Polynomial Chaos Based Uncertainty...

89
Introduction Forward UQ Sensitivity Sparse Quadrature References Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation: Intrusive and Non-Intrusive Bert Debusschere [email protected] Sandia National Laboratories, Livermore, CA Aug 12, 2013 – UQ Summer School, USC Debusschere – SNL UQ

Transcript of Polynomial Chaos Based Uncertainty...

Page 1: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Polynomial Chaos BasedUncertainty Propagation

Lecture 2: Forward Propagation: Intrusive andNon-Intrusive

Bert Debusschere†

[email protected] National Laboratories,

Livermore, CA

Aug 12, 2013 – UQ Summer School, USC

Debusschere – SNL UQ

Page 2: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Acknowledgement

Cosmin Safta Sandia National LaboratoriesKhachik Sargsyan Livermore, CAKaty JarvisHabib NajmOmar Knio Duke University, Raleigh, NCRoger Ghanem University of Southern California

Los Angeles, CAOlivier Le Maître LIMSI-CNRS, Orsay, Franceand many others ...

This work was supported by the US Department of Energy (DOE), Office of AdvancedScientific Computing Research (ASCR), Scientific Discovery through AdvancedComputing (SciDAC) and Applied Mathematics Research (AMR) programs.

Sandia National Laboratories is a multi-program laboratory managed and operated bySandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for theU.S. Department of Energy’s National Nuclear Security Administration under contractDE-AC04-94AL85000.

Debusschere – SNL UQ

Page 3: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Goals of this tutorial

• 2 Lectures• Lecture 1: Context and Fundamentals• Lecture 2: Forward Propagation

• Intrusive Approaches• Non-Intrusive Approaches• Sensitivity Analysis• High-dimensional Systems

Debusschere – SNL UQ

Page 4: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Outline

1 Introduction

2 Forward Propagation of Uncertainty

3 Sensitivity Analysis

4 Sparse Quadrature Approaches for High-DimensionalSystems

5 References

Debusschere – SNL UQ

Page 5: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

This section focuses on propagating uncertaintythrough computational models.

Predictive Simulation

Theory

Experiments

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)p(λ, I)

P(D)

Debusschere – SNL UQ

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)p(λ, I)

P(D)

Debusschere – SNL UQ

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)p(λ, I)

P(D)

Debusschere – SNL UQ

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)p(λ, I)

P(D)

Debusschere – SNL UQ

Inference

Forward Propagation

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)P(λ, I)

P(D)

λ u

P(u) P(λ)

Debusschere – SNL UQ

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)P(λ, I)

P(D)

λ u

P(u) P(λ)

Debusschere – SNL UQ

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)P(λ, I)

P(D)

λ u

P(u) P(λ)

Debusschere – SNL UQ

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)P(λ, I)

P(D)

λ u

P(u) P(λ)

Debusschere – SNL UQ

Introduction Introduction UQ Software PCES Summary References

Formulation

dudt

= f (u;λ)

P(λ|D, I) =P(D|λ, I)P(λ, I)

P(D)

λ u

P(u) P(λ)

Debusschere – SNL UQ

• Assume uncertain parameters λ have beencharacterized with PCEs

• The goal is to obtain PCEs for output quantities u

Debusschere – SNL UQ

Page 6: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Propagation of Uncertain Inputs Represented withPCEs

Galerkin Projection

u1

E

u

u

uo

ψ1

ψo

1

u1

E

u

u

uo

ψ1

ψo

1

u1

E

u

u

uo

ψ1

ψo

1

u1

E

u

u

uo

ψ1

ψo

1

u1

E

u

u

uo

ψ1

ψo

1

u1

E

u

u

uo

ψ1

ψo

1

u1

E

u

u

uo

ψ1

ψo

1

uk =〈uΨk 〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

Residual orthogonal tospace covered by basisfunctions

Collocation

4 2 0 2 40.5

0

0.5

1

1.5

ξ

p(ξ)

u(ξ)

p(u)

u

1

ξ

p(ξ)

u(ξ)

p(u)

u

1

Match PCE to randomvariable at chosen samplepoints: interpolation orregression

Debusschere – SNL UQ

Page 7: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Galerkin projection methods are either intrusive ornon-intrusive

• Use same projection but in different ways

uk =〈uΨk 〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

• Intrusive methods apply Galerkin projection to governingequations• Results in set of equations for the PC coefficients• Requires redesign of computer code• PCEs for all uncertain variables in system

• Non-intrusive approaches apply Galerkin projection tooutputs of interest• Sampling to evaluate projection operator• Can use existing code as black box• Only computes PCEs for quantities of interest

Debusschere – SNL UQ

Page 8: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Collocation approaches are non-intrusive andminimize errors at sample points

