Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

56
Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010

Transcript of Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 1: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Power Network Analysis

Chung-Kuan Cheng

CSE Dept.

University of California, San Diego

1/22/2010

Page 2: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 2

Agenda

Background: power distribution networks (PDN’s)

Worst-case PDN noise prediction

– Motivation

– Problem formulation

– Proposed Algorithm

– Case study

Simulation: adaptive parallel flow using discrete Fourier transform (DFT)

– Motivation

– Adaptive parallel flow description

– Experimental results

Conclusions and future work

Page 3: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 3

Research on Power Distribution Networks

Analysis

–Stimulus, Noise Margin, Simulation

Synthesis

–VRM, Decap, ESR, Topology

Integration

–Sensors, Prediction, Stability, Robustness

Page 4: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 4

Publication List

• Power Distribution Network Simulation and Analysis[1] W. Zhang and C.K. Cheng, "Incremental Power Impedance Optimization Using Vector Fitting Modeling,“ IEEE Int. Symp. on Circuits and Systems, pp. 2439-2442, 2007.

[2] W. Zhang, W. Yu, L. Zhang, R. Shi, H. Peng, Z. Zhu, L. Chua-Eoan, R. Murgai, T. Shibuya, N. Ito, and C.K. Cheng, "Efficient Power Network Analysis Considering Multi-Domain Clock Gating,“ IEEE Trans on CAD, pp. 1348-1358, Sept. 2009.

[3] W.P. Zhang, L. Zhang, R. Shi, H. Peng, Z. Zhu, L. Chua-Eoan, R. Murgai, T. Shibuya, N. Ito, and C.K. Cheng, "Fast Power Network Analysis with Multiple Clock Domains,“ IEEE Int. Conf. on Computer Design, pp. 456-463, 2007.

[4] W.P. Zhang, Y. Zhu, W. Yu, R. Shi, H. Peng, L. Chua-Eoan, R. Murgai, T. Shibuya, N. Ito, and C.K. Cheng, "Finding the Worst Case of Voltage Violation in Multi-Domain Clock Gated Power Network with an Optimization Method“ IEEE DATE, pp. 540-547, 2008.

[5] X. Hu, W. Zhao, P. Du, A.Shayan, C.K.Cheng, “An Adaptive Parallel Flow for Power Distribution Network Simulation Using Discrete Fourier Transform,” accepted by IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC), 2010.

Page 5: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 5

Publication List

• Power Distribution Network Analysis and Synthesis[6] W. Zhang, Y. Zhu, W. Yu, A. Shayan, R. Wang, Z. Zhu, C.K. Cheng, "Noise Minimization During Power-Up Stage for a Multi-Domain Power Network,“ IEEE Asia and South Pacific Design Automation Conf., pp. 391-396, 2009.

[7] W. Zhang, L. Zhang, A. Shayan, W. Yu, X. Hu, Z. Zhu, E. Engin, and C.K. Cheng, "On-Chip Power Network Optimization with Decoupling Capacitors and Controlled-ESRs,“ to appear at Asia and South Pacific Design Automation Conference, 2010.

[8] X. Hu, W. Zhao, Y.Zhang, A.Shayan, C. Pan, A. E.Engin, and C.K. Cheng, “On the Bound of Time-Domain Power Supply Noise Based on Frequency-Domain Target Impedance,” in System Level Interconnect Prediction Workshop (SLIP), July 2009.

[9] A. Shayan, X. Hu, H. Peng, W. Zhang, and C.K. Cheng, “Parallel Flow to Analyze the Impact of the Voltage Regulator Model in Nanoscale Power Distribution Network,” in 10 th International Symposium on Quality Electronic Design (ISQED), Mar. 2009.

Page 6: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 6

Publication List (Cont’)

•3D Power Distribution Networks[10] A. Shayan, X. Hu, “Power Distribution Design for 3D Integration”, Jacob School of Engineering Research Expo, 2009 [Best Poster Award]

[11] A. Shayan, X. Hu, M.l Popovich, A.E. Engin, C.K. Cheng, “Reliable 3D Stacked Power Distribution Considering Substrate Coupling”, in International Conference on Computre Design (ICCD), 2009.

