.2421 x 100 % 24.21 %

  • 7/24/2019 Problem as Term o

    5/28

    s

    T

    350R

    1200R

    1

    2 3

    4

    Qin

    Qout

    De las tablas A-17 obtenemos los siguientes valores para obtener la presin

    mxima del sistema, tenemos que;

    T1 = 1200 K; Pr1 = 238 T4 = 350K; Pr4 = 2.379

    La transferencia de calor del are es:

    Para la masa del are:

    964E An ideal Ericsson engine using helium as the working fluid operates betweentemperature limits of 550 and 3000 R and pressure limits of 25 and 200 psia. Assuming amass flow rate of 14lbm/s, determine (a) the thermal efficiency of the cycle, (b) theheat transfer rate in the regenerator, and (c) the power delivered.Consideraciones:

    Se aplica la condicin de are-estndar

    P1Pr1 P4

    Pr4

    238 300 kPa

    2.37430, 012.61 kPa 30.012 MPa

    Qinwnet

    THTH 1

    TL

    TH1

    350 K

    1200 K0.7083 x 100 % 70.83 % ; Qin

    0.5kJ

    0.70830.7059 kJ

    m Wnet

    wnet; Wnet s2 s1 TH TL ;

    considerandoque: s2 s1 s4 s3 y que; s4 s3 s4

    s3

    R lnP4

    P3

    s4 s3 0 0.287kJ

    kg Kln

    300 kPa

    150 kPa0.1989

    kJ

    kg K

    Wnet s4 s3 TH TL 0.1989kJ

    kg K

    1200 K 350 K 169.093kJ

    kg

    m Wnet

    wnet

    0.5 kJ

    169.093 kJkg

    0.002956kg

  • 7/24/2019 Problem as Term o

    6/28

    Las energas cintica y potencial son despreciables, considerando un proceso

    reversible.

    Diagramas T-s

    s

    T

    550R

    3000R

    1

    23

    4

    Qin

    Qout

    .

    .

    Para el Helio tenemos que R =0.4961 BTU/lbmR; Cp = 1.25 BTU/lbmR

    Para la eficiencia trmica:

    Calor transferido en la regeneracin es el obtenido en el proceso del estado 4 al1;

    Para la potencia liberada o el trabajo neto obtenido en el proceso;

    984 A gas-turbine power plant operates on the simple Brayton cycle between thepressure limits of 100 and 1200 kPa. The working fluid is air, which enters thecompressor at 30C at a rate of 150 m3/min and leaves the turbine at 500C. Usingvariable specific heats for air and assuming a compressor isentropic efficiency of 82percent and a turbine isentropic efficiency of 88 percent, determine (a) the net poweroutput, (b) the back work ratio, and (c) the thermal efficiency.

    TH 1 TL

    TH1

    550 R

    3000 R0.8166 x 100 % 81.66 %

    Qreg Q41in m h1 h4 Cp T1 T4 14 lbm

    s 1.25 BTU

    lbm R 3000 R 550 R 42 875 BTU

    s

    wout TH Qin Qin m TH s2 s1 ;

    wout TH Qin Qin m TH s2 s1 ; s2 s1 Cp ln T2

    T1R ln

    P2

    P1sabiendoque ln

    T2

    T10;

    s2 s1 0.4961BTU

    lbm Rln

    25 psi

    200 psi1.0316

    BTU

    lbm R

    Qin 14 lbms

    3000 R 1.0316 BTUlbm R

    43 327.6598 BTUs

    wout 0.8166 43327.6598 BTU

    s35381.367

    BTU

    s

  • 7/24/2019 Problem as Term o

    7/28

    Consideraciones:

    Se aplica la condicin de are-estndar

    Las energas cintica y potencial son despreciables, considerando un proceso

    reversible.

    Se considera el are como gas ideal con calor especfico variable.

    s

    T

    550C

    30C

    2

    1

    3

    4

    Qin

    Qout

    P=12

    00kP

    a

    P=100kPa

    V

    P

    1200kPa

    100kPa

    3

    4

    2

    1

    Qin

    Qout

    s=cte

    s=cte

  • 7/24/2019 Problem as Term o

    8/28

    1-2Compresin isoentrpica (en el compresor)

    2-3Adicin de calor a presin constante

    3-4Expansin isonetrpica (turbina)

    4-1Rechazo de calor a presin constante

    Para el Edo.1

    T1 = 30C = 303K

    h1 = 303.208 kJ/kg

    Pr1 = 1.43556

    Para el Edo.2

    T2 = 609.2815 K

    h2s = 609.2815 kJ/kg

    Pr2 = 17.22672

    Para el Edo.4

    T4 = 500C = 773 K T3 = 1437.345 K

    h4s = 792.3825 kJ/kg h3 = 1560.315 kJ/kg

    Pr4 = 41.922 Pr3 = 503.064

    La razn de trabajo regenerado;

