Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage...

60
Porous MOFs as storage materials for methane and hydrogen Structure Modelling [and GCMC Simulations] Frank Hoffmann Department Chemie 24./25.02.2009 Workshop SPP 1362 Dresden

Transcript of Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage...

Page 1: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

Porous MOFs as storage materials for methane and hydrogen

Structure Modelling [and GCMC Simulations]

Frank Hoffmann

Department Chemie

24./25.02.2009 Workshop SPP 1362 Dresden

Page 2: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

2

Part I

Basic Concepts – Force Fields – Modelling as a Tool in Crystallography

Page 3: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

3

Overview of methods used in computational chemistry

WF‐based e‐density‐based

semiempirical ab initio

EHTCNDOMNDO

HFMP‐nCI, CC

LDALSDAGGA

FF‐based

UFFCVFF, MMFF

MM2‐4

methodsclassical

mechanics quantum

mechanics

DFT

Page 4: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

4

Force Fields: Definition

mathematical expression describing the energy of a molecule as a

function of the coordinates of the nuclei

obtained empirically

applying the laws of classical mechanics to hard bodies (spheres), 

which are connected by springs

force field

principle

stretch bend

non‐bond(electrostatics, vdW)

torsion

atom types

parameterization

kstr kb ktors

Page 5: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

5

Force Fields: Parameter Reduction and Transferability

…but a nitro group is a nitro group is a nitro group…

(hopefully)…

CH3

N+O O-

CH

N+O O-

CH3H3C

N+O O-

T ? T ?

a sp2‐hybridized carbon atom is not a sp3‐hybridized carbon atom…

H2C CH3 C_sp3

C_sp2

C_aryl_sp2

…if not, then the predicting power

of FF‐based calculation would be zero!

from experimental data or 

high‐quality QM calculations

Page 6: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

6

Force Fields: Example and the Term Strain Energy

„strain

energy“

vdWCoulombcrossbendtorsbond EEEEEE totE

τ energy

dihedral angle τ

))cos(1( 0 nkE torstors

Page 7: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

7

Conceptual Background: PES

energy

reaction

coordinate

transition

state

(TS)

1

2

kinetics

thermo‐dynamics

energy

minima

1, 2 = equilibrium

structures

energy

maxima

= TS

stationary

points

0

xE

02

2

xE

02

2

xE

Page 8: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

8

UFF – a ‘generic’ force field

is a so‐called ‘all‐elements force field’, i.e.

comprises parameters for all 

atom sorts of the PSE

uses a reduced parameter set and makes directed guesses for missing 

interaction parameters

results in relatively good geometries, relatively bad relative energies, and 

poor conformational energies for organic molecules

is (in my experience) quite well‐suited for structure simulations of MOFs

The Universal Force Field (UFF)

Rappé et al., J. Am. Chem. Soc., 114 (1992) 10024

Page 9: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

9

Modelling as an utility in crystallography

1

8

comparison, refinement…

calcexp

structural model

a sort of ‘Homology 

Modelling’…

Page 10: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

10

Structure solution of Al-containing MOFs

Férey et al. , C.R. Chimie 8 (2005) 765

MIL‐69

Al(OH)(ndc)∙H2

O

M = 267.11 g mol–1

monoclinic

space group C2/c (no. 15),

a = 24.598 Å, b = 7.5305 Å, c = 6.5472 Å

b = 106.863°

V = 1160.6 Å3

Z = 4

‘opening angle’

Page 11: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

11

Experimental P-XRD pattern

MIL‐69 but DMF instead of water as solvent (and SDA)

TUD‐MIL‐69 (as)

intensity

2 theta

Page 12: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

12

Modelling protocol

Modelling

procedure

in principle

analogous

to Férey

et al. 