[12] A. Shayan, X. Hu, C.K. Cheng, “Reliability Aware Through Silicon Via Planning for Nanoscale 3D Stacked ICs,” in Design, Automation & Test in Europe Conference (DATE), 2009.

[13] A. Shayan, X.g Hu, H. Peng, W. Zhang, C.K. Cheng,  M. Popovich, and X. Chen, “3D Power Distribution Network Co-design for Nanoscale Stacked Silicon IC,” in 17 th Conference on Electrical Performance of Electronic Packaging (EPEP), Oct. 2008. [5]

[14] W. Zhang, W. Yu, X. Hu, A.i Shayan, E. Engin, C.K. Cheng, "Predicting the Worst-Case Voltage Violation in a 3D Power Network", Proceeding of IEEE/ACM International Workshop on System Level Interconnect Prediction (SLIP), 2009.

==================================================================

T.Y. Wang, C.C.P. Chen, “Theremal-ADI a Linear Time Chip-Level Dynamic Thermal-Simulation Algorithm based on Alternating Direction Implicit Method,” IEEE Trans. On VLSI, pp. 691-700, 2003.

Page 7: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 7

What is a power distribution network (PDN)

Power supply noise

– Resistive IR drop

– Inductive Ldi/dt noise

[Popovich et al. 2008]

Page 8: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 8

PDN Roadmap

2007 2009 2012 2015 2017 2020 20220.5

0.6

0.7

0.8

0.9

1

1.1

Year

Vd

d o

f hig

h-p

erf

orm

an

ce M

PU

(V

)

2007 2009 2012 2015 2017 2020 2022160

180

200

220

240

260

280

300

320

YearA

vera

ge

cu

rre

nt (

A)

2007 2009 2012 2015 2017 2020 20220.5

1

1.5

2

2.5

3

3.5

4

4.5

Tra

nsi

en

t cu

rre

nt (

101

2 A

/s)

Transient current

Average current

Vdd of high-performance microprocessors Currents of high-performance microprocessors

[ITRS 2007]

Page 9: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 9

PDN Roadmap

2007 2009 2012 2015 2017 2020 20220.1

0.15

0.2

0.25

0.3

0.35

Year

Ta

rge

t im

pe

da

nce

(m

)

Target impedancetarget

5%dd

load

VZ

I

[ITRS 2007]

Page 10: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 10

Agenda

Background: power distribution networks (PDN’s)

Worst-case PDN noise prediction

– Motivation

– Problem formulation

– Proposed Algorithm

– Case study

Simulation: adaptive parallel flow using discrete Fourier transform (DFT)

– Motivation

– Adaptive parallel flow description

– Experimental results

Conclusions and future work

Page 11: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 11

Worst Case Analysis

Target Impedance vs. Worst Cases

Noise vs. Rise Time of Stimulus

Rogue Wave of Multiple Staged Network

Page 12: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 12

PDN Design Methodology: Target Impedance

PDN design

– Objective: low power supply noise

– Popular methodology: “target impedance”

[Smith ’99]

Implication: if the target impedance is small, then the noise will also be small

Page 13: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 13

Worst-Case PDN Noise Prediction: Motivation

Problems with “target impedance” design methodology

– How to set the target impedance?

• Small target impedance may not lead to small noise

– A PDN with smaller Zmax may have larger noise

Time-domain design methodology: worst-case PDN noise

– If the worst-case noise is smaller than the requirement, then the PDN design is safe.

