Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 ·...

44
Department of Mechanical Engineering Predic5ng Turbofan FanStage Noise Sheryl Grace Boston University TuCs CEEO

Transcript of Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 ·...

Page 1: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Predic5ng  Turbofan  Fan-­‐Stage  Noise  

Sheryl  Grace  

Boston  University  TuCs  CEEO  

Page 2: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Predic5ng  Turbofan  Fan-­‐Stage  Noise  

What  is  it?  Who  cares?  

Page 3: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Turbofans  

Military  Low  bypass  Multistage  

Commercial  High  bypass  Single  stage  Large  axial  gap  

Page 4: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Turbofans  

Commercial  High  bypass  Single  stage  Large  axial  gap  

Strict  noise  regulations  Getting  stricter  

Page 5: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Page 6: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Page 7: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Tonal  

Broadband  

Types  of  noise    from  fan  stage  

Nallasamy  and  Envia,  JSV,  2005  

than rotor wake turbulence noise (see also Ref. [13]). However, it is to be noted that the inlet/exhaust noise separation at higher speeds encountered problems as discussed in Section 2.3.

3.3. Variation of noise with vane count

As the vane count is reduced, the rotor-wake turbulence generated broadband noise is expectedto reduce substantially. The cut-on fan design is expected to produce less broadband noise thanthe cut-off design to counteract the cut-on tone noise levels.Fig. 11(a) shows computed exhaust power spectra for 54 radial vane and 26 radial vane

configurations at approach and the corresponding measured spectra are shown in Fig. 11(b). It isseen that the experimentally observed noise reduction due to reduced vane count is clearly shownin the predictions. The acoustic power for 26 radial vanes is substantially lower than for the 54radial vanes configuration. The power is expected to vary as 10 logN2

V (see Ref. [10]) where NV isthe vane count. This should result in 6.3 dB, (20 LOG (54/26)), reduction in power levels for the26-vane OGV compared with the 54-vane OGV. The predicted reduction in power due to thereduction in vane number is higher than expected at high frequencies. At low frequencies!o3 kHz"; the experimental result is insensitive to the vane count. The noise levels computed forthe two configurations are not significantly different, probably because at low frequencies thereare additional noise sources present, which are not modeled in the present theory. A similar trendwith vane count was observed in Boeing broadband noise experiments on the effect of vane counton noise spectra [14].The reduction in acoustic power level due to a reduction in vane count was further explored to

understand the contributing factors, in an effort to explain the more than expected reduction inacoustic power. An examination of inputs and computed power levels indicated a strongdependence on the vane stagger angle. Fig. 12 shows the power levels of the exhaust approach

ARTICLE IN PRESS

Fig. 10. Effect of fan tip speed on fan exhaust duct acoustic power spectrum for the baseline stator. (a) Computedspectra: solid line, approach; dashed line, cutback; and dotted line, takeoff. (b) Measured spectra: solid line, approach;dashed line, cutback; and long dashed line, takeoff.

M. Nallasamy, E. Envia / Journal of Sound and Vibration 282 (2005) 649–678 663

approach  

cutback  

takeoff  

Page 8: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

rotor FEGV

exhaust plane

fan  FEGV  

Fan-­stage  tonal  noise,  explained  

Frequency  depends  on  number  of  blades  and  rate  of  rotation  Propagation  depends  on  number  of  blades  and  vanes,  the  frequency,  the  axial  

Glow  speed,  the  shape  of  the  annulus,  etc.  

Engine  designers  have  this  pretty  well  modeled  Use  blade  counts  and  duct  liners  to  control  

Page 9: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Fan-­stage  broadband  noise,  primer  

Rotor-­FEGV  interaction  noise  considered  dominant  source  (especially  at  exhaust  plane)  

Fan Broadband Noise Sources

7

Fan-OGV interaction

Fan-IGV interaction Inlet turbulence and distorsion fan interaction

Fan clearance

Fan self noise

Inlet Boundary layer fan interaction

Typical broadband noise sources

Fan broadband noise may have different origins Fan-OGV interaction is considered as the main contributor of total broadband noise on modern civil engines. Other BBN sources cannot be neglected and should be also studied and controlled.

Envia,  AIAA  workshop  presenta5on,  2014  

than rotor wake turbulence noise (see also Ref. [13]). However, it is to be noted that the inlet/exhaust noise separation at higher speeds encountered problems as discussed in Section 2.3.