    9109 Consider an ideal gas-turbine cycle with two stages of compression and two stagesof expansion. The pressure ratio across each stage of the compressor and turbine is 3.The air enters each stage of the compressor at 300 K and each stage of the turbine at1200 K. Determine the back work ratio and the thermal efficiency of the cycle, assuming

    Pr2

    P2

    Pr1

    P1Pr2

    Pr1 P2

    P1

    1200 kPa 1.43556

    100 kPa17.22672

    Pr4

    P4

    Pr3

    P3Pr3

    Pr4 P3

    P4

    1200 kPa 41.922

    100 kPa503.064

    wNET wTUB wCOMP T h3 h4sh2s h1

    C

    wNET 0.88 1560.315 kJ

    kg792.3825

    kJ

    kg

    616.7749 kJkg

    303.208 kJkg

    0.82293.3819

    kJ

    kg

    wTUB 675.7806 kJ

    kgwCOMP 382.3986

    kJ

    kg

    rbwwC

    wT

    382.3980 kJkg

    675.7806 kJkg

    0.56586

    THwNET

    Qin

    293.3819 kJkg

    h3 h4s

    293.3819 kJkg

    1560.315 kJkg

    616.7749 kJkg

    0.3109 x 100 % 31.09 %

  • 7/24/2019 Problem as Term o

    9/28

    an efficiency of 80 percent for each compressor stage and an efficiency of 85 percentfor each turbine stage.Consideraciones:

    Se aplica la condicin de are-estndar

    Las energas cintica y potencial son despreciables, considerando un proceso

    reversible.

    Se considera el are como gas ideal con calor especfico variable.

    s

    T

    1200K

    300K

    4

    3

    5

    10

    Qin

    2

    1

    8

    7

    6

    9

    Qin

    Para el Edo.1T1 = 300 K

    h1 = 300.19 kJ/kg = h4

    Pr1 = 1.386

    T5 = 1200 K

    h5 = 1277.79 kJ/kg = h7

    Pr5 = 238

    h6 = 946.3468 kJ/kg = h8

    Pr6 = 79.333

    Pr2

    P2

    Pr1

    P1Pr2

    Pr1 P2

    P13 1.386 4.158

    Pr6

    P6

    Pr5

    P5Pr6

    Pr5

    P6

    P5

    1

    3238 79.333

    wNET wTUB wCOMP T 2 h5 h62 h2 h1

    C

    wNET 0.80 2 1277.79 kJ

    kg946.3468

    kJ

    kg2

    411.257 kJkg

    300.19 kJkg

    0.85268.975

    kJ

    kg

  • 7/24/2019 Problem as Term o

    10/28

    9131 A gas-turbine power plant operates on the regenerative Brayton cycle between thepressure limits of 100 and 700 kPa. Air enters the compressor at 30C at a rate of 12.6kg/s and leaves at 260C. It is then heated in a regenerator to 400C by the hotcombustion gases leaving the turbine. A diesel fuel with a heating value of 42,000 kJ/kgis burned in the combustion chamber with a combustion efficiency of 97 percent. Thecombustion gases leave the combustion chamber at 871C and enter the turbine whoseisentropic efficiency is 85 percent. Treating combustion gases as air and using constantspecific heats at 500C, determine (a) the isentropic efficiency of the compressor, (b)the effectiveness of the regenerator, (c) the airfuel ratio in the combustion chamber,(d) the net power output and the back work ratio, (e) the thermal efficiency, and ( f )

    the second-law efficiency of the plant. Also determine (g) the second-law (exergetic)efficiencies of the compressor, the turbine, and the regenerator, and (h) the rate of theexergy flow with the combustion gases at the regenerator exit.

    Consideraciones:

    Se aplica la condicin de are-estndar

    Las energas cintica y potencial son despreciables, considerando un proceso

    reversible.

    Se considera el are como gas ideal con calor especfico variable.

    qin h5 h4 h7 h6 1277.79 kJ

    kg411.257

    kJ

    kg1277.79

    kJ

    kg946.3468

    kJ

    kg1197.9762

    kJ

    kg

    TH

    wNET

    Qin

    268.975 kJkg

    1197.9762 kJkg

    0.2245 x 100 % 22.45 %

  • 7/24/2019 Problem as Term o

    11/28

    s

    T

    871C

    30C

    2

    1

    3

    4

    Qin

    Qout

    400C

    5Qin

    Para los Edo. tenemos;Edo. 1 Edo. 2 Edo. 3 Edo. 4 Edo. 5

    T= 30C = 300K T= 260C = 530K T= 871C =1140K

    hs=705.438kJ/kg

    T=400C=670K

    h=300.19 kJ/kg h=533.98 kJ/kg h=1207.57kJ/kg

    h=780.758kJ/kg

    h=681.14 kJ/kg

    P=100 kPa P= 700 kPa P= 700 kPa P= 700 kPa P=100 kPaPr=1.386 Pr=10.37 Pr=193.1 Pr=27.7 Pr=24.46s1=1.70203kJ/kg s2=2.27967kJ/kg