• Straightforward and guaranteed

– How to generate the worst-case PDN noise

max max ( )t

V v t target max max ( )Z Z Z j

max max ( )t

I i t

max max max/( ) may be larger than oneV Z I

( ) ( ( ) ( ( )))v t IFT Z j FT i t FT: Fourier transform

Page 14: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 14

Worst-Case PDN Noise Prediction: Related Work

At final design stages [Evmorfopoulos ’06]

– Circuit design is fully or almost complete

– Realistic current waveforms can be obtained by simulation

– Problem: countless input patterns lead to countless current waveforms

• Sample the excitation space

• Statistically project the sample’s own worst-case excitations to their expected position in the excitation space

At early design stages [Najm ’03 ’05 ’07 ’08 ’09]

– Real current information is not available

– “Current constraint” concept

– Vectorless approach: no simulation needed

– Problem: assume ideal current with zero transition time

Page 15: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 15

Ideal Worst-Case PDN Noise

Problem formulation I

PDN noise:

Worst-case current [Xiang ’09]:

max ( )

s.t. 0 i(t) b

v t

0

( ) ( ) ( )t

v t h i t d ( ): PDN impulse responseh

( ) for ( ) 0i t b h ( ) 0 for ( ) 0i t h

Zero current transition time. Unrealistic!

Page 16: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 16

Worst-Case Noise with Non-zero Current Transition Times

Problem formulation II

0max ( ) ( ) ( )

s.t. 0 i(t) b

/

Tv T h i T d

di dt c

Transition time:

r

bt

c

T: chosen to be such that h(t) has died down to some negligible value.

* f(t) replaces i(T-τ)

Page 17: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 17

Proposed Algorithm Based on Dynamic Programming

GetTransPos(j,k1,k2): find the smallest i such that Fj(k1,i)≤ Fj(k2,i)

Q.GetMin(): return the minimum element in the priority queue Q

Q.DeleteMin(): delete the minimum element in the priority queue Q

Q.Add(e): insert the element e in the priority queue Q

Page 18: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 18

Proposed Algorithm: Initial Setup

Divide the time range [0, T] into m intervals [t0=0, t1], [t1, t2], …, [tm-1, tm=T]. h(ti) = 0, i=1, 2, …, m-1

u0 = 0, u1, u2, …, un = b are a set of n+1 values within [0, b]. The value of f(t) is chosen from those values. A larger n gives more accurate results.

h(t)

Page 19: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 19

Proposed Algorithm: f(t) within a time interval [tj, tj+1]

Ij(k,i): worst-case f(t) starting with uk at time tj and ending with ui at time tj+1

h(t)Theorem 1: The worst-case f(t) can be cons-tructed by determining the values at the zero-crossing points of the h(t)

Page 20: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 20

Proposed Algorithm: Dynamic Programming Formulation

Define Vj(k,i): the corresponding output within time interval [tj, tj+1]

Define the intermediate objective function OPT(j,i): the maximum output generated by the f(t) ending at time tj with the value ui

Recursive formula for the dynamic programming algorithm:

Time complexity:

1

( , ) ( )( ( , )( ))j

j

t

j jtV k i h I k i d

0( , ) max ( ) ( )

where ( ) is all the possible ( ) that satisfies ( )

jt

i

i j i

OPT j i h f d

f f f t u

0

(0, ) 0 for all [0, ]

( 1, ) max( ( , ) ( , ))jk n

OPT i i n

OPT j i OPT j k V k i

2( )O n m

Page 21: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 21

Acceleration of the Dynamic Programming Algorithm

Without loss of generality, consider the time interval [tj, tj+1] where h(t) is negative.

Define Wj(k,i): the absolute value of Vj(k,i):

( , ) ( , )j jW k i V k i

Lemma 1: Wj(k2,i2)- Wj(k1,i2)≤ Wj(k2,i1)- Wj(k1,i1) for any 0 ≤ k1 < k2 ≤ n and 0 ≤ i1 < i2 ≤ n

Page 22: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 22

Acceleration of the Dynamic Programming Algorithm

Define Fj(k,i): the candidate corresponding to k for OPT(j,i)

Accelerated algorithm:

– Based on Theorem 2

– Using binary search and priority queue

( , ) ( , ) ( , )j jF k i OPT j k W k i

Theorem 2: Suppose k1 < k2, i1 [0,∈ n] and Fj(k1,i1)≤ Fj(k2,i1), then for any i2 > i1, we have Fj(k1,i2)≤ Fj(k2,i2).