3.3. Variation of noise with vane count

As the vane count is reduced, the rotor-wake turbulence generated broadband noise is expectedto reduce substantially. The cut-on fan design is expected to produce less broadband noise thanthe cut-off design to counteract the cut-on tone noise levels.Fig. 11(a) shows computed exhaust power spectra for 54 radial vane and 26 radial vane

configurations at approach and the corresponding measured spectra are shown in Fig. 11(b). It isseen that the experimentally observed noise reduction due to reduced vane count is clearly shownin the predictions. The acoustic power for 26 radial vanes is substantially lower than for the 54radial vanes configuration. The power is expected to vary as 10 logN2

V (see Ref. [10]) where NV isthe vane count. This should result in 6.3 dB, (20 LOG (54/26)), reduction in power levels for the26-vane OGV compared with the 54-vane OGV. The predicted reduction in power due to thereduction in vane number is higher than expected at high frequencies. At low frequencies!o3 kHz"; the experimental result is insensitive to the vane count. The noise levels computed forthe two configurations are not significantly different, probably because at low frequencies thereare additional noise sources present, which are not modeled in the present theory. A similar trendwith vane count was observed in Boeing broadband noise experiments on the effect of vane counton noise spectra [14].The reduction in acoustic power level due to a reduction in vane count was further explored to

understand the contributing factors, in an effort to explain the more than expected reduction inacoustic power. An examination of inputs and computed power levels indicated a strongdependence on the vane stagger angle. Fig. 12 shows the power levels of the exhaust approach

ARTICLE IN PRESS

Fig. 10. Effect of fan tip speed on fan exhaust duct acoustic power spectrum for the baseline stator. (a) Computedspectra: solid line, approach; dashed line, cutback; and dotted line, takeoff. (b) Measured spectra: solid line, approach;dashed line, cutback; and long dashed line, takeoff.

M. Nallasamy, E. Envia / Journal of Sound and Vibration 282 (2005) 649–678 663

Page 10: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Full  RANS  CFD  of  rotor  stator  interaction  (even  if  modeled  as  one-­on-­one)  takes  several  months  to  start  up  and  then  weeks  to  obtain  enough  data  to  perform  the  statistics.    May  not  even  capture  turbulence  statistics  correctly.  

Some  think  only  LES  might  be  able  to  do  the  job  

Can  CFD  be  used?  

Page 11: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

This  is  where  my  research  comes  in…  

Motivation  •     Create  a  computational  tool  for  predictions  of  fan-­stage  noise  that  can  be  used  in  design  

•   Focus  on  interaction  noise  problem  and  exhaust  noise    •     Must  be  a  low-­order  model  

Outline  

•     Describe  two  essential  building  blocks  

•     Give  overview  of  how  the  pieces  Ait  together  to  develop  the  model  

•   Describe  two  experiments  used  for  validation  

•     Show  some  broadband  noise  predictions  from  the  method  

•     Wrap  up  

Page 12: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Outline  

•     Describe  two  essential  building  blocks  

•     Give  overview  of  how  the  pieces  Ait  together  to  develop  the  model  

•   Describe  two  experiments  used  for  validation  

•     Show  some  broadband  noise  predictions  from  the  method  

•     Wrap  up  

Page 13: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

1st  building  block  -­-­-­  inAlow  

Page 14: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Physically,  you  have  turbulence  coming  into  the  FEGV  and  interacting  with  it  81% Span 25% Span

97% Span 81% Span 25% Span

97% Span

PowerSpectralDensity

(ft2/sec2/Hz)

101

100

10!1

10!2

10!3

10!4

101

100

10!1

10!2

102 104 102 104 102 104

102 102 102104 104 104

frequency (Hz)

frequency (Hz)

Figure 26. PSDs computed from upwash velocities measured in the rotor wake with the rotoroperating at 61.7% speed (7808 RPMC).

Figure 27. Comparison of experimental and von Karman model PSDs. Experimental PSDs were computedfrom same time traces used in Fig 26., but after removing periodic component of the signal.