    Ch2s h1

    h2a h1

    523.90157 kJkg

    300.19 kJkg

    533.98 kJkg

    300.19 kJkg

    0.956 x 100 % 95.6 %

    Pr2

    P2

    Pr1

    P1 Pr2

    Pr1 P2

    P1

    1.386 700 kPa

    100 kPa 9.702Pr4

    P4

    Pr3

    P3Pr4

    Pr3 P4

    P3

    193.9 100 kPa

    700 kPa27.7

    Th3 h4

    h3 h4sh4 h3 T h3 h4s 1207.57

    kJ

    kg0.85 1207.57

    kJ

    kg705.43

    kJ

    kg780.758

    kJ

    kg

    h5 h2a

    h4a h2a

    681.14 kJkg

    533.98 kJkg

    780.758 kJkg

    533.98 kJkg

    0.59

    wNET h3 h4 h2 h1 1207.57 kJ

    kg780.788

    kJ

    kg533.98

    kJ

    kg300.19

    kJ

    kg193.022

    kJ

    kg

    qin h3 h5 1207.57 J

    kg681.14

    J

    kg526.43

    J

    kg

    THw

    NETqin

    193.022 kJkg

    526.43 kJkg

    0.37 x 100 % 37 %

  • 7/24/2019 Problem as Term o

    12/28

    9155 A four-cylinder, four-stroke spark-ignition engine operates on the ideal Otto cyclewith a compression ratio of 11 and a total displacement volume of 1.8 liter. The air is at90 kPa and 50C at the beginning of the compression process. The heat input is 1.5 kJ

    per cycle per cylinder. Accounting for the variation of specific heats of air withtemperature, determine (a) the maximum temperature and pressure that occur duringthe cycle, (b) the net work per cycle per cyclinder and the thermal efficiency of thecycle, (c) the mean effective pressure, and (d) the power output for an engine speed of3000 rpm.

  • 7/24/2019 Problem as Term o

    13/28

    9156 A gas-turbine plant operates on the regenerative Brayton cycle with two stages ofreheating and two-stages of intercooling between the pressure limits of 100 and 1200kPa. The working fluid is air. The air enters the first and the second stages of the

    compressor at 300 K and 350 K, respectively, and the first and the second stages of theturbine at 1400 K and 1300 K, respectively. Assuming both the compressor and theturbine have an isentropic efficiency of 80 percent and the regenerator has aneffectiveness of 75 percent and using variable specific heats, determine (a) the backwork ratio and the net work output, (b) the thermal efficiency, and (c) the second-lawefficiency of the cycle. Also determine (d) the exergies at the exits of the combustionchamber (state 6) and the regenerator (state 10) (See Figure 943 in the text).

  • 7/24/2019 Problem as Term o

    14/28

    1015 A steam power plant operates on a simple ideal Rankine cycle between thepressure limits of 3 MPa and 50 kPa. The temperature of the steam at the turbine inlet is300C, and the mass flow rate of steam through the cycle is 35 kg/s. Show the cycle on

    a T-s diagram with respect to saturation lines, and determine (a) the thermal efficiencyof the cycle and (b) the net power output of the power plant.Consideraciones:

    Se condiciona el sistema operando en estado estable.

    Las energas cintica y potencial son despreciables.

    T

    2

    1

    3

    4

    Qout

    Qin

    Edo. 1 Edo. 2 Edo. 3 Edo.4h1=340.54 kJ/kg h2=343.5285kJ/kg h3=2994.3kJ/kg h4=2277.3776 kJ/kgv1=0.001030 m3/kg T3=300CP1=50kPa P3=3 MPa P4= 50kPa

    s3=65412 kJ/kgK s4=s3

    wpin v1 P2 P1 0.001030m3

    kg3000 kPa 50 kPa

    lkJ

    1 kPa.m33.0485

    kJ

    kg

    h2 h1 wpin 340.49kJ

    kg3.0385

    kJ

    kg343.5285

    kJ

    kg

    x4s4 sf

    sfg

    6.5912 kJkg K

    1.0912 kJkg K

    6.5019 kJkg K

    0.8382

    h4 hf x4 hfg 340.54 kJ

    kg0.8382 2304.7

    kJ

    kg2277.3776

    kJ

    kg

    qin h3 h2 2994.3kJ

    kg

    343.5285kJ

    kg

    2650.7715 kJ

    kgqout h4 h1 2277.3776

    kJ

    kg340.54

    kJ

    kg1936.8376

    kJ

    kg

    wNET qin qout 2650.7715kJ

    kg1936.8376

    kJ

    kg713.9339

    kJ

    kg

    wNET m wNET 35kg

    s713.9339

    kJ

    kg24987.6865

    kJ

    s24.98 MW

  • 7/24/2019 Problem as Term o

    15/28

    1046 A steam power plant operates on an ideal regenerative Rankine cycle with twoopen feedwater heaters. Steam enters the turbine at 10 MPa and 600C and exhausts to