( log )O nm n

Page 23: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 23

Case Study 1: Impedance

2.09mΩ @ 19.8KHz 1.69mΩ

@ 465KHz

3.23mΩ @ 166MHz

Page 24: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 24

Case Study 1: Impulse Response

0 0.2 0.4 0.6 0.8 1

x 10-7

-1

-0.5

0

0.5

1

1.5

2x 10

6

Time (sec)

Impu

lse

resp

onse

(V

)

0 0.2 0.4 0.6 0.8 1 1.2

x 10-4

-30

-20

-10

0

10

20

30

Time (sec)

Impu

lse

resp

onse

(V

)

0 0.2 0.4 0.6 0.8 1 1.2

x 10-5

-1000

-500

0

500

1000

1500

2000

Time (sec)

Impu

lse

resp

onse

(V

)

Impulse response: 100ns~10µs Impulse response: 10µs~100µs

Impulse response: 0s~100ns

High frequency oscillation at the beginning with large amplitude, but dies down very quickly

Mid-frequency oscillation with relativelysmall amplitude.

Low frequency oscillation with the smallest amplitude, but lasts the longest

Amplitude = 1861

Amplitude = 29

Amplitude = 0.01

Page 25: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 25

Case Study 1: Worst-Case Current

Current constraints:

0 ( ) 50

Minimum transition time: r

i t A

t

Zoom in

The worst-case current also oscillates with the three resonant frequencies which matches the impulse response.

Saw-tooth-like current waveform at large transition times

Page 26: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 26

Case Study 1: Worst-Case Noise Response

Page 27: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 27

Case Study 1: Worst-Case Noise vs. Transition Time

The worst-case noise decreases with transition times.

Previous approaches which assume zero current transition times result in pessimistic worst-case noise.

Page 28: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 28

Case Study 2: Impedance

0 i(t) 1

1.25rt ns

pd

d

10

30

R m

R m

pd

d

30

10

R m

R m

100

102

104

106

108

1010

0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency (Hz)

Impe

danc

e (

)

100

102

104

106

108

1010

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Frequency (Hz)

Impe

danc

e (

)

max 127.0Z m max 114.4Z m

224.3KHz

11.2MHz

98.1MHz

224.3KHz

10.9MHz

101.6MHz

Page 29: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 29

Case Study 2: Worst-Case Noise

for both cases: meaning that the worst-case noise is larger than Zmax.

The worst-case noise can be larger even though its peak impedance is smaller.

0 0.2 0.4 0.6 0.8 1 1.2

x 10-4

-0.05

0

0.05

0.1

0.15

Time (sec)

Wor

st c

ase

PD

N n

oise

(V

)

0 0.2 0.4 0.6 0.8 1 1.2

x 10-4

-0.05

0

0.05

0.1

0.15

Time (sec)

Wor

st c

ase

PD

N n

oise

(V

)

max

max

max max

127.0

139.3

/ 1.097

Z m

V mV

V Z

max

max

max max

114.4

146.8

/ 1.292

Z m

V mV

V Z

pd

d

10

30

R m

R m

pd

d

30

10

R m

R m

max max max/( ) 1V Z I

Page 30: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 30

Case 3: “Rogue Wave” Phenomenon

Worst-case noise response: The maximum noise is formed when a long and slow oscillation followed by a short and fast oscillation.

Rogue wave: In oceanography, a large wave is formed when a long and slow wave hits a sudden quick wave.

