Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

33
Hideki Seto (Yoshikawa Lab.) Pressure- and temperature- dependences of shape fluctuations in a microemulsion system Hideki Seto Department of Physics, Kyoto University, Japan with collaborations of Michihiro Nagao ISSP, The University of Tokyo Takayoshi Takeda FIAS, Hiroshima Univ. Youhei Kawabata Tokyo Metropolitan Univ. …and many other colleagues

description

Pressure- and temperature- dependences of shape fluctuations in a microemulsion system. Hideki Seto. Department of Physics, Kyoto University, Japan. Michihiro Nagao ISSP, The University of Tokyo Takayoshi Takeda FIAS, Hiroshima Univ. Youhei Kawabata Tokyo Metropolitan Univ. - PowerPoint PPT Presentation

Transcript of Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Page 1: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki SetoDepartment of Physics, Kyoto University, Japan

with collaborations of Michihiro Nagao ISSP, The University of Tokyo

Takayoshi Takeda FIAS, Hiroshima Univ.

Youhei Kawabata Tokyo Metropolitan Univ.

…and many other colleagues

Page 2: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Ternary microemulsion systemswater + oil + surfactant

Surfactant

Water Oil

Lamellar

Spherical Micelles Inverted Micelles

Irregular Bicontinuous

Hexagonal

Inverted CubicCubic

Cylindrical Micelles

Page 3: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

R1

R2

mean curvature

H =12

1R1

+1R2

⎝ ⎜

⎠ ⎟

Gaussian curvature

K =1R1

1R2

Helfrich’s approachW. Helfrich, Z. Naturforsch. C28 (1973) 693

Ebend = κ (H −1Rs

)2 +κ K ⎡

⎣ ⎢

⎦ ⎥∫ dSBending energy

bending modulus

Spontaneous curvature

Page 4: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

H > 0

H = 0

H < 0

K > 0 K = 0 K < 0

Page 5: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Phase transitions

spontaneous curvaturesbending moduli

SANS/SAXS and NSE studies

Phase transitions are observed with increasing temperature, pressure, ...

change with changing conditions

Page 6: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

AOT + D2O + n-decane

AOT

decane D2O

φ

water-in-oil droplet

AOT molecule

spontaneous curvature > 0

Page 7: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

T-(droplet volume fraction) phase diagram

0 0.1 0.2 0.3 0.4 0.5 0.6

T [˚C]

20

30

40

502 phase

1 phase

lamellae

binodal line

droplet

Cametti et al. Phys. Rev. Lett. 64 (1990) 1461.

Page 8: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Origin of temperature dependence

Rs > 0

Rs ~ 0

lamellar structure

Rs >> 0

w/o droplet

T

Page 9: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Pressure dependence

0 0.1 0.2 0.3 0.4 0.5 0.6

P [MPa]

0

10

20

30

40

percolation line

binodal line2 phase

1 phase droplet

Lamellae

Saïdi et al. J. Phys. D : Appl. Phys. 28 (1995) 2108.

Page 10: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

SANS measurement

upper part

lower part

0

10

20

30

40

0 0.05 0.1 0.15

0.1 MPa10.230.544.557.0121.0

Q [Å-1]

I(Q) [cm

-1]

0

10

20

30

40

0 0.05 0.1 0.15

0.1 MPa10.230.044.558.0120.6

I(Q) [cm

-1]

Q [Å-1]

Nagao and Seto, Phys. Rev. E 59 (1999) 3169

Page 11: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Determination of P(Q) and S(Q)

P(Q):form factor of dropletpolydisperse droplet with Schultz size distribution

Kotlarchyk and Chen, J. Chem. Phys. 79 (1983) 2461.

(R0: mean radius of water core)

S(Q):inter-droplet structure factorhard core and adhesive potential

Liu, Chen, Huang, Phys. Rev. E 54 (1996) 1698

R ' R r

Ω

0

water AOT decane

L(Q)=1/(2Q2+1)

:surfactant concentration fluctuation

R0

Page 12: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Result of fittingφs = 0.230 / T = 33°C / P = 1bar

3500

3000

2500

2000

1500

1000

500

00.200.150.100.05

Q(Å-1)

I(Q)=P(Q)S(Q)+L(Q)

R=51.9(Å)=0.28Ω=-3kBT=0.0013Z=26.1R0=40.5 (Å)=10.6(Å)

Page 13: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Pressure dependence of Ω

-8

-7

-6

-5

-4

-3

-2

-1

0

-400 -200 0 200 400 600 800

T=20°CT=24°CT=29°CT=34°C

P-Ps(bar)

Ω(kBT)

Page 14: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Pressure-induced transition

pressure

Page 15: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Dynamical behaviorPressure-dependence Temperature-dependence

SAME? or DIFFERENT?