MIL‐53‐as (CCDC 220475) Linker: 1,4‐benzene dicarboxylate

naked network of AlO

connectors

elongation of the a‐axis to 24,6 Å‐

reduction of the symmetry to P1‐

insertion of the naphthalene cores in a regular way

TUD‐MIL‐69‐trial (P21)

energy minimization, including optimization of the unit cell‐

UFF‐

finding symmetry

TUD‐MIL‐69‐sim (Pnna)

removal of the benzene cores

Férey et al. , C.R. Chimie 8 (2005) 765

generation of CIF‐

simulation of the P‐XRD

Page 13: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

13

Structural model of TUD-Al(OH)(ndc)

TUD‐Al(OH)(ndc)

primitive orthorhombic, , ,  = 90°, space group Pnna

(no. 52)

a = 19.1987 Å, b = 6.08336 Å, c = 16.3269 Å

80.51°

99.49°

Page 14: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

14

Comparison of the P-XRDs

TUD‐Al(OH)(ndc) (as)

TUD‐Al(OH)(ndc) (sim)

intensity

2 theta

TUD‐Al(OH)(ndc)

Page 15: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

15

Removing last doubts

TUD‐Al(OH)(ndc)

Whitfield et al. , Solid State Sci. 7 (2005) 1096

TUD‐Al(ndc)(dmf)or ?

Fe(bdc)(dmf)

54.4°

Page 16: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

16

Comparison of the P-XRDsrel. intensity

2 theta

TUD‐Al(OH)(ndc)

TUD‐Al(OH)(ndc) (as)

TUD‐Al(ndc)(dmf) (sim)

orthorhombic, , ,  = 90°, SG Pna21

(no. 33)

a = 22.2859 Å, b = 10.5211 Å, c = 6.6567 Å

Page 17: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

17

From Al(OH)(ndc) to Al(OH)(bpdc)

Al(OH)(bpdc)Al(OH)(ndc)

4,4’‐biphenyl dicarboxylate

94.7°

85.3°

TUD‐Al(OH)(bpdc) (as)

TUD‐Al(OH)(bpdc) (sim)

body‐centered orthorhombic

space group Imma

(no. 74)

a = 21.5798 Å, b = 6.11644 Å, 

c = 20.1246 Å

intensity

2 theta

Senkovska et al., MMM (2009) accepted

[Al(OH)(ndc): 80.4°]

Page 18: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

18

Structure solution of MIL-101_NDC

MIL‐53 MIL‐88B MIL‐101

MTN network

Page 19: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

19

From MIL-101 to MIL-101_NDC

MIL‐101

Cr3

[µ3‐oxo(H2

O)3

(bdc)3

]

MIL‐101_NDC

Cr3

[µ3‐oxo(H2

O)3

(ndc)3

]

Page 20: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

20

Protocol and Comparison of the P-XRDs

P‐XRD

P‐XRD indexing

Fd‐3 (cubic, a

= 104.5435 Å) 

taking the fractional coordinates of MIL‐101 but 

without the bdc

linkers‐

insertion of the naphthalene cores in a way that the 

Fd‐3 symmetry is retained

MIL‐101_NDC trial

energy minimization, including optimization of 

the unit cell

UFF

MIL‐101_NDC‐sim (a = 104.1264 Å)

X‐Cell

generation of CIF‐

simulation of the P‐XRD

Crystallographic/Modelling

procedure

Rietveld

refinement (a = 104.217 Å) space group validation

(F41

32 / Fd‐3)

Fd‐3

MIL‐101_NDC (exp)

MIL‐101_NDC(sim)

Page 21: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

21

Challenge: Symmetry reduction

Symmetry reduction

Fd‐3

a b

c

000

[110] diagonal plane

Fd‐3m

highest multiplicity (Wyckoff)

96(g)192(i)

Cr1 0.09473 -0.07201 0.51291…

(3rd viewing direction, cubic)

Cr1a 0.09473 -0.07201 0.51291Cr1b -0.07201 0.09473 0.51291….

atoms on general positions with a multiplicity 

of 192 in Fd‐3m have to be split into two 

positions with a multiplicity of 96 

m

abc bac

b

Page 22: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

22

The Aufbau principle of MIL-101_NDC

Cr3

(µ3‐O)(H2

O)3

(ndc)3

Fd‐3

a = 104.1264 Å

V

= 1,124,000 Å3

SBET

= ~ 3,850 m2/g

Vp

= ~ 2.345 cm3/g

Sonnauer et al., Angew. Chem. Int. Ed. (2009), DOI: 10.1002/ange.200805980

Page 23: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

23

Part II

GCMC simulations for evaluation of the adsorption properties of MOFs – Adaptation of van-der-Waals parameters

Page 24: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

24

Different Ensembles and GCMC simulations

grand canonical ensemble

N, E, V

= const.

microcanonical

ensemble

isothermal‐isobaric ensemble

canonical ensemble

N, V,

T

= const.

