Noise Margin and Noise Immunity

download Noise Margin and Noise Immunity

of 15

Transcript of Noise Margin and Noise Immunity

  • 8/11/2019 Noise Margin and Noise Immunity

    1/15

    6.012 Spring 2007 Lecture 11 1

    Lecture 11Digital Circuits (I)THE INVERTER

    Outline Introduction to digital circuits

    The inverter

    NMOS inverter with resistor pull-up

    Reading Assignment:Howe and Sodini; Chapter 5, Sections 5.1-5.3

  • 8/11/2019 Noise Margin and Noise Immunity

    2/15

    6.012 Spring 2007 Lecture 11 2

    1. Introduction to digital circuits: the inverter

    Logic 0: VMIN V VOL

    Logic 1: VOH V VMAX

    Undefined logic value: VOL

    V VOH

    In digital circuits, digitally-encoded information isrepresented by means of two distinct voltage ranges:

    Logic operations are performed using logic gates.

    Simplest logic operation of all: inversion inverter

    V

    logic 1

    logic 0

    undefinedregionVOL

    VMAX

    VMIN

    VOH

    The Static Definition

  • 8/11/2019 Noise Margin and Noise Immunity

    3/15

    6.012 Spring 2007 Lecture 11 3

    Ideal inverter

    VM input voltage for which VOUT = VIN For 0 VIN < VM VOUT = V

    +

    For VM < VIN V+ VOUT = 0

    Defineswitching point or logic threshold:

    Circuit representation and ideal transfer function:

    Ideal inverter returns well defined logical outputs (0 or

    V+) even in the presence of considerable noise in VIN(from voltage spikes, crosstalk, etc.)

    signal isregenerated!

    v+

    + +

    - -

    VIN VOUT

    VOUT

    VINV+

    V+

    V+2

    VOUT=VIN

    V+

    2VM=

    0

    0

    IN OUT=IN

    IN OUT

    0 1

    1 0

  • 8/11/2019 Noise Margin and Noise Immunity

    4/15

    6.012 Spring 2007 Lecture 11 4

    Real inverter

    Logic 0:

    VMIN output voltage for which VIN = V+

    VOL smallest output voltage where slope = -1

    Logic 1:

    VOH largest output voltage where slope = -1 VMAX output voltage for which VIN = 0

    In a real inverter, valid logic levels defined as follows:

    VOUT

    VINV+0

    0

    slope=-1VOH

    VOLVMIN

    VMAXlogic 1

    logic 0

    transitionregion

  • 8/11/2019 Noise Margin and Noise Immunity

    5/15

    6.012 Spring 2007 Lecture 11 5

    Two other important voltages:

    Define:

    VIL smallest input voltage where slope = -1VIH highest input voltage where slope = -1

    If range of output values VOL to VOH is wider than therange of input values VIL to VIH, then the inverter

    exhibits some noise immunity. (|Voltage gain| > 1)

    Quantify this throughnoise margins.

    VOUT

    VINV+

    00

    slope=-1

    VOH

    VIL VIH

    VOL

    VMIN

    VMAXlogic 1

    logic 0

    undefinedregion

    ran

    geof

    inputv

    alues

    thatprod

    ucev

    alidl

    ogic

    0

    range

    ofinputv

    alues

    thatpro

    duce

    valid

    logic

    1

  • 8/11/2019 Noise Margin and Noise Immunity

    6/15

    6.012 Spring 2007 Lecture 11 6

    Chain of two inverters:

    Definenoise margins:

    NMH VOH - VIH noise margin highNML VIL - VOL noise margin low

    noise

    M N

    inverter Moutput

    inverter Ninput

    VOH

    VOUT VIN

    NMH

    NMLVOL

    VIH

    VIL

  • 8/11/2019 Noise Margin and Noise Immunity

    7/15

    6.012 Spring 2007 Lecture 11 7

    Simplifications for hand calculations:Logic levels and noise margins

    Assume VOL VMIN and VOH VMAX

    Trace tangent of transfer function at VM Slope = small signal voltage gain (Av) at VM

    VIL intersection of tangent with VOUT = VMAX VIH intersection of tangent with VOUT = VMIN

    It is hard to compute points in transfer function with

    slope = -1.