    the condenser at 5 kPa. Steam is extracted from the turbine at 0.6 and 0.2 MPa. Waterleaves both feedwater heaters as a saturated liquid. The mass flow rate of steamthrough the boiler is 22 kg/s. Show the cycle on a T-s diagram, and determine (a) thenet power output of the power plant and (b) the thermal efficiency of the cycle.

    T

    7

    10

    6

    45kPa

    0.2MPa

    0.6MPa

    10MPa

    54

    32

    1

    8

    9

    1-y

    1-y-z

    Edo.1 Edo. 2 Edo. 3 Edo.4 Edo.5h1=kJ/kg h2=kJ/kg h3=kJ/kg h4=kJ/kg h5=kJ/kgP1=5kPA P3=0.2MPA P5=0.6MPAv1=m3/kg v3=m3/kg v5=m3/kgEdo.6 Edo.7 Edo.8 Edo.9 Edo.10

    h6=kJ/kg P7=10MPa P8=0.6MPa P9=0.6MPa P10=5kPah7=kJ/kg s8=s7 s9=s7 s10=s7T7=600C x8=0.9627 h9=kJ/kg h10=kJ/kgs7=kJ/kgK h8=kJ/kg x9= x10=

    wpin v1 P2 P1 0.001005m3

    kg200 kPa 5 kPa

    lkJ

    1 kPa.m30.195975

    kJ

    kg

    h2 h1 wpin 137.75kJ

    kg0.195975

    kJ

    kg137.9459

    kJ

    kg

    wpin

    v3

    P4

    P3

    0, 001061m3

    kg600 kPa 200 kPa

    lkJ

    1 kPa.m30.4244

    kJ

    kg

    h4 h3 wpin 04.71kJ

    kg0.4244

    kJ

    kg505.1344

    kJ

    kg

    wpin v5 P6 P5 0.001101 m3

    kg10000 kPa 600 kPa

    lkJ

    1 kPa.m310.3494

    kJ

    kg

    h6 h5 wpin 670.38kJ

    kg10.3494

    kJ

    kg680.7294

    kJ

    kg

    x9s9 sf

    sfg

    6.9045 kJkg K

    1.9308 kJkg K

    4.8285 kJkg K

    0.9699

  • 7/24/2019 Problem as Term o

    16/28

    h9 hf x9 hfg 670.38 kJ

    kg0.9699 2085.8

    kJ

    kg2693.4569

    kJ

    kg

    x10 s10 sf

    sfg

    6.9045 kJ

    kg K

    0.4762 kJ

    kg K

    7.9176 kJkg K

    0.8119

    h10 hf x10 hfg 137.75 kJ

    kg0.8119 2423.0

    kJ

    kg2104.9838

    kJ

    kg

    Ein Eout m8 h8 h2m2 m5 h5 yh8 1 y h4 h5 ym8

    m5

    yh3 h2

    h9 h2

    504.71 kJkg

    137.9459 kJkg

    2693.4569 kJkg

    137.9459 kJkg

    0.14469

    mi hi me he m9 h9 h2m2 m3 h3 zh9 1 y z h2 1 y h3 z m4m5

    z h3 h2

    h9 h21 y

    504.71 kJkg

    137.9459 kJkg

    2693.4569 kJkg

    137.9459 kJkg

    1 0.14469 0.12375

    qin h7 h6 3625.8kJ

    kg680.2794

    kJ

    kg2945.0706

    kJ

    kg

    qout 1 y z h10 h1 1 0.14469 .12375 2104.9838kJ

    kg137.75

    kJ

    kg1439.144

    kJ

    kg

    wNET qin qout 2945.0706kJ

    kg

    1439.144kJ

    kg

    1505.9265kJ

    kg

    WNET m wNET 22 kg

    s1505.9265

    kJ

    kg33130.38507kW

    TH 1 qout

    qin1

    1439.144 kJkg

    2945.0706 kJkg

    0.5113 X100 % 51.13 %

  • 7/24/2019 Problem as Term o

    17/28

    1050 A steam power plant operates on an ideal reheatregenerative Rankine cycle andhas a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and550C and leaves at 0.8 MPa. Some steam is extracted at this pressure to heat the

    closed feedwater heater. The rest of the steam is reheated to 500C and is expanded inthe low-pressure turbine to the condenser pressure of 10 kPa. Show the cycle on a T-sdiagram with respect to saturation lines, and determine (a) the mass flow rate of steamthrough the boiler and (b) the thermal efficiency of the cycle. Assume that thefeedwater leaves the heater at the condensation temperature of the extracted steamand that the extracted steam leaves the heater as a saturated liquid and is pumped tothe line carrying the feedwater.