N, T,

p

= const.µ, V, T,

p

= const.

for instance for the evaluation of 

the number of particles, which a 

porous material can adsorb!

each of the Monte Carlo moves 

consist of one of the following 

steps:

insertion (‘create’)

translation

rotation remove (‘destroy’)

µ, T

Page 25: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

25

GCMC simulations

each of the steps are connected to a certain probability of  

acceptance or rejection, depending on a set of different 

energy criteria and the Boltzmann distribution function at 

the respective temperature (sampling) 

with each Monte Carlo step different microstates, i.e.

configurations, are realized, which possess a certain 

probability distribution

for each microstate, i.e.

configuration, all macroscopic 

(thermodynamic) properties are calculated by means of the 

respective equations from statistical mechanics

by taking the average of a huge number of all possible 

(acceptable) configurations the desired macroscopic 

observables can be obtained with high precision

insertion

translation

rotation remove

bad sampling

Page 26: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

26

GCMC simulations – equilibration and production

insertion

insertion

insertion

equilibration (C/D is high)

production  (C/D ~ 1)      

all accepted rejected

insertion insertion

accepted

translation

microstate 1 microstate 2 microstate 3 microstate n

Page 27: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

27

Hydrogen adsorption in MOFs – interactions

donor‐acceptor interactions

modelling

would require QM methods

for H2

weak interactions are expected 

due to large HOMO‐LUMO gap

not

included

in force field

calculations

orbital interactions

electrostatic interactions

interactions between permanent charges

modelling: partial charges, Coulomb law

for H2

: no dipole moment, quadrupole

moment small

negligible

at first

approximation

Page 28: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

28

Hydrogen adsorption in MOFs – interactions (II)

interactions between fluctuating dipoles

QM treatment is complex

approximation: Lennard‐Jones potential

most important type of interactions

van der

Waals  interactions

6min

12min

0 2)(r

rr

rDrEvdW

empirical parameters D0

and rmin

tabulated for distinct atom types (e.g.

UFF)

interactions between different atom types: 

a) mixing of atomic parameters

b) explicit specification

D0

D0

= depth of potential curve (= Emin

)

rmin

= position of Emin

rmin

= 21/6

= vdW

diameter

rmin

Page 29: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

29

LJ parameter adoption for hydrogen adsorption in MOFs

reproduction of H2 adsorption properties of a broad range of 

different MOFs

by means of GCMC simulations

objective

approach

modification of some LJ parameters of a well‐established force field 

(UFF) 

based on experimental data or theoretical results but not adsorption 

data (no empirical a‐priori information)

using experimental adsorption data to validate the parameters

adaptations

H2

– H2

parameters

H2

– Caryl

parameters

Mn+

parameters

(excess correction and calculation of the pore volume)

Page 30: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

30

Hydrogen models in GCMC simulations

two‐point LJ fluid

H H

+ q + q- 2q

H H

realistic concerning the 

quadrupole

moment

calc. of charges of the 

framework necessary

energy evaluation time‐

consuming

not very realistic, no differentiation between 

side‐on vs. end‐on orientation

but: rotational degrees of freedom of H2

molecule even at adsorption sites

calculations are much faster

new atom type H_2

adaption

of only one parameter

H2

two‐point LJ fluid, three‐point charge particle

one‐point LJ fluid (united‐atom model, UA)

(H2 )

d(H-H)

