Power Control ED

32
ELEN 460:Power System Control and Operation: Economic Dispatch (ED) 1 ELEN 460: Power System Control and Operation: Economic Dispatch (ED) Chanan Singh Panida Jirutitijaroen

Transcript of Power Control ED

Page 1: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 1/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 1

ELEN 460:Power System Control and Operation:

Economic Dispatch (ED)

Chanan Singh

Panida Jirutitijaroen

Page 2: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 2/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 2

Outline

• Read chapter 11: 11.7-11.11.

• Homework: 11.8, 11.10, 11.10-11

• Overview of Economic Dispatch (ED)

• Economic Dispatch formulation• Case 1: No line losses, no generator limit.

 – Example 11.8

• Case 2: No line losses, with generator limit.

• Case 3: With line losses, no generator limit. – Penalty factor

• Case 4: With line losses, with generator limit.

Page 3: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 3/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 3

Overview of ED

• Consider cost of operation when selectinggenerating units to pick up the load.

• ED tries to minimize this cost.

• Assume that fuel-cost curve of each generatingunit is known and expressed in terms of theoutput power,

Where = Cost of generation for unit i

= Output power of unit i

dollars/hr2

GiiGiiiGiiPPPC      

GiiPC 

GiP

Page 4: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 4/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 4

ED Formulation

• To minimize cost of operation,

• Subject to:

 – Power flow equation

 – Generation limit

 – Voltage limit

 – Line flow limit

m

i

GiiT  PC C 1

0,,,32

11

GmGGloss

n

i

 Di

m

i

GiGi PPPPPPP f 

maxmin

GiGiGi PPP

max

ijij PP

maxmin

iii V V V 

Assume bus 1 is slack bus, only m-1

independent power variable

Neglect line flow limitin this analysis

Neglect voltage limit dueto weak coupling effect

Page 5: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 5/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 5

ED Simplified Formulation

• To minimize cost of operation,

• Subject to:

 – Power flow equation

 – Generation limit

m

i

GiiT  PC C 1

0,,,32

11

GmGGloss

n

i

 Di

m

i

GiGi PPPPPPP f 

maxmin

GiGiGi PPP

Page 6: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 6/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 6

Solution to ED

• The problem can categorized into nonlinearoptimization problem.

• Lagrangian of the problem is,

• is called Lagrange multiplier.

• Optimality condition:

0..

min

 xgt s

 x f 

 xg x f  x L    ,min

0

,

0,

 

 

 

 x L

 x

 x L

**,  xOptimalSolution

 

Page 7: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 7/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 7

Next,

• We will consider 4 cases.

 – Case 1: No line losses, no generator limit.

 – Case 2: No line losses, with generator limit.

 – Case 3: With line losses, no generator limit. – Case 4: With line losses, with generator limit.

Page 8: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 8/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 8

Case 1: No Line Losses, No Generator Limit

• minimize

• Subject to:

• Lagrangian of the problem is,

• Optimal condition,

• Solution,

  

    D

m

i

GiT T  PPC C 1

~  

00~

,,2,1,00

~

1

 D

m

i

GiT 

Gi

Gii

Gi

PPC 

miP

PC 

P

 

 

mi

P

PC  IC 

Gi

Giii ,,2,1

 

m

i

GiiT  PC C 1

01

 D

m

i

Gi PP

Page 9: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 9/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 9

Case 1: Alternative Solution Procedure

• minimize

• Subject to:

• From this constraint, we can reduce number ofvariable by substitution to the objective function,

• The problem becomes unconstrained problem,to minimize

m

i

GiiT PC C 

1

01

 D

m

i

Gi PP

121 GmGG DGm PPPPP

121112211

GmGG DmGmmGGT PPPPC PC PC PC C 

Page 10: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 10/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 10

• Necessary condition:

• Let incremental cost,

• The solution is to have all ICs the same for allunits.

0

Gi

P

0

Gi

Gm

Gm

m

Gi

i

P

P

P

P

1,,2,1

mi

PC 

PC 

Gm

m

Gi

i

1,,2,1

miP

 IC Gi

i

i

-1

Page 11: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 11/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 11

Case 1: Solution Interpretation

• Incremental Cost is the slope of fuel-cost curve.

• Unit of IC is dollar per MWh.

• IC tells how much it costs to operate this unit for the next

MW power.• Example: two units with IC1 > IC2.

• This means that, for additional 1 MW power,

 – Operating unit 1 cost more than operating unit 2.

 – To minimize operation cost, it is reasonable to reduce poweroutput of unit 1 and increase that of unit 2.

 – At optimal, additional cost from unit 1 and 2 should be the same.

Page 12: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 12/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 12

Example 11.8

• Two generators with the following cost curve.