dilute droplet

Y. Kawabata, Ph. D thesis to Hiroshima Univ.

dense droplet

M. Nagao et al., JCP 115 (2001) 10036.

AOT

decane D2O

Temperature/Pressure

φ

dilutedroplet

densedroplet

Page 16: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Neutron Inelastic/Quasielastic Scattering

Low wavelength resolution

Low energy resolution

High resolution

Less intensity

Page 17: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Neutron Spin Echo

Larmor precession in a magnetic field

Wavelength resolution and engergy resolution are decoupled

Page 18: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Advantages of NSE

Highest energy resolution ~ neV

I(Q,t) is observed : better to investigate relaxation processes

BEST for SLOW DYNAMICS in SOFT-MATTER

Page 19: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Dense droplet

Q=0.09Q=0.07Q=0.06Q=0.05Q=0.03

Q=0.11

Fourier time(ns)0.3

0.4

0.5

0.6

0.70.80.9

1

0 5 10 15

Fourier time(ns)0.3

0.4

0.5

0.6

0.7

0.80.9

1

0 5 10 15

Q=0.04Q=0.06Q=0.07Q=0.09Q=0.10Q=0.12Q=0.14

Q=0.04Q=0.06Q=0.07Q=0.09Q=0.10Q=0.12Q=0.14

Fourier time(ns)0.3

0.4

0.5

0.6

0.7

0.80.9

1

0 5 10 15

25

40

0.1 60Pressure/MPa

I(Q, t)= Σ<p(-iQRj(0))p(iQRj(t))>N1

Page 20: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Model of membrane fluctuationZilman and Granek, Phys. Rev. Lett. 77 (1996) 4788)

h (kBT/κ)1/2 Lζ~ : roughness exponentζ = 1 (2 )D object= 3/2 (1 )D object

L (κ/kBT)1/2ζ Q-1/ζ~The Stokes-Einstein diffusion coefficient is,D(Q) (kBT/ηL) (kBT/η)(kBT/κ)1/2ζ Q1/ζ~ ~The relaxation rate is,

Thus they obtained the stretched exponential form of the relaxation function as,

where

I(Q, t )= exp[-(Γ(Q)t)β]

Γ(Q)= γαγκ (kBT)1/βκ1-(1/β)η-1Q2/β

β = 2 / (2+1/ζ) = 2/3(2 )D object= 3/4(1 )D object

γα = 0.024 (2 )D object = 0.0056 (1 )D object

γκ = 1 - 3 ln( / l(t)) kBT / (4pκ)

~Γ(Q) D(Q)Q2 (kBT/η)(kBT/κ)1/2ζ Q2+(1/ζ)~

Q // z

undulation amplitude: h = 1/Q

lateral length: L

Page 21: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Bending modulus

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3

T=25°C / P=0.1MPaT=40°C / P=0.1MPaT=25°C / P=60MPa

Q 3 (x10 -3Å-1)

Γ(1/ns)

κhigh-T

κambient-T,P

κhigh-P

0.4kBT

1.4kBT

2.6kBT

Γ(Q)= 0.024(kBT)2/3 κ 1/3 η -1 Q3

Page 22: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Dilute droplettemperature / pressure

AOT / D2O / d-decane (film contrast)

s=0.37 (AOT volume fraction)

=0.1 (droplet volume fraction)

Page 23: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Measured pointsAOT / D2O / d-decane (film contrast)

s=0.37 (AOT volume fraction)

=0.1 (droplet volume fraction)

1 0

2 5

4 3

5 55 9

6 5

0 .1 2 0 4 0 6 0P /M P a

T /°C

Page 24: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Result of SANS

1

10

100

I(Q

) [c

m-1

]

0.012 3 4 5 6 7 8 9

0.12

Q [Å -1

]

T=298.15K

P=22 MPa

T=298.15K P=0.1MPa

T=329.15K

P=0.1MPa€

F(Q) = Fmono (Q,R)exp[−(R − R0 )2

2σ 2−∞

∫ ]dR

Fmono(Q) =sin(QR)

(QR)

⎣ ⎢ ⎤

⎦ ⎥

2

p =σR0

R0 ~ 32Å → 28Å

T=25 ˚C → 65˚C

P=0.1 MPa → 60 MPa

R0 ~ 32 Å → 30Å

p ~ 0.16 → 0.18

p ~ 0.16

Page 25: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

NSE profiles

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

I(Q=0.04)I(Q=0.05)I(Q=0.06)I(Q=0.08)I(Q=0.09)I(Q=0.10)I(Q=0.12)I(Q=0.14)

t [ns]

I(Q,t)/I (Q,0) =exp[−DeffQ2t]

Room temperature/pressure

1.0

0.8

0.6

0.4

0.2

I(Q,t)/I(Q,0)

1412108642 t [ns]

'0.04' '0.05' '0.06' '0.08' '0.09' '0.10' '0.12' '0.14'

T=43˚C/ P=0.1MPa

T

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

I(Q,t)/I(Q,0)

1412108642t [ns]

'Q=0.05' 'Q=0.06' 'Q=0.07' 'Q=0.08' 'Q=0.09' 'Q=0.095' 'Q=0.10' 'Q=0.11' 'Q=0.12' 'Q=0.13'

RT/ P=20MPa

P

Page 26: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Milner and Safran modelHuang et al. PRL 59 (1987) 2600.Farago et al. PRL 65 (1990) 3348.