    Consideraciones:

    Se condiciona el sistema operando en estado estable.

    Las energas cintica y potencial son despreciables.

    s

    T

    2

    1

    7

    8

    10MPa

    6

    5

    10

    3

    49

    1-y

    0.8MPa

    10kPa

  • 7/24/2019 Problem as Term o

    18/28

    Edo.1 Edo. 2 Edo. 3 Edo.4 Edo.5h1=191.81 kJ/kg h2=201.89

    kJ/kgh3=720.87 kJ/kg h4=731.128

    kJ/kgh5=3375.1kJ/kg

    P1=10kPA P3=0.8MPA h4=h9=h10 P5=10MPAv1=0.001010m3/kg v3=0.001115m3/kg s5=6.5995

    kJ/kgK=s6Edo.6 Edo.7 Edo.8P6=0.8MPa P7=0.8MPa P8=10kPah6=2811.9 kJ/kg h7=3481.3

    kJ/kgs8=s7

    T7=500C x8=0.9627s7=7.8692kJ/kgK

    h8=2494.727 kJ/kg

    wpin v1 P2 P1 0.001010 m3

    kg10000kPa 10 kPa

    lkJ

    1 kPa.m310.0899

    kJ

    kg

    h2 h1 wpin 191.81 J

    kg10.0899

    J

    kg201.8999

    J

    kg

    wpin v3 P4 P3 0.001115 m

    kg10000kPa 800kPa

    lkJ

    1 kPa.m310.258

    kJ

    kg

    h4 h3 wpin 720.87kJ

    kg10.258

    kJ

    kg731.128

    kJ

    kg

    x8s8 sf

    sfg

    7.8692 kJkg K

    0.6492 kJkg K

    7.4996 kJ

    kg K

    0.9627

    h8 hf x8 hfg 191.81 kJ

    kg0.9627 2392.1

    kJ

    kg2494.727

    kJ

    kg

    Ein Eout m2 h9 h2 m3 h6 h3 1 y h6 h2 y h6 h3 ym3

    m4

    y h9 h2

    h6 h3 h9 h2

    731.128 kJkg

    201.8999 kJkg

    2811.9 kJkg

    720.87 kJkg

    731.128 kJkg

    201.8999 kJkg

    0.20197

    qin h5 h4 1 y h7 h6 3375.1kJ

    kg731.128

    kJ

    kg1 0.201 3481.3

    kJ

    kg2811.9

    kJ

    kg3178.173

    qout 1 y h8 h1 1 0.201 2494.727 J

    kg198.81

    J

    kg1837.796

    J

    kg

    wNET qin qout 3178.173 kJ

    kg1837.796

    kJ

    kg1340.377

    kJ

    kg

    mWNET

    wNET

    80000 kJs

    1340.377 kJkg

    59.6847kg

    s

    TH 1 qout

    qin1

    1837.796 kJkg

    3178.173 kJkg

    0.4234 X100 % 42.34 %

  • 7/24/2019 Problem as Term o

    19/28

    1060 Determine the exergy destruction associated with the regenerative cycle describedin Prob.1044. Assume a source temperature of 1500 K and a sink temperature of 290 K.1044 A steam power plant operates on an ideal regenerative Rankine cycle. Steam

    enters the turbine at 6 MPa and 450C and is condensed in the condenser at 20 kPa.Steam is extracted from the turbine at 0.4 MPa to heat the feedwater in an openfeedwater heater. Water leaves the feedwater heater as a saturated liquid. Show thecycle on a T-s diagram, and determine (a) the net work output per kilogram of steamflowing through the boiler and (b) the thermal efficiency of the cycle.