PowerSpectralDensity

(ft2/sec2/Hz)

29NASA/TM—2003-212329

Data  from  hot-­‐wire  probe  upstream  of  vane  

Data  averaged  over  129  wheel  rota5ons    

Power  Spectral  Density:  think  square  of  the  Fourier  Transform  

Full  signal  

Periodic  part  removed  

Page 15: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

We  need  a  useful  model  of  the  turbulent  inGlow  

Hot  wire  data  is  not  going  to  be  available  LDV  data  may  be  available  (averaged,  not  time  accurate)  CFD  calcs  just  give  statistics  –  like  turbulent  kinetic  energy  and  dissipation  

SimpliAications    homogeneous    (same  throughout  space,  deAinitely  not  true,  wake  Alow)    isotropic    (same  in  all  directions    u1u1  =  u2u2  =  u3u3)  

 turbulence  convected  by  the  meanAlow    (relates  space  and  time  through  velocity)        (x,t)        x  +  U  t                                                                                  k1  and  ω  related  through  U  

Correla5on  tensor  defined  by  correla5ons  

3-­‐D  energy  spectrum  defined  by  correla5on  tensor  

Liepmann  model  for  energy  spectrum  

ω e-­‐iωt  dω

ω

Page 16: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Example  of  spectrum  from  experimental  turbulence  intensity  and  length  scale  

25%  span  

50%  span  

81%  span  

mid-­‐gap  streamwise  

upwash  

Hotwire  Von  Karman  Liepmann  Gaussian  

Experimentally  based  spectrum  Related  1D  form    (Λ  =  Ls)  

ω

Page 17: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

2nd  building  block  -­-­-­  interaction  model  

Really  high  level  overview  of  unsteady  aerodynamics  

Page 18: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Early  unsteady  aerodynamics  –  focus  was  Alutter  

 used  Linearized  Euler  Eqs.  as  basis    

 considered  response  of  Alat-­plate  airfoil  in  unsteady  setting    

     “airfoil”  moving  :  heaving  and/or  pitching    (Wagner,  Theodorsen)    

 considered  response  of  stationary  Alat-­plate  airfoil  to  Alow  disturbance    

   “airfoil”  with  unsteady  inAlow  (gust)      (Kussner,  von  Karman,  Sears,  Possio)  

Page 19: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

e-­‐iωt  dω

∫Each  component  looks  like  an  individual  gust-­type  disturbance    

E2,2ei(k1x1 −ωt )+ ik2x2 + ik3x3

Later,  real  airfoil  shapes  were  considered  and  the  associated  Aield  acoustics    (Atassi  and  others)  

Also  similar  methods  for  determining  the  response  of  a  cascade  of  “airfoils”  were  derived  

ω

We  have  2nd  type  of  problem  

Page 20: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Think  about  the  fan-­stage  Slice  it  at  a  given  radial  position  and  unwrap  it  

!!"

!#"

" "

# "

!"

$"

%&"

# "

#"$'!("

%#"

%!"

&#"

&!"

'"

Rotor  

Wake  turbulence  

FEGV  

Cascade  of  flat  plates  

Use  strip  theory  to  build  up  unsteady  pressure  on  entire  vane  

Page 21: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Outline  

•     Describe  two  essential  building  blocks  

•     Give  overview  of  how  the  pieces  Ait  together  to  develop  the  model  

•   Describe  two  experiments  used  for  validation  

•     Show  some  broadband  noise  predictions  from  the  method  

•     Wrap  up  

Page 22: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

 Method  

Based  on  experimental  or  CFD  data,  3D  spectrum  model  

Aerodynamic  core  :  2-­‐D,  Alat-­plate  cascade  response  to  3D  gust  +  strip  theory  

Acoustic  pressure:  Green’s  function  for  annular  duct    (avoid  singular  values  kmn  0)  

InBlow  wake  turbulence      

Vane  unsteady  pressure  spectrum    

Acoustic  pressure  and  velocity  spectrum  in  duct  

Power  spectrum  at  duct  exit  

Cascade  response  to  oblique  gust    

Page 23: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Outline  

•     Describe  two  essential  building  blocks  

•     Give  overview  of  how  the  pieces  Ait  together  to  develop  the  model  