2

111101.045900 GGG PPPC  2

2222003.0432500 GGG PPPC 

1

1

11

1

02.045G

G

G PP

PC  IC 

2

2

22

2

006.043G

G

G PP

PC  IC 

MW70021

DGG PPP

1121

700006.04302.045 GG PP IC  IC 

MW6.841 GP MW4.6152 GP

/MWh69.4621 IC  IC 

Page 13: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 13/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 13

0 100 200 300 400 500 600 70042

44

46

48

50

52

54

56

58

60

Example 11.8

0 100 200 300 400 500 600 70042

44

46

48

50

52

54

56

58

60

P1 = 84.6 MW P2 = 615.4 MW

IC1 = IC2 = 46.69

1

2

1

2

3

++

= Load

Page 14: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 14/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 14

Case 1: Solution Outline

• In general case with more than 2 generatingunits, we know only

 – Total load

 – IC curves of each unit• Iterative procedure:

Step 1: Pick initial

Step 2: Find corresponding power output of each unit

Step 3: If total power < load, increase and go backto step 2. Else, stop.

 

 

Page 15: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 15/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 15

Case 2: No Line Losses, With Generator Limit

• Consider

• Assume that ALL UNITS are in operation.

• When some generating units hit their limit, wecan no longer operate all units at the same ICs.

maxmin

GiGiGi PPP

IC

Output Power

1

2

3

1,2,3 operate at lower limit

1 operate at lower limitIC2 = IC3

IC1= IC2 = IC3

3 operate at upper limitIC1 = IC2

2,3 operate atupper limit

Page 16: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 16/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 16

Case 3: With Line Losses, No Generator Limit

• Minimize,

• Subject to power flow equation

• Lagrangian of the problem is,

m

i

GiiT  PC C 1

0,,, 3211

GmGGloss

n

i Di

m

iGiGi PPPPPPP f 

 

  

 

 DGmGGloss

m

iGiT T  PPPPPPC C  ,,,

~

321

 

Page 17: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 17/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 17

Case 3: Optimality Condition

• Lagrangian of the problem,

• Optimality condition,

00

~

,,3,2,010

~

00

~

1

1

11

1

 

  

 

 Dloss

m

i

Gi

Gi

loss

Gi

Gii

Gi

G

G

G

PPPC 

miP

P

P

PC 

P

P

PC 

P

 

 

 

 

  

 

 DGmGGloss

m

i

GiT T  PPPPPPC C  ,,,~

32

1

 

Page 18: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 18/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 18

Penalty Factor

• Rewrite optimality condition 2,

• Define “penalty factor”,

• From optimality condition 1,

we have

mi

P

PC 

P

P Gi

Gii

Gi

loss

,,2,1

1

1

 

 

 

 

 

Gi

loss

i

P

P L

1

1

11 L

i L

 

1

11

G

G

P

PC 

Page 19: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 19/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 19

Case 3: Optimality Condition Revisit

• Optimality condition,

• Equivalently,

and

00

~

,,3,2,0

~

0

~

1

1

11

1

1

 Dloss

m

i

GiT 

Gi

Giii

Gi

G

G

G

PPPC 

miP

PC  LP

P

PC  L

P

 

 

 

mi IC  L ii ,,2,1  

IC of unit i

01

 Dloss

m

i

GiPPP

Page 20: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 20/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 20

Case 3: Solution Outline,Penalty Factor Known

• Assume that the following is known. – Total load

 – IC curves of each unit

 – Penalty factor of each unit (from explicit loss

expression)

• Iterative procedure:Step 1: Pick initial

Step 2: Find corresponding power output of each unit

fromStep 3: If total power < load, increase and go back

to step 2. Else, stop. 

 

mi IC  L ii ,,2,1  

Page 21: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 21/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 21

Penalty Factor Calculation

• Consider power flow equation with loss,

• We can rewrite equation as follow:

• Differentiate with respect to , we have

• From,

0,,,32

11

GmGGloss

n

i

 Di

m

i

GiGi PPPPPPP f 

m

i

GiGmGGloss DG PPPPPPP2

321,,,

mi

P

P

P

P

Gi

loss

Gi

G ,,3,211

GiP

Gi

loss

i

P

P L

1

1mi

 LP

P

iGi

G ,,3,21

1

Page 22: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 22/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 22

Use of Jacobian Matrix to Find Penalty Factor

• From,

• Use as the intermediaries together with chainrule,

niP

P

PP

P

PP

P

P

P

P

PP

P

PP

P

PP

i

m

m

G

i

G

i

G

i

Gm

Gm

G

i

G

G

G

i

G

G

G

i

G

,,3,213

3

12

2

1

13

3

12

2

11

   

    

k  

i DiGi PPP iGi PP

n

G

G

m

G

G

n

n

n

m

n

nm

P

P

P

P

P

P

PPP

PPP

 

 

   

   

1

2

1

1

2

1

2

222

2

1

1

We can use

n

nn

n

q

 p

 pqPP

PP

P

  

  

  

2

2

2

2

11J

T  pq

 11J

Page 23: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 23/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 23

Penalty Factor Calculation

(covered from book)

• Relationship between power loss and netpower injection

• Use of intermediaries

• Matrix form

Page 24: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 24/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 24

Relationship Between Power Loss and NetPower Injection

• No explicit equation for loss.