    2

    1 7

    6MPa

    6

    5

    3

    4

    1-y

    0.4MPa

    20kPa

    Edo.1 Edo. 2 Edo. 3 Edo.4 Edo.5h1=251.42 kJ/kg h2=251.8064

    kJ/kg

    h3=604.66 kJ/kg h4=610.7304

    kJ/kg

    h5=3302.9

    kJ/kgP1=20kPA P3=0.4MPa P5=6MPav1=0.001017m3/kg v3=0.001080m3/kg s5=6.7219

    kJ/kgK=s6=s7Edo.6 Edo.7 T=450CP6=0.4MPa P7=20kPah6=2665.67 kJ/kg h7=2213.971

    kJ/kgx7=0.8324

    wpin v1 P2 P1 0.001017m3

    kg400 kPa 20 kPa

    lkJ

    1 kPa.m30.38646

    kJ

    kg

    h2

    h1

    wpin

    251.42kJ

    kg0.38646

    kJ

    kg251.80646

    kJ

    kg

    wpin v3 P4 P3 0.001080 m3

    kg6000 kPa 400kPa

    lkJ

    1 kPa.m36.0704

    kJ

    kg

    h4 h3 wpin 604.66kJ

    kg6.0704

    kJ

    kg610.7304

    kJ

    kg

    x6s6 sf

    sfg

    6.7219 kJkg K

    1.7765 kJkg K

    5.1191 kJkg K

    0.966

    h6 hf x6 hfg 604.66kJ

    kg0.966 2133.4

    kJ

    kg2665.67

    kJ

    kg

  • 7/24/2019 Problem as Term o

    20/28

    1065C Consider a cogeneration plant for which the utilization factor is 0.5. Can the

    exergy destruction associated with this plant be zero? If yes, under what conditions?

    S, si el ciclo no involucra irreversibilidades tales como: desaceleracin, friccin, ytransferencia de calor a travs de una diferencia finita de temperatura.

    x7s7 sf

    sfg

    6.7219 kJkg K

    0.8320 kJkg K

    7.0752 kJkg K

    0.8324

    h7 hf x7 hfg 251.42 kJ

    kg0.8324 2357.5

    kJ

    kg2213.971

    kJ

    kg

    Ein Eout m6 h6 h2m2 m3 h3 yh6 1 y h2 h3 y m6

    m3

    y h3 h2

    h6 h2

    604.66 kJkg

    251.8064 kJkg

    2665.67 kJkg

    251.8064 kJkg

    0.14617

    qin h5 h4 3302.9kJ

    kg610.7304

    kJ

    kg2692.1696

    kJ

    kg

    qout 1 y h7 h1 1 0.14617 2213.971

    kJ

    kg 251.42

    kJ

    kg 1675.669

    kJ

    kg

    wNET qin qout 2692.1696kJ

    kg1675.669

    kJ

    kg1016.5006

    kJ

    kg

    TH 1 qout

    qin1

    1675.669 kJkg

    2692.1696 kJkg

    0.3775 X100% 37.75 %

    iCICLO T0qOUT

    TL

    qIN

    TH290 K

    1675.669 kJkg

    290 K

    2692.1696 kJkg

    1500 K1155.1828

    kJ

    kg

  • 7/24/2019 Problem as Term o

    21/28

    1093 Consider a steam power plant that operates on a regenerative Rankine cycle andhas a net power output of 150 MW. Steam enters the turbine at 10 MPa and 500C andthe condenser at 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that

    of the pumps is 95 percent. Steam is extracted from the turbine at 0.5 MPa to heat thefeedwater in an open feedwater heater. Water leaves the feedwater heater as asaturated liquid. Show the cycle on a T-s diagram, and determine (a) the mass flow rateof steam through the boiler and (b) the thermal efficiency of the cycle. Also, determinethe exergy destruction associated with the regeneration process. Assume a sourcetemperature of 1300 K and a sink temperature of 303 K.

    s

    T

    2

    1 7

    10MPa

    6s

    5

    3

    4

    1-y

    0.5MPa

    10kPa

    7s

    6

    Edo.1 Edo. 2 Edo. 3 Edo.4 Edo.5h1=191.81 kJ/kg h2=192.3304

    kJ/kgh3=640.09 kJ/kg h4=651.02

    kJ/kgh5=3375.1kJ/kg

    P1=10kPA s2=1.8604kJ/kgK P3=0.5MPa P5=10MPav1=0.001010m3/kg P2=10kPa v3=0.001093m3/kg