•   Describe  two  experiments  used  for  validation  

•     Show  some  broadband  noise  predictions  from  the  method  

•     Wrap  up  

Page 24: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

22-­‐inch  diameter  turbofan  model  ConBiguration  •     22  blade  rotor  •     54  vane  stator  –  baseline  •     26  vane  stator  –  low  count  •     26  vane  stator  –  swept    Design  Parameters  •     Maximum  RPM:  12,656  •     Maximum  tip  speed:  1,215  ft/s    •     Maximum  fan  weight  Blow:  100.5  lbm/s  

9  x  15  Foot  Wind  Tunnel  (NASA  Glenn)  

Source  Diagnostic  Test  (SDT)  

Page 25: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Experiments  Experimental  wake  data  Laser  Doppler  Velocimetry  (LDV)    •     Optical,  2-­‐component  (axial,  tangential)  system  •     Steady  measurements  not  restricted  by  rotor  speed    Hot-­‐wire  Anemometer  •     4-­‐wire  (5  micron  diameter  tungsten)  anemometer  •     3-­‐component  system  •     Unsteady  measurements  restricted  by  rotor  speed  

LDV  System  

Experimental  acoustic  data  Sideline  Traversing  Microphone  System  •     Translating  microphone  probe  +  3  aft  Bixed  microphones  •     Provides  total  PWL  only  –  includes  extraneous  modes  

Page 26: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

FC2  benchmark  

Fan Broadband Noise Benchmarking Panel Session FC2

Grid turbulence interaction with an annular cascade Based on data taken in the anechoic subsonic open jet facility at the Ecole Centrale de Lyon Posson & Roger, AIAA Journal, 49(9), 2011

Slide 2

2 Turbulence Grids T1 (~3%), T2 (~6%) 2 Cascades C1 (V=49), C2 (V=98) Giving four test cases T1C1, T2C1, T1C2, T2C2

Subsonic  open-­‐jet  facility  at  Ecole  Centrale  de  Lyon  

Grid  turbulence  interaction  with  annular  cascade  

Hot  wire  measurements  and  Bield  microphones  

Coupland,  AIAA  workshop  presenta5on,  2014  

Page 27: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Outline  

•     Describe  two  essential  building  blocks  

•     Give  overview  of  how  the  pieces  Ait  together  to  develop  the  model  

•     Describe  two  experiments  used  for  validation  

•     Show  some  broadband  noise  predictions  from  the  method,  describe  caveats  

•     Wrap  up  

Page 28: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Must  select  a  stagger  angle  –  Glat  plate  model  

10480

85

90

95

100

105

frequency (Hz)

PWL

(dB)

Experimental90/1050/5010/90

0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

Nondimensional radial location

Stag

ger a

ngle

It  makes  a  difference!  No  clear  winner  

Use  mid  value  for  now    

Page 29: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

FC2  predictions  –  based  on  experimental  input  

Trends  are  captured  reasonable  well  

C2  –  C1  :  too  large  of  difference  ,  dependence  on  number  of  vanes  not  perfectly  modeled  

Some  singular  frequencies  had  to  be  included  

102 103 104

50

60

70

80

90

100

110

120

130

140

150

160

T1C1

T1C2

T2C1

T2C2

frequency (Hz)

PWL

(dB)

103 1040

5

10

15

20

25

30

35

40

45

T2C2 − T1C1

T2C2 − T2C1

T1C1 − T1C2

frequency (Hz)

Diff

eren

ce (d

B)

Page 30: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

SDT  prediction  (based  on  hot-­wire)  

Approach  speed  

Low-­count  prediction  better  Used  mid-­stagger  for  both  

Spectral  shape  very  good  

Low  frequency  bump  in  low-­count  

Trend  is  captured  

103 10480

85

90

95

100

105

frequency (Hz)

PWL

(dB)

Measured, baselineMeasured, low countPredicted, baselinePredicted, low count

103 104−4

−2

0

2

4

6

8

10

12

frequency (Hz)

Diff

eren

ce (d

B)

MeasuredPredicted

Page 31: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Summary  and  conclusions  

o The  possibility  exists  for  predicting  broadband  noise  trends  from  a  fan  stage  using  a  low-­order  method  

o   Parameter  selection  necessary  due  to  simpliAied  model  (  stagger  )  does  not  affect  trend  prediction  

o   Fully  computational  prediction  suffers  from  reliance  on  turbulence  length  scale  modeled  with  CFD  

o   Difference  due  to  selected  background  turbulence  intensity  does  not  affect  trends  but  does  affect  individual  predictions  

o   Low-­count  conAiguration  is  better  predicted  :  potential  effect    

o   These  are  the  best  predictions  shown  in  the  literature  for  the  broadband  workshop  case  and  for  the  SDT  

Page 32: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Future  directions  

o Can  more  realistic  vane  geometry  be  modeled?  

o Can  “soft”  vanes  be  modeled?    Need  to  add  impedance  of  surface  to  model.  

