Precipitation – Gauge Network Precipitation varies both in time and space Sound...

27
Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial precipitation patterns. The density of rain gauge network depends on (1) purpose of the study; (2) geographic configuration of the study region; (3) economic consideration.

Transcript of Precipitation – Gauge Network Precipitation varies both in time and space Sound...

Page 1: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Precipitation – Gauge Network

• Precipitation varies both in time and space • Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial precipitation patterns. • The density of rain gauge network depends on (1) purpose of the study; (2) geographic configuration of the study region; (3) economic consideration.

Page 2: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Rain Gauge Density in HK

Rain gauge density in HK is: Daily 13.6 km2/gauge Autographic/ Automatic 11.0 km2/gauge Rain gauge density is significant higher in Hong Kong Island and much sparse relatively in New Territory (see figure).

Type Number of Stations Location Map

HKO Automatic Weather Station Rain Gauges 18 Figure 2

GEO Rain Gauge Stations - Telemetered 86 Figure 2

DSD Rain Gauge Stations - Telemetered 9 Figure 2

HKO Conventional Rain Gauge Stations 51 Figure 3

HKO Automatic Reporting Rain Gauges 21 Figure 2

Page 3: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Conventional Raingauge Locations in HK

Page 4: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Telemetered Raingauge Network in HK

Page 5: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

World Meteorological Organization (WMO) Suggestion

A minimum density for precipitation gauge network: (at least 10% are automatic recording gauges)

I: Flat region of temperature, Mediterranean & tropical zones;IIa: Mountain region of temperate, Mediterranean & tropical zonesIIb: Small mountains island with very irregular precipitation requiring very dense hydrographic networkIII: Arid and polar zones

Page 6: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Errors Precipitation Measurement

1. Human Error: scale reading & water displacement (if a dip stick is used) 2. Instrumental Defect: water to moisten the gauge; speed at which mechanical devices work (such as tipping bucket gages); & inadequate use of wind shield 3. Improper Siting: height above ground of the gage orifice; exposure angle; & regionalization techniques (Ref: “Uncertainties in Estimating the Water Balance of Lakes,” by T. C. Winter, Water Resources Bulletin, AWRA, 17(1), 1981)

Page 7: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Effect on Wind on Precipitation Measurement

Page 8: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Analysis of Temporal Distribution of Rainstorm Event- Only feasible for data obtained from recording gauges. - Rainfall Mass Curve 累積曲線 : A plot showing the cumulative rainfall depth over the storm duration 

- Rainfall Hyetogragh (組体圖 /過程線 ): A plot of rainfall depth or intensity with respect to time

- Instantaneous Rainfall Intensity, (slope of the mass curve)

- Average Intensity in (t, t + t) is

Time

Dep

th

Time

Dep

th o

r In

tens

ity

dt

dP(t)i(t)

t

tPttP

t

Pit

)()(

Page 9: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Rainfall Mass Curve & Hyetograph

Page 10: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Autographic Chart

Page 11: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Clock-Time vs. Rolling-Time Max Rainfall

Example (GEO Raingage N17 on 5 November 1993) 

Time 15-min 5-minRainfall (mm) Rainfall (mm)

3:453:50 9.03:55 12.54:00 35.0 13.54:05 17.04:10 14.54:15 37.5 6.04:20 5.04:25 5.04:30 14.5 4.5

 

Clock-time 15-min maximum rainfall depth = 37.5 mm Rolling-time 15-min maximum rainfall depth = 45.0mm

Page 12: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Example of Rainfall Analysis

Page 13: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Double Mass Analysis

 Changes in gage location, exposure, instrumentation, or observational procedures may cause relative change in the precipitation catch. This information is not usually included in the published records.  Double–mass curve analysis tests the consistency of the record at a gage by comparing its accumulated annual or seasonal precipitation with the concurrent cumulated values of mean precipitation for a group of surrounding stations.  Abrupt changes or discontinuities in the resulting mass curve reflect some changes at the target gage. Gradual changes in the slope of the mass curve reflect progressive changes in the vicinity of the target gage, such as the growth of trees around a rain gage.  The slopes of different portions of the mass curve can be used as a basis for correcting the record of the target gage.

Page 14: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Operation of Double Mass Analysis

Pi,t or Pi,t / n

Px,t

Adjustment factor for data after 1916 = S1 / S2 , i.e.,

Px, t = Px, t S1/S2 , t > 1916

S2

S1

1916

 A change of slope should not be considered significant unless it persists for at least 5 years.  Due to the fact that the data may have some scatter, an indicated change in slope should be confirmed by other evidence unless the change in slope is substantial (say, greater than 10%).

Page 15: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Example – Double Mass Analysis

Page 16: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Point Rainfall Analysis

·  Purposes: To transfer rainfall amounts observed from nearby index stations to ungauged location or gauge with missing data ·  Methods: - Arithmetic average method - Normal ratio method - Inverse distance method (& modified versions) - Linear programming & other optimization methods - Isohyetal 等雨線 method - Kriging method ·  General philosophy:  where ; Px = rainfall amount to be estimated ; Pi = rainfall

amount at index station i ; ai = weighting factor for index station i .

  Sometimes, we may want to impose ai 0 for all i = 1, 2, … n

n

1ii

P i

a Px

1a n

1ii

Px?

