Preliminary model of geothermal regimes

8
Preliminary model of geothermal regimes

description

Preliminary model of geothermal regimes. Existing data. Drill site. Objectives. The development of - a quantitative characterization technique for subsurface rock masses in terms of integrated geochemical, hydrological, geological and geophysical investigation methods. - PowerPoint PPT Presentation

Transcript of Preliminary model of geothermal regimes

Page 1: Preliminary model of geothermal regimes

Preliminary model of geothermal regimes

Page 2: Preliminary model of geothermal regimes

Existing data

Page 3: Preliminary model of geothermal regimes

Drill site

Page 4: Preliminary model of geothermal regimes

ObjectivesThe development of - a quantitative characterization technique for subsurface rock masses in terms of integrated geochemical, hydrological, geological and geophysical investigation methods. - numerical modelling methods with more reliable inversion algorithms that consider coupled geo-thermo-hydro-mechanical and chemical processes.The integrated interpretation of down-the-hole and on-surface measurements of a large number of key geochemical, geological, thermal, hydrological, and mechanical variables with studies of mass transport in different phases. Long-term observations of changes in stress, electromagnetic transients, chemical water-rock interactions, mechanical properties and fluid flow characterisation including the nature of the saline groundwater interface evolution.Studies of impact cratering mechanisms, as well as related hydrothermal, metamorphic processes, magnetic and structural overprint.

Page 5: Preliminary model of geothermal regimes

relations between fracturing and other physical properties (porosity, electric and thermal conductivity, magnetic and hydrological) can be

tested over a large range of variation,

the structure is a closed system and the hydrothermal consequences of the impact event the chemical and biological development of that system

after the impact can be studied,

knowledge of importance for all kinds of deep subsurface activities i.e. for geothermal exploration, CO2 storage, rad-waste storage and drilling

technology, and stress field,

observations of time variation of in flow, electromagnetic fields, and strain are possible.

Importance of the site

Page 6: Preliminary model of geothermal regimes

Science teamKTH: Lanru Jing, senior researcher, KTH-LWR, rock mechanics Bo Olofsson, Prof., KTH-LWR, applied geophysics Anders Wörman, Prof., KTH-LWR, geochemistry Gunnar Jacks, Prof.em. KTH-LWR-geochemistry Herbert Henkel, docent, KTH-LWR, applied geophysics, impact tectonics

SU: Sandra Piazolo, Assoc.Prof., SU-GEO, structural geology Paula Lindgren, post doc., SU, hydrothermal studies

Other universities: Wolf Uwe Reimold, Prof., Humboldt Univ. Berlin, impact petrology Sten Åke Elming, Prof., LTU-GEO. Paleomagnetics

Further candidates: Daniel Ask, Maria Ask LTU, Bengt Lejon LTU, rock mechanics, to be enquired Laust B Pedersen, Prof. UU-GEO, magnetotellurics Leif Bjelm, LTH-GEO, deep drilling

Page 7: Preliminary model of geothermal regimes

Exempel på modellering baserad på tyngdkraftsdata av den hemisfäriska zon (de bruna färgerna) som påverkas med ökad sprickbildning under en nedslagskrater (Tvären).

Page 8: Preliminary model of geothermal regimes

Illustration till frågan ”varför en så speciell geologisk miljö som en nedslagskrater” Fördelen är en stor variation i sprickfrekvensen som tillåter att mera säkert kunna bestämma sambanden mellan olika egenskaper och sprickfrekvensen. (Jämfört med en begränsad sprickfrekvens i vanlig berggrund).