Thickness   Thickness  and  camber  :  Dlow  turning  

Page 33: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Questions  

o NASA  Glenn  –  Ed  Envia,  Gary  Podboy,  etc.  

o   GE,  P&W,  NASA  Glenn  :  CFD  Ailes  

o AARC  for  funding  

o My  collaborators  Doug  Sondak  and  Victor  Yakhot  

o Graduate  students  on  this  project  Jeremy  Maunus  and  Andy  Wixom  

Thanks  

Page 34: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

What  if  input  based  on  CFD  

Code   Grid  config.  

Grid  density*  x,θ,r  

Tip  clearance  

Turb.  Model  

Rotor  config.  

Vane  config.  

Comp.  type  

1   O-­‐H   95x64x36   y   k-­‐ω hot   baseline   loosely  coupled  

2   C-­‐H   86x89x81   y   k-­‐ω hot   baseline   loosely  coupled  

3   H   11x51x51   n   k-­‐ε approach   baseline   average  passage  

4   O-­‐H   51x33x57   y/n   k-­‐ω hot   none   rotor  alone  

*between  two  measurement  loca5ons  in  gap  

4  simulations  of  the  SDT  rig  obtained  

Page 35: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

CFD  wake  accuracy:    SDT  (Approach)  

Passage-­averaged  axial  velocity   Passage-­averaged  circumferential  velocity  

Streamwise  velocity   Upwash  velocity  

(mid-­span)   (mid-­span)  

Page 36: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

CFD  wake  accuracy:    SDT  (Approach)  

Turbulence  intensity   Length  scale  (streamwise)  

0.5 0.6 0.7 0.8 0.9 10

0.02

0.04

0.06

0.08

0.1

0.12

Nondimensional radius

Non

dim

ensi

onal

turb

ulen

ce in

tens

ity

MeasuredCFD1CFD2CFD3CFD4

0.5 0.6 0.7 0.8 0.9 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Nondimensional radiusN

ondi

men

sion

al tu

rbul

ence

leng

th s

cale

MeasuredCFD1CFD2CFD3CFD4

SDT  approach  case  

Page 37: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Exhaust  sound  power  level  prediction:  approach  

Baseline:  54  vanes   Low  count:  26  vanes  

SDT  approach  case  

103 10480

85

90

95

100

105

frequency (Hz)

PWL

(dB)

MeasuredPredicted with HWPredicted with CFD1Predicted with CFD2Predicted with CFD3Predicted with CFD4

103 10475

80

85

90

95

100

105

frequency (Hz)

PWL

(dB)

MeasuredPredicted with HWPredicted with CFD1Predicted with CFD2Predicted with CFD3Predicted with CFD4

0.5 0.6 0.7 0.8 0.9 10

0.02

0.04

0.06

0.08

0.1

0.12

Nondimensional radius

Non

dim

ensi

onal

turb

ulen

ce in

tens

ity

MeasuredCFD1CFD2CFD3CFD4

0.5 0.6 0.7 0.8 0.9 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Nondimensional radiusN

ondi

men

sion

al tu

rbul

ence

leng

th s

cale

MeasuredCFD1CFD2CFD3CFD4

o   HW  based  prediction  higher:  o   potential  effect  maybe  

o   Largest  variations  come  from  largest  length  scale  differences  

Page 38: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Exhaust  sound  power  level  prediction:  takeoff  

Baseline:  54  vanes   Low  count:  26  vanes  

0.5 0.6 0.7 0.8 0.9 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Nondimensional radius

Non

dim

ensi

onal

turb

ulen

ce le

ngth

sca

le

CFD1CFD2CFD3CFD4

0.5 0.6 0.7 0.8 0.9 10.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Nondimensional radius

Non

dim

ensi

onal

turb

ulen

ce in

tens

ity

CFD1CFD2CFD3CFD4

103 10480

85

90

95

100

105

110

115

frequency (Hz)