Page 31: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

31

Results and Discussion

Simulation of H2

@ MOFs

at T = 77 K and 0.05 bar ≤

P ≤

60 bar

Cu3

(btc)2

MOF‐505

PCN‐10 

PCN‐11

IRMOF‐1

IRMOF‐20

MOF‐74  

MOF‐177

ZIF‐8

Ni2

(dhtp)

Ni3

(btc)2

(pic)6

(pd)3

‘Mixed‐MOF’

13 different MOFs

in total

10 different framework geometries

4 different types of metal centers

Zn‐MOFs Cu‐MOFs Ni‐MOFs Mn‐MOFs

(Mn4

Cl)3

(btt)8

Zn3

(bdc)3

Cu(pyen)

Page 32: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

32

Results and Discussion

IRMOF‐1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100p [kPa]

H2 u

ptak

e [w

t.-%

]

exp.sim.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 1000 2000 3000 4000 5000 6000p [kPa]

H2 u

ptak

e [w

t.-%

]exp.sim.

exp: ‐3.8 – 4.8 kJ/mol

sim: ‐3.8 kJ/mol

isosteric

enthalpy of adsorption:

Rowsell

et al., J. Am. Chem. Soc. 2004,

126, 5666 Kaye et al., J. Am. Chem. Soc. 2007,

129, 14176

Page 33: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

33

Results and Discussion

ZIF‐1

exp.   ‐

4.5 kJ/mol

sim.   ‐

5.4 kJ/mol

isosteric

enthalpy of adsorption:

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000 5000 6000p [kPa]

H2 u

ptak

e [w

t.-%

]

exp.sim.

Page 34: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

34

Results and Discussion

exp.   ‐

4.8 – 6.8 kJ/mol

sim.   ‐

6.9 kJ/mol

isosteric

enthalpy of adsorption:

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 100p [kPa]

H2 u

ptak

e [w

t.-%

]

exp.sim.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000p [kPa]

H2 u

ptak

e [w

t.-%

]

exp.sim.

Cu3

(btc)2

Chui et al., Science 1999, 283, 1148

Liu et al., J. Phys. Chem. C 2007,

111, 9305

Page 35: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

35

Results and Discussion

hot spots

Cu3

(btc)2

physisorption

occurs 

mainly in smaller pores

very little adsorption near 

metal sites

possible explanation for 

underestimation of the 

calculated loading

p = 0.5 bar

Page 36: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

36

Results and Discussion

exp.   ‐

10.1 kJ/mol

sim.   ‐

5.4 kJ/mol (!)

isosteric

enthalpy of adsorption:

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1000 2000 3000 4000 5000 6000P [kPa]

H2-

Upt

ake

[wt-%

]

Experimental

Simulated0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100P [kPa]

H2-

Upt

ake

[wt-%

]

Experimental

Simulated

(Mn4

Cl)3

(btt)8

Dinca

et al., J. Am. Chem. Soc. 2006,

128, 16876

Page 37: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

37

Summary Part II

quantitative 

agreement 

for 

MOFs

that 

do 

not 

contain 

open 

metal 

sites 

for 

quantities 

that 

depend 

on 

the 

total 

pore 

volume 

and 

the 

fluid‐fluid potential, i.e.

saturation uptake and saturation pressure

applicability for very different MOF systems

qualitative agreement of the curvature of the adsorption isotherms, 

which depends on the pore geometry

discrepancies 

of 

the 

calculated 

loadings 

arise 

for 

MOFs

with 

open 

metal 

sites: 

the 

interaction 

of 

H2

with 

these 

sites, 

which 

is 

not 

normal vdW

interaction, cannot be modelled

by a simple LJ potential

evidence 

for 

Kubas‐type 

interaction 

between 

hydrogen 

and 

open 

metal sites

Page 38: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

38

Page 39: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

39

Hydrogen (and methane) adsorption in MOFs

Spencer et al., Chem. Commun. 2006, 278

H2

@ IRMOF‐1T = 5 K

neutron

diffraction

data

hydrogen

molecules

predominantly

at defined

positions

spatial

defined

interactions

which

interactions

do play

a role

?

Page 40: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

40

LJ parameter adoption for hydrogen adsorption in MOFs

H2

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0 10 20 30 40 50 60p [MPa]

Den

sity

[g/c

m3 ]

exp.sim.