    Approximate in the following way:

    VOUT

    VIHVIL VM

    VM

    VINV+

    00

    VOL=VMIN

    VOH=VMAX

    VOUT=VIN

    slope= Av

  • 8/11/2019 Noise Margin and Noise Immunity

    8/15

    6.012 Spring 2007 Lecture 11 8

    Transient Characteristics

    Inverter switching in the time domain:

    tR rise timebetween 10% and 90% of total swingtF fall timebetween 90% and 10% of total swingtPHL propagation delay from high-to-low between

    50% points

    tPLH propagation delay from low-to-high between50% points

    Propagation delay : tP =1

    2tPHL + tPLH( )

    VOL

    90%

    50%

    10%

    tPHL

    tPLH

    VOH

    tR

    tCYCLE

    50%

    90%

    10%

    0 t

    VIN

    VOUT

    0 t

    tR

    tF

    VOH

    VOL

    tF

  • 8/11/2019 Noise Margin and Noise Immunity

    9/15

    6.012 Spring 2007 Lecture 11 9

    Simplifications for hand calculations:Propagation delay

    Consider input waveform is an ideal square wave

    Propagation delay times = delay times to 50% point

    SPICE essential for accurate delay analysis

    VOH

    VOH

    VOL

    VIN

    VOUT

    tPHL

    tPLH

    VOH

    VOL

    50%

    t

    t

    tCYCLE

    tCYCLE

  • 8/11/2019 Noise Margin and Noise Immunity

    10/15

    6.012 Spring 2007 Lecture 11 10

    2. NMOS inverter with pull-up resistor

    VBS = 0 (typically not shown)

    CL summarizes capacitive loading of the following

    stages (other logic gates, interconnect lines, etc.)

    If VIN

    < VT

    , MOSFET is OFF

    VOUT = VDD If VIN > VT, MOSFET is ON

    VOUT small Value set by resistor / nMOS divider

    Basic Operation:

    Essential features:

    VIN

    VOUT

    V+=VDD

    IR

    IDCL

    R

    load capacitance(from followingstages)

  • 8/11/2019 Noise Margin and Noise Immunity

    11/15

    6.012 Spring 2007 Lecture 11 11

    Transfer function obtained by solving:

    IR= ID

    Can solve graphically: IV characteristics of load:

    VIN

    VR

    VOUT

    VDD

    IR

    ID

    R

    +

    -

  • 8/11/2019 Noise Margin and Noise Immunity

    12/15

    6.012 Spring 2007 Lecture 11 12

    Overlap IV characteristics of resistor pull-up on IV

    characteristics of transistor:

    Transfer function:

    VDS

    VGS=VDD

    VGS=VIN

    VGS=VT

    00

    IR=ID

    VDD

    VDD

    R

    load line

    VOUT=VDS

    VIN=VGS0

    0 VDDVT

    VDD

    =VOUT

  • 8/11/2019 Noise Margin and Noise Immunity

    13/15

    6.012 Spring 2007 Lecture 11 13

    For VMAX, transistor is cut-off, ID = 0:

    VMAX = VDD

    For VMIN, transistor is in linear regime; solve:

    I D =W

    LnCox VDD

    VMIN

    2 VT

    VMIN = IR =

    VDD VMINR

    I D =W

    2LnCox VM VT( )

    2= I R=

    VDD VMR

    For VM, transistor is in saturation; solve:

    Logic levels:

    VOUT=VDS

    VOUT=VIN

    VIN=VGS0

    0 VDDVT VM

    VM

    VMAX=VDD

    VMIN

  • 8/11/2019 Noise Margin and Noise Immunity

    14/15

    6.012 Spring 2007 Lecture 11 14

    Small signal equivalent circuit model at VM(transistor in saturation):

    Av =vout

    vin= gm ro //R( ) gmR

    Noise Margins:VOUT=VDS

    VOUT=VIN

    VIN=VGS0

    0 VDDVT

    VMAX=VDD

    VMIN

    Av

    G

    S

    D+

    -

    vin

    +

    -

    vgs

    +

    -

    voutgmvgs ro

    R

    +

    -

    vin

    +

    -

    voutgmvin (ro//R)

  • 8/11/2019 Noise Margin and Noise Immunity

    15/15