    s3=0.6492kJ/kgKs5=6.5995kJ/kgK=s6=s7s

    Edo.6 Edo.7 T=500CP6=0.4MPa P7s=10kPah6=2798.288 kJ/kg h7=2346.81

    kJ/kgx6=0.9554 x7=0.7934

  • 7/24/2019 Problem as Term o

    22/28

    h2 h1 wpin 191.81kJ

    kg0.5209

    kJ

    kg192.3304

    kJ

    kg

    wpin v1 P2 P1 0.001010m3

    kg500kPa 10 kPa

    lkJ

    1 kPa.m30.5209

    kJ

    kg

    wpinv3 P4 P3

    th

    0.001093 m3

    kg

    10000 kPa 500 kPa

    .95

    lkJ

    1 kPa.m310.93

    kJ

    kg

    h4 h3 wpin 640.09kJ

    kg10.93

    kJ

    kg651.02

    kJ

    kg

    x6s6 sf

    sfg

    6.5995 kJkg K

    1.8604 kJkg K

    4.9603 kJkg K

    0.9554

    h6 hf x6 hfg 3375.1 kJ

    kg0.9554 2108.0

    kJ

    kg2798.2884

    kJ

    kg

    x7ss7s sf

    sfg

    66.5995 kJkg K

    0.6492 kJkg K

    7.4996 kJkg K

    0.7934

    th5 h7

    h5 h7sh7 h5 t h5 h7s 3375.1

    kJ

    kg0.8 3375.1

    kJ

    kg2089.739

    kJ

    kg5 2346.8116

    kJ

    kg

    Ein Eout m6 h6 h2m2 m3 h3 yh6 1 y h2 h3 ym6

    m3

    y h3 h2

    h6 h2

    640.09 kJkg

    192.3304

    2654.0856 kJkg

    192.3304 kJkg

    0.1818

    qin h5 h4 3375.1kJ

    kg651.02

    kJ

    kg2724.08

    kJ

    kg

    qout 1 y h7 h1 1 0.1818 2346.8116

    kJ

    kg 191.81

    kJ

    kg 1763.036

    kJ

    kg

    wNET qin qout 2724.08kJ

    kg1763.036

    kJ

    kg961.0437

    kJ

    kg

    TH 1 qout

    qin1

    1763.036 kJkg

    2724.08 kJkg

    0.3528 X100 % 35.28 %

    m WNET

    wNET

    150000 kJs

    961.0437 kJkg

    156.08kg

    s

    iregen T0 me se mi siqalr

    TL

    T0 s3 ys6 1 y s2

    iregen 303 K 1.8604 kJ

    kgK0.1818 6.9308

    kJ

    kgK1 0.1818 0.6492

    kJ

    kgK120.8048

    kJ

    kg

  • 7/24/2019 Problem as Term o

    23/28

    1095 Consider an ideal reheatregenerative Rankine cycle with one open feedwaterheater. The boiler pressure is 10 MPa, the condenser pressure is 15 kPa, the reheaterpressure is 1 MPa, and the feedwater pressure is 0.6 MPa. Steam enters both the high-

    and low-pressure turbines at 500C. Show the cycle on a T-s diagram with respect tosaturation lines, and determine (a) the fraction of steam extracted for regeneration and(b) the thermal efficiency of the cycle.

    s

    2

    1 9

    10MPa

    5

    3

    40.6MPa

    15kPa

    6

    7

    8

    1MPa

    Edo.1 Edo. 2 Edo. 3 Edo.4 Edo.5h1=225.94 kJ/kg h2=226.53319

    kJ/kgh3=670.38 kJ/kg h4=680.7294

    kJ/kgh5=3375.1kJ/kg

    P1=15kPA P3=0.6MPa P5=10MPav1=0.001014m3/kg

    v3=0.001101m3/kg

    s5=6.5995kJ/kgK=s6=s7s

    Edo.6 Edo.7 Edo. 8 Edo. 9 T=500CP6=1MPa P7=1MPa P8=0.6MPa P7s=15kPah6=2783.8124kJ/kg

    h7=3479.1kJ/kg

    h7=3310.1569kJ/kg

    h7=2518.7838 kJ/kg

    s7=7.7642m3/kg

    s8=s7=s9 x9=0.966506

    wpin v1 P2 P1 0.001014m3

    kg600 kPa 15 kPa

    lkJ

    1 kPa.m30.59319

    kJ

    kg

    h2 h1 wpin 225.94kJ

    kg0.59319

    kJ

    kg226.53319

    kJ

    kg

    wpinv3 P4 P3

    th

    0.001101 mkg

    10000 kPa 600 kPa lkJ1 kPa.m3

    10.3494 kJkg

    h4 h3 wpin 670.38kJ

    kg10.3494

    kJ

    kg680.7294

    kJ

    kg

    x9s9 sf

    sfg

    7.7642 kJkg K

    0.7549 kJkg K

    7.2522 kJkg K

    0.966506

    h9 hf x9 hfg 225.94kJ

    kg0.9665064 2372.3

    kJ

    kg2518.7838

    kJ

    kg

  • 7/24/2019 Problem as Term o

    24/28

    1112 A refrigerator uses refrigerant-134a as the working fluid and operates on an idealvapor-compression refrigeration cycle between 0.12 and 0.7 MPa. The mass flow rate ofthe refrigerant is 0.05 kg/s. Show the cycle on a T-s diagram with respect to saturationlines. Determine (a) the rate of heat removal from the refrigerated space and the powerinput to the compressor, (b) the rate of heat rejection to the environment, and (c) thecoefficient of performance.

    s

    T

    2

    1

    0.7MPa3

    40.12MPa

    4sQL.

    QH.

    Win.