H2

Experimental data: NIST Chemistry WebBook, http://webbook.nist.gov/chemistry

H2

is represented as a single vdW

site 

(UA model)

limiting case of large pores 

necessity to reproduce the fluid –

fluid

interactions 

fit of LJ parameters to the pressure –

density relationship at T = 77 K

intrinsic correction of quantum 

effects

Page 41: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

41

LJ parameter adoption for hydrogen adsorption in MOFs

H2 Caryl

QM calculations (MP2): interactions 

of H2

with benzene and other PAHs

fit of LJ parameters: reproduction of 

these results in terms of 

physisorption

energy

distance H2

ring

H2

@ coronene d (Å) E (kJ/mol)

MP2FF

3.083.09

5.15.0

Heine et al., Phys. Chem. Chem. Phys. 6 (2004) 980

Page 42: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

42

LJ parameter adoption for hydrogen adsorption in MOFs

H2 M2+

DFT calculations deliver electron density 

distribution for free cations

(DMOL3)

(M2+) diameter at which the electron 

density drops below a certain limit

choice of this limiting value: analogy with H2

molecule

Mn2+

= 3.04 ÅCo2+

= 2.68 ÅNi2+

= 3.00 Å

Cu2+

= 2.90 ÅZn2+

= 2.86 ÅH2

s

~ 2.92 Å

1. vdW

diameter ()

Page 43: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

43

LJ parameter adoption for hydrogen adsorption in MOFs

H2 M2+

attractive part of the LJ potential is linked to 

the London approximation

rmin

is obtained from the calculated values of 

Ionization energy I

is know from experiments

polarizability

: empirical values

2. potential depth (D0

)6

min

2

0 61

rID

rmin

(Å) D0

(kJ/mol)

3.42

3.00

3.38

3.25

3.22

Mn2+

Co2+

Ni2+

Cu2+

Zn2+

0.741

1.302

0.445

0.856

1.087scaling necessary to avoid 

overestimation of H2

– metal 

interaction

Shannon & Fischer, Phys. Rev. B 73 (2006) 235111

Page 44: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

44

LJ parameters and Mixing Rules

LJ parameters in publications

6min

12min

0 2)(r

rr

rDrEvdW

…means: how to treat heteroatomic

pairs?

most common: Lorentz‐Berthelot mixing, i.e.

an 

arithmetic average is used for the collision 

diameter, while a geometric average is used for 

the potential depth

])(2)[(])()[(4 612612Rr

Rr

RRmmE

Frost, Düren, Snurr, J. Phys. Chem. B 110 (2006) 9565

X H2‐X

[Å] H2‐X

/ kB

[K]

H2

C

H

O

Zn

2.958

3.216

2.902

2.996

3.501

36.7

41.924

16.761

42.056

31.882 1000/)/(]/[0 RkmolkcalD B

Mixing schemes

2

Page 45: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

45

Absolute vs. excess adsorption

GCMC simulations deliver the total 

amount of molecules per unit cell; 

absolute adsorption

experimental accessible is only the so‐

called Gibbs’

excess adsorption

this is: the absolute amount minus the 

number of molecules that would 

occupy the free pore volume if the 

interaction energy would be zero

excess correction

Kaye et al., J. Am. Chem. Soc. 129 (2007) 14176

excN

poreV

absN

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 2000 4000 6000 8000P [kPa]

H2-

Upt

ake

[wt-%

]

Excess-Adsorption

Absolute Adsorption

H2

@ IRMOF‐1

2Hporeexcabs VNN

2Hporeabsexc VNN

Page 46: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

46

Calculation of the pore volume

GCMC simulation of He ‘physisorption’

at T = 298 K and low pressures

adaptation of LJ parameters that determine the He –

solid interaction

good agreement with experimental values from N2

physisorption

determination of Vpore

0.00.20.40.60.81.01.21.41.61.82.0

V (c

m^3

/g)

V_pore (Exp)

V_pore (Sim)