R(θ ,φ,t)=R0{1+ anm(t)Ynmnm∑ (θ ,φ)}

Expansion of the shape fluctuation into spherical harmonics

f0(QR0)=[ j0(QR0)]2

f2(QR0)=5[4 j2(QR0)−(QR0) j3(QR0)]2

up to n=2 mode gives

I(Q,t)/I (Q,0)=exp[−DeffQ2t]

Deff=Dtr+5λ2f2(QR0) a2

2

Q2[4πf0(QR0)+5f2(QR0) a22

]

where

damping frequency of the 2nd mode deformation

mean-square displacement of the 2nd mode deformation

n=0 mode n=2 mode

translational diffusionshape deformation

Page 27: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Effective diffusion constant

12

10

8

6

4

2

0.140.120.100.080.060.04Q [Å-1]

T= 19˚CT= 25˚CT= 35˚CT= 49˚CT= 55˚C

P= 60MPa

P= 21MPaP= 40MPa

Def

f [1

0-7 c

m2 /

s]

temperature

pressure

Deff=Dtr+5λ2f2(QR0) a2

2

Q2[4πf0(QR0)+5f2(QR0) a22 ]

Page 28: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Expansion of the theory

κ

λ2= κηR0

3 4R0Rs

−3κκ−3kBT4πκ f φ( )⎡

⎣⎢⎤⎦⎥

1Z2( )

p2= kBT4π 62κ+( )−8κR0

Rs+3kBT

2π f φ( )⎡⎣⎢

⎤⎦⎥

EXPERIMENTALY OBTAINED PARAMETERS

KNOWN PARAMETERS

Seki and Komura Physica A 219 (1995) 253 ηη

Z(2)=23

′ η η

+32

24

κ =16

kBT

8πp2+λ2R0

3ηZ(2)⎛

⎝ ⎜

⎠ ⎟

Y. Kawabata, Ph. D thesis

R0 ≈ 32Å

p2 = σR0

⎛ ⎝ ⎜ ⎞

⎠ ⎟2 ⎛

⎝ ⎜

⎠ ⎟≈ 0.16

From SANS experiments

Page 29: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Pressure- and temperature-dependence of κ and <|a2|2>

(A) : Temperature dependence of κ (B): Pressure dependence of κ

0.55

0.50

0.45

0.40

0.35

0.30

0.25

κ [kB]T

330320310300290 [ ]Temperature K

3.0

2.5

2.0

1.5

1.0

0.5

< |a2|2>

κ

< |α2|2>

( )A3.0

2.5

2.0

1.5

1.0

0.5

< |a2| 2>

6004002000Pressure [Kg/cm2]

0.55

0.50

0.45

0.40

0.35

0.30

0.25

κ [kB]T

( )B κ < |a2|

2>

Page 30: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Introducing reduced pressure / temperature

3.0

2.5

2.0

1.5

1.0

0.5

< |a2|2

>

-1.0 -0.5 0.0 0.5T, P^ ^

(B)< |a2|2>(pressure)

< |a2|2>(temperature)

TB , PB : binodal point

T0 , P0 : ambient temperature/pressure

ˆ T =T −TB

TB −T0

ˆ P =P−PBPB −P0

binodal pointambient temperature/pressure

0.50

0.45

0.40

0.35

0.30

0.25

κ [kB]T

-1.0 -0.5 0.0 0.5, T P

κ ( )pressure

κ ( )temperature

( )A

^ ^

Page 31: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Schematic picture

Temperature Pressure

Page 32: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

Pressure- and temperature dependences of head area

64

62

60

58

56

54

52

-0.8 -0.4 0.0 0.4

T, P^ ^

a H[Å

2 ] a H=area per molecule

number of surfactants per droplet

number of droplets =Whole volume of droplets

volume of a droplet

number of surfactants per droplet number of droplets

number of surfactants=

temperature

pressure

Page 33: Pressure- and temperature- dependences of shape fluctuations in a microemulsion system

Hideki Seto (Yoshikawa Lab.)

SummaryPressure- and temperature-dependences of the structure and the dynamics of AOT/D2O/decane were investigated.

bending modulus for Gaussian curvature κspontaneous curvature Rs

κ increase decrease

microscopic tail-tail interaction counter-ion dissociation

pressure temperature

structuredense droplet lamellar/bicontinuousdilute droplet 2-phase droplet