• Try to relate loss to net power injection.

• From,Where = Generator i power

= Load power at bus i

= Net power injection from bus i

• And, from power flow,

• This means that:

2GP

G1 G2

1GP

3 DP

1 DP

2V 

1V 

3V 

G3

2 DP

3GP

2P

1P

i DiGi PPP

GiP

 DiP

iP

n

i

 Di

m

i

GiGmGGloss PPPPPP11

32 ,,,

n

i

iGmGGloss PPPPP1

32,,,

Page 25: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 25/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 25

Using Intermediaries

• Our goal is to calculate,

• But we know that

• And, net power injection is in terms of

• And, for every bus i,

• We are using as the intermediaries to find

Gi

loss

i

P

P L

1

1

n

iiGmGGloss PPPPP

132 ,,,

Gi

loss

P

P

niP ni ,,2,1,,,32

    ,θ1 = 0

k  

i DiGi PPP

Page 26: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 26/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 26

from Net Power Injection

• From net power injection,

and

• We can find,

n

i

iGmGGloss PPPPP1

32,,,

niP ni ,,2,1,,, 32    

nk PPPPP

n

m

m

k k 

loss ,,3,211

     

lossP

 

Page 27: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 27/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 27

from Chain Rule

• Another way to find

• Using chain rule, we have

• And, from we havei DiGi PPP k 

i

Gi PP

  

miP

P

PP

Gi

Gi

loss

loss ,,3,2

  

lossP

 

nk P

P

PP

P

PP

Gm

Gm

loss

G

G

loss

loss ,,3,22

2

   

lossP

 

Page 28: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 28/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 28

Two Equations of

• So far, we have two equations representing thesame variable.

• Equating two equations, we have

nk PPPPP

n

m

m

k k 

loss ,,3,211

     

nk P

P

PP

P

PP

Gm

Gm

loss

G

G

loss

loss ,,3,22

2

   

nk 

PPPPPP

P

PP

P

P

n

m

m

k k k 

Gm

Gm

loss

G

G

loss

,,3,2

1212

2

       

nk PP

P

PP

P

PPP

n

m

Gm

loss

m

G

loss

k k 

,,3,2011 1

2

21

 

  

 

 

  

 

     

lossP

 

Page 29: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 29/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 29

Matrix Form

• Rearranging equation to,

• We can rewrite into following matrix form,

nk PPP

P

PP

P

PP

k k 

n

Gm

Gm

loss

m

G

loss

,,3,211 11

2

2

 

  

 

 

  

 

     

n

Gm

loss

G

loss

n

n

n

m

n

nm

P

P

P

P

P

P

PPP

PPP

 

 

   

   

1

2

12

2

222

2

1

1

1

1

n

nn

n

q

 p

 pq

PP

PP

P

  

  

  

2

2

2

2

11J

We can use T  pq  11

J

Page 30: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 30/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 30

RHS Calculation

• The right hand side of the matrix can be foundfrom,

nk  BGV V 

Pk k k k k 

k ,,3,2cossin 11111

1

     

Page 31: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 31/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 31

Case 3: Solution Outline

• Assume initial dispatch,

Step 1: Solve power flow for

At this step, we can find,

Step 2: Evaluate

and find

Step 3: Check if , DONE.

If not, go to 4.

Step 4: If then,

If then,

Go back to Step 1.

00

3

0

2,,, GmGG PPP

1GP nii ,,3,2  

T  pq  11

J

niP

i

,,3,21

 

i

 pq

ii

PPP

 L    111111 J

mi IC  L ii ,,2,1  

mi IC  L ii ,,2,1     GiGi PP

m j IC  L  j j ,,2,1   GjGj PP

Page 32: Power Control ED

8/3/2019 Power Control ED

http://slidepdf.com/reader/full/power-control-ed 32/32

ELEN 460:Power System Control and Operation:Economic Dispatch (ED) 32

Case 4: With Line Losses,With Generator Limit

• The solution outline to this case is basically thesame as Case 3.

• However, in Step 1 and 4, lower and upper limit

of each generating units need to be check.