0 0.5 1 1.5 2

x 10-6

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Time (sec)

Vol

tage

(V

)

Low-frequency oscillation corresponds to the resonance of the 2nd stage

High-frequency oscillation corresponds to the resonance of the 1st stage

Page 31: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 31 100

102

104

106

108

1010

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Frequency (Hz)

Impe

danc

e (

)

Two stage

Case 3: “Rogue Wave” Phenomenon (Cont’)

Equivalent input impedance of the 2nd stage at high frequency

100

102

104

106

108

1010

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Frequency (Hz)

Impe

danc

e (

)

Two stage1st stage alone

100

102

104

106

108

1010

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Frequency (Hz)

Impe

danc

e (

)

Two stage1st stage alone2nd stage alone

Page 32: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 32

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cu

rre

nt (

A)

Input current

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cu

rre

nt (

A)

Input current

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cu

rre

nt (

A)

Current through L2Input current

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cu

rre

nt (

A)

Current through LInput current

Case 3: “Rogue Wave” Phenomenon (Cont’)

IL2

IL

Page 33: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 33

0 0.5 1 1.5 2

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

Time (sec)

Vol

tage

(V

)

V

2nd_only

0 0.5 1 1.5 2

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

Time (sec)

Vol

tage

(V

)

V

2nd

Case 3: “Rogue Wave” Phenomenon (Cont’)

V2nd

V2nd_only

Page 34: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 34

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cur

rent

(A

)

Current through L

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cur

rent

(A

)

Current through L2

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cur

rent

(A

)

Current through L2Current through L1

Case 3: “Rogue Wave” Phenomenon (Cont’)

IL2 IL1

IL

Page 35: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 35

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cur

rent

(A

)

Current through L2Current through L1

0 0.5 1 1.5 2

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cur

rent

(A

)

Current through L

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Cur

rent

(A

)

Current through L

Case 3: “Rogue Wave” Phenomenon (Cont’)

IL2 IL1

IL

Zoom in

Page 36: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 36

0 0.5 1 1.5 2

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

Time (sec)

Vol

tage

(V

)

V

2nd

0 0.5 1 1.5 2

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

Time (sec)

Vol

tage

(V

)

V

2nd

V1st

-V2nd

0 0.5 1 1.5 2

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

Time (sec)

Vol

tage

(V

)

V

1st_only

Case 3: “Rogue Wave” Phenomenon (Cont’)

V2nd

V1st-V2nd

V1st_only

Page 37: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 37

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

Time (sec)

Vol

tage

(V

)

V

1st_only

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

Time (sec)

Vol

tage

(V

)

V

2nd

V1st

-V2nd

Case 3: “Rogue Wave” Phenomenon (Cont’)

V2nd

V1st-V2nd

V1st_only

Zoom in

Page 38: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 38

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time (sec)

Vo

ltag

e (

V)

V2nd_only

V1st_only

V2nd_only

+V1st_only

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time (sec)

Vo

ltag

e (

V)

V2nd

V1st

-V2nd

V1st

Case 3: “Rogue Wave” Phenomenon (Cont’)

V2nd

V1st-V2nd

V1st_only

V2nd_only

V1stmax(V1st)=37.34mV

max(V2nd_only) + max(V1st_only)= 42.09mV ≈ max(V1st)

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time (sec)

Vo

ltag

e (

V)

V2nd

V1st

-V2nd

V1st

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

x 10-6

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time (sec)

Vo

ltag

e (

V)

V2nd_only

V1st_only

V2nd_only

+V1st_only

Page 39: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 39

Agenda

Background: power distribution networks (PDN’s)

Analysis: worst-case PDN noise prediction

– Motivation

– Problem formulation

– Proposed Algorithm

– Case study

Simulation: adaptive parallel flow using discrete Fourier transform (DFT)

– Motivation

– Adaptive parallel flow description

– Experimental results

Conclusions and future work

Page 40: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 40

PDN Simulation: Why Frequency Domain?