MOF‐74Cu3(btc)2

IRMOF‐1 MOF‐177

Page 47: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

47

From Numbers to Volumetric or Gravimetric units

Nabs

/per UC [g/cm‐3] or [g/g] or wt.‐%

Nabs Nabs

/Å Nabs

/cm‐3

1024

nabs

/cm‐3

NA‐1

VUC‐1

g/cm‐3

MAdsorptive

[g/mol]

Nabs

/UC

MAdsorptive

/ MUCg/g

100 / (1+ mAdsorptive

)

wt.‐%

volumetric

gravimetric

Page 48: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

48

The Monte Carlo Method

let‘s play some random(!) dart (‘hit & miss’) and evaluate thereby the value of π…

Page 49: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

49

The Monte Carlo Method

let‘s take the first quadrant of a unit circle…

the graph can be expressed as:

a random number generator creates x,y

values [0;1]

these coordinates are points,

which can lie inside … … or outside of the circle: 

the relative frequency is a value:

…that matches the

value of the respective area:

x

y

r2

= x2

+ y2

=1

x2

+ y2

1 x2

+ y2

> 1

fr

= ninside

/ ntotal

A = π/4 = ninside

/ ntotal

π

= 4 

ninside

/ ntotal

Page 50: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

50

The Monte Carlo Method

ntotal

= 126noutside

=   19ninside

= 107

π

= 3.3968

Page 51: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

51

The Monte Carlo Method

ntotal

= 987noutside

= 228ninside

= 759

π

= 3.07599

Page 52: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

52

The Monte Carlo Method

ntotal

= 7505noutside

= 1599ninside

= 5906

π

= 3.1478

Page 53: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

53

microporous materials and H2 storage

a “tag cloud”

IRMOFsZIFs

MILs

COFsCNTs

PIMsMOPs

CAs

ZTCs

HPsCPLs

IRMOFsZIFs

MILs

COFsCNTs

PIMsMOPs

CAs

ZTCs

HPsCPLs

Page 54: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

54

design guidelines

a multidimensional optimization problem

high free volumelong linkers

no interactionwith pore wall

interpenetrationis an issue

low frameworkdensity

stability athigh pressures

guidance valueDHads ~ 15 – 20 kJ/mol

relatively strong inter-action w. framework

fueling with and providingof H2 have to be fast

Page 55: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

55

IRMOFs

protoype

MOF‐5  IRMOF‐1

Zn4

O cluster linked by chelating carboxylate

ligands

Eddaoudi et al., Science 295 (2002) 469

1 6 8

10 14 18

Page 56: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

56

IRMOFs – Interpenetration / Catenation

in terms of gaining absolute pore volume interpenetration is not

desirable

but catenation

can enhance

uptake at low pressure (< 1 bar) up to 40 % rel. to non‐

catenated

species

Rowsell, Yaghi , MMM 73 (2004) 3 – 14

Page 57: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

57

Results and Discussion

hot spots

physisorption

occurs 

mainly in cage‐like pores

very little adsorption near 

metal sites

possible explanation for 

underestimation of the 

calculated loading

p = 1.0 bar(Mn4

Cl)3

(btt)8

Page 58: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

58

MOF-177 – world record holder

Chae et al. , Nature 427 (2004) 523

1,3,5‐benzenetribenzoate (BTB)

SBET

~  4500 m2

g‐1

SLangmuir

~  5800 m2

g‐1

Vpore

~  1.59 cm3

g‐1

COOH

COOHHOOC

7.5 wt. % H2

Page 59: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

59

MOFs

Wong-Foy et al., JACS 128 (2006) 3494

Page 60: Porous MOFs as storage materials for methane and hydrogen · PDF filePorous MOFs as storage materials for methane and hydrogen ... (CCDC 220475) Linker: 1,4 ... The Aufbau principle

60

NANOSORB

funded by the BMBF

target: developing a real storage system for hydrogen/methane based on microporous materials

Prof. Fröba Prof. Kaskel

screening of known materials

designing new materials in- silico

developing and synthesis of new materials

investigation of the sorption properties

feasability studies

technical upscaling

construction of the tank

heat management