    Edo.1 Edo. 2 Edo. 3 Edo.4

    h1=236.97 kJ/kg h2=273.5377 kJ/kg h3=88.82 kJ/kg h4h3

    P1=0.12MPA P2=0.7MPA P3=0.7MPa

    s1=0.94779 kJ/kgK s2=s1

    Ein Eout m8 h8 h2m2 m3 h3 yh8 1 y h2 h3 y m8

    m3

    y h3 h2

    h8 h2

    670.38

    kJ

    kg 226.53319

    kJ

    kg

    3310.1569 kJkg

    226.53319 kJkg

    0.143936

    qin h5 h4 h7 h6 3375.1kJ

    kg680.7299

    kJ

    kg3479.1

    kJ

    kg2783.8124

    kJ

    kg3389.6577

    kJ

    kg

    qout 1 y h9 h1 1 0.143936 2518.7838 kJ

    kg225.94

    kJ

    kg1962.81428

    kJ

    kg

    TH 1 qout

    qin1

    1962.81428 kJkg

    3389.6577 kJkg

    0.4209 X100 % 42.09 %

    QL m h1 h4 0.05 kg

    s236.97

    kJ

    kg88.82

    kJ

    kg7.4075 kW

    Win m h2 h1 0.05kg

    s273.5377

    kJ

    kg236.97

    kJ

    kg1.828 kW

  • 7/24/2019 Problem as Term o

    25/28

    QH QL Win 7.4075kW 1.828kW 9.2355kW

    COPR

    QL

    Win

    7.4075 kW

    1.828 kW 4.0522

  • 7/24/2019 Problem as Term o

    26/28

    1132 A heat pump using refrigerant-134a heats a house by using underground water at8C as the heat source. The house is losing heat at a rate of 60,000 kJ/h. Therefrigerant enters the compressor at 280 kPa and 0C, and it leaves at 1 MPa and 60C.

    The refrigerant exits the condenser at 30C. Determine (a) the power input to the heatpump, (b) the rate of heat absorption from the water, and (c) the increase in electricpower input if an electric resistance heater is used instead of a heat pump.

    T

    2

    1

    1MPa3

    40.28MPa

    4sQL.

    QH.

    Win.

    30C

    60C

    casa

    0C

    Edo.1 Edo. 2 Edo. 3 Edo.4

    h1=250.83 kJ/kg h2=293.38 kJ/kg h3=93.58 kJ/kg h4h3

    P1=280kPA P2=1MPA P3=1MPa

    T1=0C T2=60C T3=30C

    mR QHqH

    60000

    3600

    kJ

    S

    293.38 kJkg

    93.58 kJkg

    0.0834 kgs

    Win m h2 h1 0.0834kg

    s293.38

    kJ

    kg250.83

    kJ

    kg3.54938 kW

    QL m h1 h4 0.0834kg

    s250.83

    kJ

    kg93.58

    kJ

    kg13.1172 kW

    We QH3600

    J

    S16.6666 kW

    Wincrem We Win 16.6666 k 3.54938 kW 13.11728kW

  • 7/24/2019 Problem as Term o

    27/28

    1196 Consider a two-stage compression refrigeration system operating between thepressure limits of 0.8 and 0.14 MPa. The working fluid is refrigerant-134a. The

    refrigerant leaves the condenser as a saturated liquid and is throttled to a flash chamberoperating at 0.4 MPa. Part of the refrigerant evaporates during this flashing process, andthis vapor is mixed with the refrigerant leaving the low-pressure compressor. Themixture is then compressed to the condenser pressure by the high-pressure compressor.The liquid in the flash chamber is throttled to the evaporator pressure, and it cools therefrigerated space as it vaporizes in the evaporator. Assuming the refrigerant leaves theevaporator as saturated vapor and both compressors are isentropic, determine (a) thefraction of the refrigerant that evaporates as it is throttled to the flash chamber, (b) theamount of heat removed from the refrigerated space and the compressor work per unitmass of refrigerant flowing through the condenser, and (c) the coefficient ofperformance.

    s

    4

    1

    0.8MPa5

    80.14MPa

    qL

    0.4MPa76

    2

    9

    h1=239.16 kJ/kg h2=256.58 kJ/kg h3=255.55 kJ/kg h5h695.47kJ/kg

    h7=63.94 kJ/kgh8 h9=256.4105 kJ/kg

    x6h6 hf

    hfg

    95.47 kJkg

    63.94 kJkg

    191.62 kJkg

    0.16454

    Ein Eout me he mi hi

    h9 x6 h3 1 x6 h2 0.16454 255.55 kJ

    kg1 0.16454 256.58

    kJ

    kg256.4105

    k

    k

    qL 1 x6 h1 h8 1 0.1645 239.16 kJ

    kg63.94

    kJ

    kg146.389

    kJ

    kg

  • 7/24/2019 Problem as Term o

    28/28

    win 1 0.1645 256.58kJ

    kg239.16

    kJ

    kg279.3185

    kJ

    kg256.4105

    kJ

    kg37.4617

    kJ

    kg

    COPR qL

    win

    146.389 J

    kg

    37.4617 kJkg

    3.9076