Huge PDN netlists

– Time-domain simulation: serial - slow

– Frequency-domain simulation: parallel – fast

Frequency dependent parasitics

Simulation results

– Time-domain: voltage drops, simultaneous switching noise (SSN) – input dependent

– Frequency-domain: impedance, anti-resonance peaks – input independent

Page 41: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 41

Transform Operations

Laplace Transform [Wanping ’07]

– Input: Series of ramp functions

– Output: Rational expressing via vector fitting

– Choice of frequency samples

Discrete Fourier Transform (DFT)

– Periodic signal assumption

– Discrete frequency samples

Page 42: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 42

Basic DFT Simulation Flow

Page 43: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 43

Adaptive DFT Flow

Period[i]: the input period at each iteration

Interval[i]: the simulation time step at each iteration

FreqUpBd[i]: the upper bound of the input frequency range at each iteration

vi(t): tentative time-domain output within the frequency range [0, FreqUpBd] at each iteration

Iteration #1: obtain the main part of the output

Iteration #2~k: capture the oscillations in the tail of the output (high, middle, and low resonant frequencies)

For each iteration #i, i=k, k-1, …, 2, subtract the captured tail from the outputs at iteration #j, j<i to eliminate the wrap-around effect

Page 44: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 440 0.5 1 1.5 2 2.5

x 10-8

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)V

olta

ge (

V)

0 0.5 1 1.5 2 2.5

x 10-8

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

Problem with Basic DFT Flow

“Wrap-around effect” requires long padding zeros at the end of the input

– Periodicity nature of DFT

Small uniform time steps are needed to cover the input frequency range

0 0.2 0.4 0.6 0.8 1

x 10-7

-1

0

1

2

3

4

5

6

7

8x 10

-3

Time (sec)

Cur

rent

(A

)

0 0.2 0.4 0.6 0.8 1

x 10-7

-1

0

1

2

3

4

5

6

7

8x 10

-3

Time (sec)

Cur

rent

(A

)

0 0.5 1 1.5 2 2.5

x 10-8

-1

0

1

2

3

4

5

6

7

8x 10

-3

Time (sec)

Cur

rent

(A

)

T 2T 3T 4T

T

DFTrepetition output

outputLarge number of simulation points! Correct

Distorted!

T

Wrap-around

Page 45: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 45

Adaptive DFT Simulation

Basic ideas of the adaptive DFT flow: cancel out the wrap-around effect by subtracting the tail from the main part of the output

– Main part of the output: obtained with small time step and small period; distorted by the wrap-around effect

– Tail of the output: low frequency oscillation; can be captured with large time steps

0 0.2 0.4 0.6 0.8 1

x 10-7

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

0 0.2 0.4 0.6 0.8 1

x 10-7

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

T 2T 3T 4T

---

0 0.5 1 1.5 2 2.5

x 10-8

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

T

Correct Distorted Correct!

Total number of simulation points is reduced significantly!

Page 46: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 46

Experimental Results: Test Case & Input

Test case: 3D PDN

– One resonant peak in the impedance profile

Input current

– Time step: ∆t = 20ps

– Duration: T0 = 16.88ns

104

106

108

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Frequency (Hz)

Impe

danc

e (

)

0 0.5 1 1.5 2

x 10-8

-1

0

1

2

3

4

5

6

7

8x 10

-3

Time (sec)

Cur

rent

(A

)

Impedance Original Input

Page 47: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 47

0 1 2 3 4 5 6 7 8 9

x 10-8

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vo

ltag

e (

V)

Final outputv

1(t)

0 0.5 1 1.5 2 2.5

x 10-8

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

0 1 2 3 4 5 6 7 8 9

x 10-8

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)Experimental Results: Adaptive Flow Process

Iteration #1: v1(t)

– ∆t1=20ps

– T1=20.48ns

Iteration #2: v2(t)

– ∆t2 = 32∆t1

= 640ps

– T2 = 4T1

= 81.92ns

Final output:

– Main part:

– Tail:

T1

2T1 4T13T1

v1(t), ∆t1=20ps, T1=20.48ns

3

1 2 1 11

( ) ( : ( 1) )m

v t v mT m T

Final output 3

1 2 1 11

( ) ( : ( 1) )m

v t v mT m T

2 1 1( : 4 )v T T

v2(t), ∆t2=640ps, T2=81.92ns

Page 48: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 48

Experimental Results: DFT Flow vs. SPICE

0 0.5 1 1.5 2

x 10-7

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

DFT flowSPICE transient simulation

Page 49: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 49

Error Analysis: Error Caused by Wrap-around Effect

0 0.5 1 1.5 2 2.5

x 10-8

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

DFT flow, T=20.48nsDFT flow, T=163.84nsSPICE transient simulation

Theorem 1: Let be the initial value of the output voltage. Suppose for some , then the meansquare error, i.e., is bounded by .

