Power Point Notes -...

12
1 p265 Section 4.3: Reimann Sums and Definite Integrals Power Point Notes: Example 2: Evaluating a Definite Integral

Transcript of Power Point Notes -...

  • 1

    p265 Section 4.3: Reimann Sums and Definite Integrals

    Power Point Notes:

    Example 2: Evaluating a Definite Integral

  • 2

    Example 3: Areas of Common Geometric FiguresSketch the region corresponding to each definite integral. Then calculate each 

    integral using a geometric formula

    a. What is this shape?  Rectangle

    What is the formula to find the area? A = lw

    Find the area of this shape:  A = 2*4 = 8

    b.

    What is this shape?  Trapezoid

    What is the formula to find the area? A = (1/2)h(b1 + b2)

    Find the area of this shape:  A = (1/2)(3)(2 + 5) = 21/2 = 10.5

    b1

    b2

    h

    c.

    What is this shape?  Semicircle  r = 2

    What is the formula to find the area? A = (1/2)πr2

    Find the area of this shape:  A = (1/2)π(2)2 = 2π

  • 3

    Example 4: Evaluating Definite Integrals

    a.

    b. This is the same at the integral in Example 3b except the upper and lower limit have been interchanged. Remember the integral in Example 3b was equal to 21/2

    Example 5: Using the Additive Interval Property

    What are the shapes? Triangles

    Can you calculate the area of each shape?

  • 4

    Example 6: Evaluation of a Definite IntegralEvaluate the integral using each of the following values

    Evaluate the definite integral

    #3.

    #5.

    #7.

  • 5

    Express the limit as a definite integral on the interval [a, b], where ci is any point in the ith subinterval

    Limit Interval

    #9. [1, 5]

    #11. [0, 3]

    Now look at #13  21 in your book (p272) and set up a definite integral that would yield the area of the region on each graph

  • 6

    Sketch the region whose area is given by the definite integral. Then use a geometric formula to evaluate the integral (a > 0, r > 0)

    #23.Find the Area of a rectangle (A = lw)

    A = 3*4 = 12

    #25. Find the Area of a Triangle (A = (1/2)bh)

    A = (1/2)(4)(4) = 8

    #27.

    Find the Area of a TrapezoidA = (1/2)h(b1 + b2)

    A = (1/2)2(5 + 9) = (1/2)(2)(14) = 14

    h

    b1b2

  • 7

    #29.

    Find the Area of the TriangleA = (1/2)bh

    A = (1/2)(2)(1) = 1

    #31. Find the Area of the Semicircle  (r = 3)

    A = (1/2)πr2

    A = (1/2)π(3)2 = 9π/2

  • 8

    #41.  Use the given information to find each of the following:

    (a)

    (b)

    (c)

    (d)

  • 9

    #45.

    (a)

    (b)

    (c)

    (d)

  • 10

    #45.  The graph of f consists of line segments and a semicircle, as shown in the figure. Evaluate each definite integral by using geometric formulas.

    (4, 2)

    (4, 1)

    (a) Area of a Quarter Circle (below xaxis  negative)

    (b) Area of Triangle

    (c) Area of Triangle and Semicircle (below xaxis  negative)

    (d) Area below xaxis (from [4, 2]) + Area above xaxis (from [2, 6])Area from part (b) + part (c)

    (e)

    (f)

  • 11

    HW p272 #4  10 (even), 24, 28, 42, 44

  • Attachments

    Section 4.3  Reimann Sums and Definite Integrals.pptx

    Riemann Sum

    When we find the area under a curve by adding rectangles, the answer is called a Rieman sum.

    subinterval

    partition

    The width of a rectangle is called a subinterval.

    The entire interval is called the partition.

    Subintervals do not all have to be the same size.

    subinterval

    partition

    If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by .

    As gets smaller, the approximation for the area gets better.

    if P is a partition

    of the interval

    is called the definite integral of

    over .

    If we use subintervals of equal length, then the length of a subinterval is:

    The definite integral is then given by:

    Leibnitz introduced a simpler notation for the definite integral:

    Note that the very small change in x becomes dx.

    Limit of Riemann Sum = Definite Integral

    Integration

    Symbol

    lower limit of integration

    upper limit of integration

    integrand

    variable of integration

    (dummy variable)

    It is called a dummy variable because the answer does not depend on the variable chosen.

    The Definite Integral

    Existence of Definite Integrals

    All continuous functions are integrable.

    Example Using the Notation

    Area Under a Curve (as a Definite Integral)

    Note: A definite integral can be positive, negative or zero, but for a definite integral to be interpreted as an area the function MUST be continuous and nonnegative on [a, b].