P2

P1

P3

P4

Page 17: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Arithmetic Average/Normal Ratio Methods

 Arithmetic Average Method: 

 Normal Ratio Method:   or

 where Ni = Average annual total rainfall at station i.

n

1iix P

n

1 P

n

1i

iN

iP

n

1

N

P

x

x

n

1ii

P i

Nx

N

n

1

xP

1

n

1ii

a ; i

Nx

N

n

1

ia

Page 18: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Inverse Distance Method

• Inverse Distance Method: 

, i = 1, 2, …, n 

where Di = distance from index station i to the point of estimation.  Issue: How to determine the "best" value for "b"?

n

1j

b

j1/D

b i

1/D

ia

Px?

P2

P1

P3

P4

Page 19: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Modified Methods

• Modified Normal Ratio Method:

  i = 1, 2, …, n Issue: How to determine the "best" value for "b"? • Modified Inverse Distance Method:

i = 1, 2, …, n

where Ei = elevation difference between the i-th index station and the point of estimation. a,b = constant  Issue: How to determine the "best" values for "a" and "b"?

n

1j

b

j1/D

i/N

xN b

i1/D

ia

n

1j

bj

E aj

D

bi

E ai

D

ia

Page 20: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Optimization Methods

Minimize (Min. Absolute Deviation, MAD, Criterion)

Subject to

ai 0, i = 1, 2, …, n; Uj, Vj 0, j =1, 2, …, J

where Pij = rainfall amount for the j-th storm event at the i-th index station;

J = total number of storm events; Uj, Vj = over- and under-estimation for event j

The above MAD objective function can be replaced by the least square criterion as

Minimize Any other goodness-of-fit criteria we can use?

J

1jj

Vj

U

xjP

jV

jU

ijP

n

1ii

a

1n

1ii

a

J

1j

2j

V2j

U

Page 21: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Isohyetal/ Kriging Methods

• Isohyetal Method: Estimate point rainfall depth by first construct equal rainfall contour map (see HK annual total rainfall isohyetal maps) • Kriging Method: - A geostatistical method originally developed in mining engineering by Krige. - The method is appropriate for dealing with random field having non-repeated observation at different locations in space. - Preserve the spatial correlation structure of observed data. - Optimal weight factors, ai’s , are determined to minimize the mean-squared-error at the point of estimation. - The by-product of the method is to produce error map of estimation.

Page 22: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Areal Rainfall Analysis

n

1iii P a P

• Rainfall gauges provides point measurements of rainfall amount (in terms of depth). In some hydrologic applications, spatial variation or average depth of precipitation over a given area is needed. • Equivalent Uniform Depth (EUD): Depth of water that would result if all of the precipitation received were uniformly distributed over the designated area. • Methods for Estimating Mean Areal Rainfall:  - Basic Idea : 

where P = EUD ; Pi = rainfall depth at station i ; ai = weighting factor for station i , 0 ai 1 , and n = total number of stations (or gauges)

Page 23: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

• Arithmetic Average Method :  where n = number of rain gauges within the designated area.

• Thiessen Polygon Method: · Attempt to define the area represented by each gage in order to weigh the effects of non-uniform rainfall distribution.

· Procedure : (1)  Connecting lines of gages are drawn. (2)  Draw perpendicular bisectors of these connecting lines. (3)  Determine the area of each polygon , Ai , where = total area of interest (4)

  · Limitations : (1)  Inflexible – new polygon is needed if there is any change in the number of gages or the position of gages. (2)  Does not consider orographic influences.

Arithmetic Average/Thiessen Polygon Methods

n

1ii

P n

1P

A n

1ii

A

i

iP

n

1ii

an

1ii

P A

iA

Ai

Pi

AP

Page 24: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Isohyetal Method/OthersIsohyetal Method· The method is generally considered to be the most accurate scheme to compute the EUD of rainfall over a drainage area.· Procedure : (1)  Contours of equal precipitation (isohyet) are constructed. (2)  Areas between successive isohyets are measured, Ai. (3)  Average precipitation depth between isohyets are computed, Pi. (4)  The basin–wide EUD of rainfall is 

 The procedure is subjective in the sense of interpolating precipitation depth between gages. Usually, linear interpolation is used. The accuracy of the analysis heavily depends on the analyst’s skill.  Other Methods:Trend Surface Analysis, Kriging Method, Hypsometric Method (see Shaw, 1994, p.211), and Multiquadric Method (see Shaw, 1994, p.212).

iP

ia

iP

Ai

A

Ai

Pi

AP

Page 25: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Examples

Page 26: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Depth-Area Relation

Area (km2) 25 50 100 200

ARF 1.00 0.96 0.91 0.85

 

• The DAD analysis is devised to determine the greatest precipitation amounts for various size areas and durations over different regions and for certain seasons. The resulting DAD relationship is primarily to be used for determining a hypothetical storm event for designing hydraulic structures. 

• Area-Reduction Factor (ARF): Allow estimating areal EUD of rainfall from point rainfall. 

• For Hong Kong, a recommended ARF values are (Task 2 Report – Territorial Land Drainage & Flood Control Strategy Study: Phase I, 1989, by Mott MacDonald HK Limited for HKSAR Drainage Services Department)

Page 27: Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

DAD Reduction Relations