0 0.5 1 1.5 2 2.5

x 10-8

-1.5

-1

-0.5

0

0.5

1

1.5x 10

-4

Time (sec)

Vol

tage

(V

)

Difference between DFT and SPICE, T=20.48nsDifference between DFT and SPICE, T=163.84ns

Relative error: 2.09%

Relative error: 0.12%

Output comparison Error relative to SPICE

Page 50: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 50

Error Analysis: Error Caused by Different Interpolation Methods

SPICE: PWL interpolation

DFT: sinusoidal interpolation

0 0.2 0.4 0.6 0.8 1

x 10-7

-1

0

1

2

3

4

5

6x 10

-3

Time (sec)

Vol

tage

(V

)

DFT flow, t=20ps

DFT flow, t=2.5psSPICE transient simulation

0 0.2 0.4 0.6 0.8 1

x 10-7

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2x 10

-5

Time (sec)

Vol

tage

(V

)

Difference between DFT and SPICE, t=20ps

Difference between DFT and SPICE, t=2.5ps

Output comparison Error relative to SPICE

2.294 2.2945 2.295 2.2955 2.296

x 10-8

1.28

1.29

1.3

1.31

1.32

x 10-4

Time (sec)

Vol

tage

(V

)

DFT flow, t=20ps

DFT flow, t=2.5psSPICE transient simulation

Page 51: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 51

Time Complexity Analysis: Adaptive vs. Non-adaptive

Adaptive flow time complexity:

– Ti: simulation period at iteration #i,

– ∆ti: simulation time step at iteration #i,

Non-adaptive flow time complexity:

1

( / )k

i ii

O T t

1( / )kO T t

1 2 kT T T

1 2 kt t t

0 100 200 300 400 500 600 7000

0.5

1

1.5

2

2.5

Time (sec)

Re

lativ

e e

rro

r to

Hsp

ice

(%

)

Non-adaptive methodAdaptive method

Page 52: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 52

Parallel Processing

Test case: 3D PDN

– Case 1: 393930 nodes

– Case 2: 1465206 nodes

Simulation time (case 2)

– DFT flow:

• ~3.5 hr (w/ 1 prc)

• 76 sec (w/ 256 prcs)

– HSPICE: ~38 hr0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000

Number of ProcessorsS

imu

latio

n T

ime

(se

c)

Case #1Case #2

Page 53: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 53

Agenda

Background: power distribution networks (PDN’s)

Analysis: worst-case PDN noise prediction

– Motivation

– Problem formulation

– Proposed Algorithm

– Case study

Simulation: adaptive parallel flow using discrete Fourier transform (DFT)

– Motivation

– Adaptive parallel flow description

– Experimental results

Conclusions and future work

Page 54: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 54

Remarks

Worst-case PDN noise prediction with non-zero current transition time

– The worst-case PDN noise decreases with transition time

– Small peak impedance may not lead to small worst-case noise

– “Rogue wave” phenomenon

Adaptive parallel flow for PDN simulation using DFT

– 0.093% relative error compared to SPICE

– 10x speed up with single processor.

– Parallel processing reduces the simulation time even more significantly

Page 55: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 55

Summary

1. Throughput/power (instruction/energy)

2. Throughput2/power (f x instruction/energy)

Power Distribution Network

– VRMs, Switches, Decaps, ESRs, Topology,

Analysis

– Stimulus, Noise Tolerance, Simulation

Control (smart grid)

– High efficiency, Real time analysis, Stability, Reliability, Rapid recovery, and Self healing

Page 56: Power Network Analysis Chung-Kuan Cheng CSE Dept. University of California, San Diego 1/22/2010.

Page 56