    Area

    Integrals on a Calculator

    Example Using NINT

    Properties of Definite Integrals

    Order of Integration

    Zero

    Constant Multiple

    Sum and Difference

    Additivity

    If f is integrable and nonnegative on the closed interval [a, b], then

    If f and g are integrable on the closed interval [a, b] and for every x in [a, b], then

    Preservation of Inequality

    (

    )

    k

    n

    k

    k

    x

    c

    f

    D

    å

    =

    1

    2

    1

    1

    8

    Vt

    =+

    ®

    0

    1

    2

    3

    1

    2

    3

    4

    P

    (

    )

    0

    1

    Arealim

    n

    kk

    P

    k

    fcx

    ®

    =

    =D

    å

    [

    ]

    ,

    ab

    (

    )

    0

    1

    lim

    n

    kk

    P

    k

    fcx

    ®

    =

    D

    å

    f

    ba

    x

    n

    -

    D=

    (

    )

    1

    lim

    n

    k

    n

    k

    fcx

    ®¥

    =

    D

    å

    (

    )

    (

    )

    1

    lim

    n

    b

    k

    a

    n

    k

    fcxfxdx

    ®¥

    =

    D=

    å

    ò

    (

    )

    (

    )

    dx

    x

    f

    x

    c

    f

    b

    a

    k

    n

    k

    k

    P

    ò

    å

    =

    D

    =

    ®

    1

    0

    lim

    (

    )

    (

    )

    dx

    x

    f

    x

    c

    f

    b

    a

    k

    n

    k

    k

    n

    ò

    å

    =

    D

    =

    ¥

    ®

    1

    lim

    n

    a

    b

    x

    If

    -

    =

    D

    (

    )

    b

    a

    fxdx

    ò

    ()

    b

    a

    fxdx

    ò

    (

    )

    (

    )

    th

    2

    1

    The interval [-2,4] is partitioned into

    subintervals of equal length 6/.

    Let denote the midpoint of the subinte

    rval. Express the limit

    lim325 as an integral.

    k

    n

    kk

    n

    k

    nxn

    mk

    mmx

    ®¥

    =

    å

    D=

    -+D

    (

    )

    (

    )

    (

    )

    2

    4

    2

    2

    1

    lim325325

    n

    kk

    n

    k

    mmxxxdx

    -

    ®¥

    =

    å

    ò

    -+D=-+

    If () is nonnegative and integrable over

    a closed interval [,],

    then the area under the curve () from t

    o is the

    , ().

    b

    a

    yfxab

    yfxab

    Afxdx

    ò

    =

    =

    =

    integral

    of from to

    fab

    (

    )

    (

    )

    Area=() when ()0.

    ()area above the -axisarea below the -ax

    is.

    b

    a

    b

    a

    fxdxfx

    fxdxxx

    ò

    ò

    =-

    ò

    =

    b

    a

    b

    a

    x

    x

    f

    fnInt

    dx

    x

    f

    )

    ,

    ,

    ),

    (

    (

    )

    (

    2

    -1

    Evaluate numerically. sin

    xxdx

    ò

    NINT(sin,,-1,2)2.04

    xxx

    »

    ò

    ò

    -

    =

    b

    a

    a

    b

    dx

    x

    f

    dx

    x

    f

    )

    (

    )

    (

    ò

    =

    a

    a

    dx

    x

    f

    0

    )

    (

    ò

    ò

    ò

    ò

    -

    =

    -

    =

    b

    a

    b

    a

    b

    a

    b

    a

    dx

    x

    f

    dx

    x

    f

    dx

    x

    f

    k

    dx

    x

    f

    k

    )

    (

    )

    (

    )

    (

    )

    (

    (

    )

    ò

    ò

    ò

    ±

    =

    ±

    b

    a

    b

    a

    b

    a

    dx

    x

    g

    dx

    x

    f

    dx

    x

    g

    x

    f

    )

    (

    )

    (

    )

    (

    )

    (

    ò

    ò

    ò

    =

    +

    b

    a

    c

    b

    c

    a

    dx

    x

    f

    dx

    x

    f

    dx

    x

    f

    )

    (

    )

    (

    )

    (

    0()

    b

    a

    fxdx

    £

    ò

    ()()

    fxgx

    £

    ()()

    bb

    aa

    fxdxgxdx

    òò

    SMART Notebook

    Page 1: Nov 20-9:55 PMPage 2: Nov 20-10:06 PMPage 3: Nov 20-11:02 PMPage 4: Nov 20-11:13 PMPage 5: Nov 20-11:30 PMPage 6: Nov 20-11:47 PMPage 7: Nov 21-12:07 AMPage 8: Nov 21-12:11 AMPage 9: Nov 21-12:21 AMPage 10: Nov 21-12:22 AMPage 11: Nov 21-12:43 AMAttachments Page 1