PWL

(dB)

MeasuredPredicted with CFD1Predicted with CFD2Predicted with CFD3Predicted with CFD4

103 10480

85

90

95

100

105

110

115

frequency (Hz)

PWL

(dB)

Predicted with CFD1Predicted with CFD2Predicted with CFD3Predicted with CFD4

Turbulence  intensity   Length  scale  (streamwise)  

CFD4  

Rotor  alone  

Hot  geometry  

No  5p  gap  at  high  speed  

CFD2  

Baseline,  hot  geometry  

Largest  5p  gap  

Background  turb.  level  really  low  

Page 39: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Exhaust  sound  power  level  prediction  Use  CFD1  length  scale  

Baseline:  54  vanes  

103 10475

80

85

90

95

100

105

frequency (Hz)

PWL

(dB)

MeasuredHW with CFD1 length scaleCFD1CFD2 with CFD1 length scaleCFD3 with CFD1 length scaleCFD4 with CFD1 length scale

103 10480

85

90

95

100

105

110

115

frequency (Hz)

PWL

(dB)

MeasuredPredicted with CFD1CFD2 with CFD1 length scaleCFD3 with CFD1 length scaleCFD4 with CFD1 length scale

Approach   Takeoff  

Collapses    predictions,  except  for  hw  based  

Page 40: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Exhaust  sound  power  level  prediction  Trends  

Number  of  vanes  (shape  of  vanes  also)  

Baseline  -­  lowcount  

o   Completely  consistent  o   Slightly  high    

103 104−4

−2

0

2

4

6

8

10

frequency (Hz)

Diff

eren

ce (d

B)

MeasuredHot wireCFD1CFD2CFD3CFD4

Page 41: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Exhaust  sound  power  level  prediction  Trends  

Baseline:  54  vanes  

Cutback-­Approach  

Takeoff  -­  approach  

103 104−5

0

5

10

15

frequency (Hz)

Diff

eren

ce (d

B)

MeasuredCFD1CFD2CFD3CFD4

103 104−3

−2

−1

0

1

2

3

4

5

6

7

8

frequency (Hz)

Diff

eren

ce (d

B)

MeasuredCFD1CFD2CFD3CFD4

Take-­off  –  Cutback  

103 104

−4

−2

0

2

4

6

8

10

12

14

16

frequency (Hz)

Diff

eren

ce (d

B)

MeasuredCFD1CFD2CFD3CFD4

o   Trend  with  frequency  :  good  

o   Trend  with  rotor  speed  :  o   CFD2  less  variation  than  expected  

o   CFD4  gives  closest,  but  driven  by  large  tip  length  scale:  physical?  

Page 42: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

End  goal:  use  asymptotic  method  of  Peake  et  al.  for  cascade  gust  response    extend  method  to  calculate  the  unsteady  surface  pressure    

Mean  loading  effects

Page 43: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Thick,  perfectly  aligned  Blow  (t.e.  stagger)  

Cambered,  Blow  aligned  with  chord  

Cambered,  Blow  aligned  with  chord,  stagger  simulated  

Same  unsteady  response  

7%  thick    9%  camber    13o  stagger  

         30o  aoa  -­‐  approach  

Page 44: Predic5ng)Turbofan)Fan:Stage)Noise) - Boston University · 2016-12-22 · Departmentof)Mechanical)Engineering) Tonal) Broadband) Types)of)noise))from)fan)stage) Nallasamy)and)Envia,JSV,2005

Department  of  Mechanical  Engineering  

Effect  of  inGlow  modeling  assumptions  

Different  turbulence  spectra  

Liepmann  matched  turbulence  the  best  and  gives  good  spectral  shape  for  acoustics    

103 10475

80

85

90

95

100

105

110

frequency (Hz)

PWL

(dB)

MeasuredActual predictionPrediction with 2 LrPrediction with 2Lr and 2Ls

103 10480

85

90

95

100

105

110

frequency (Hz)

PWL

(dB)

Measured, baselinePredicted, LiepmannPredicted, Gaussian

Turbulence  length  scale  is  Achilles  heel  

Both  streamwise  and  radial  length  scales  are  in  the  model  

Doubling  radial  lengthscale  doubles  pressure  (3  dB)  

Doubling  streamwise  tilts  the  spectrum