P∑k=0

uk Ψk (ξi) = u(ξi)

i = 1, . . . ,Nc

4 2 0 2 40.5

0

0.5

1

1.5

ξ

p(ξ)

u(ξ)

p(u)

u

1

ξ

p(ξ)

u(ξ)

p(u)

u

1

• Use functional representation point of view• Can use interpolation, e.g. Lagrange interpolants• Or use regression approaches: P + 1 degrees of

freedom to fit Nc points• Can position points where most accuracy desired

Debusschere – SNL UQ

Page 9: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Remainder of this section focuses on Galerkinprojection methods

• Intrusive Galerkin projection• Non-intrusive Galerkin projection

Debusschere – SNL UQ

Page 10: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Intrusive Galerkin projection reformulates originalequations

• Assume v = f (u; a, λ), with• a deterministic parameter(s)• λ uncertain parameter(s)• u, v variables of interest (deterministic or uncertain)

• Represent uncertain variables with PCEs

λ =P∑

k=0

λk Ψk (ξ), v =P∑

k=0

vk Ψk (ξ)

• Apply Galerkin projection to get PC coefficients of v

vk =〈vΨk〉⟨

Ψ2k

⟩ =〈f (u; a, λ)Ψk〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

• Results in larger, but deterministic set of equationsDebusschere – SNL UQ

Page 11: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of linear operations: v = γ + λ

• Assume v = γ + λ, withγ =

∑Pk=0 γk Ψk , λ =

∑Pk=0 λk Ψk , and v =

∑Pk=0 vk Ψk

• Galerkin projection

vk =〈vΨk〉⟨

Ψ2k

⟩ =〈(γ + λ)Ψk〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

〈(γ + λ)Ψk〉 =

⟨P∑

j=0

γjΨjΨk

⟩+

⟨P∑

j=0

λjΨjΨk

=P∑

j=0

γj 〈ΨjΨk〉+P∑

j=0

λj 〈ΨjΨk〉

= γk⟨

Ψ2k

⟩+ λk

⟨Ψ2

k

⟩• ⇒ vk = γk + λk

Debusschere – SNL UQ

Page 12: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of linear operations: v = a + λ

• Special case of v = γ + λ, with• γ = a Ψ0 = a• λ =

∑Pk=0 λk Ψk

• v =∑P

k=0 vk Ψk

• Resulting in• v0 = a + λ0, vk>0 = λk

• Deterministic parameter is a special case of a PCEwith 0th term only

• Adding a deterministic value to a PCE just shifts itsmean

Debusschere – SNL UQ

Page 13: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of linear operations: v = a λ

• Assume v = a λ, witha deterministic, λ =

∑Pk=0 λk Ψk , and v =

∑Pk=0 vk Ψk

• Galerkin projection

vk =〈vΨk〉⟨

Ψ2k

⟩ =〈(a λ)Ψk〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

〈(a λ)Ψk〉 =

⟨a

P∑j=0

λjΨjΨk

=P∑

j=0

a λj 〈ΨjΨk〉

= a λk⟨

Ψ2k

⟩• ⇒ vk = a λk

Debusschere – SNL UQ

Page 14: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of product: v = γ λ

• Assume v = γ λ, withγ =

∑Pk=0 γk Ψk , λ =

∑Pk=0 λk Ψk , and v =

∑Pk=0 vk Ψk

• Galerkin projection

vk =〈vΨk〉⟨

Ψ2k

⟩ =〈(γ λ)Ψk〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

〈(γ λ)Ψk〉 =

⟨ P∑i=0

γiΨi

P∑j=0

λjΨj

Ψk

=

⟨P∑

i=0

P∑j=0

γiλjΨiΨjΨk

=P∑

i=0

P∑j=0

γiλj 〈ΨiΨjΨk〉

Debusschere – SNL UQ

Page 15: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of product: v = γ λ

⇒ vk =P∑

i=0

P∑j=0

γiλj〈ΨiΨjΨk〉⟨

Ψ2k

⟩ =P∑

i=0

P∑j=0

γiλjCijk

• Cijk =〈Ψi Ψj Ψk〉〈Ψ2

k〉• The Cijk tensor can be computed up front for any

given PC order and dimension and stored for usewhenever two RVs are multiplied

• This tensor is sparse, i.e. many of its elements arezero

Debusschere – SNL UQ

Page 16: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

1D 4th-Order Cijk Example : Hermite polynomials

〈Ψi Ψj Ψk 〉 value〈Ψ0Ψ0Ψ0〉 1〈Ψ0Ψ1Ψ1〉 1〈Ψ0Ψ2Ψ2〉 2〈Ψ0Ψ3Ψ3〉 6〈Ψ0Ψ4Ψ4〉 24〈Ψ1Ψ1Ψ2〉 2〈Ψ1Ψ2Ψ3〉 6〈Ψ1Ψ3Ψ4〉 24〈Ψ2Ψ2Ψ2〉 8〈Ψ2Ψ2Ψ4〉 24〈Ψ2Ψ3Ψ3〉 36〈Ψ2Ψ4Ψ4〉 192〈Ψ3Ψ3Ψ4〉 216〈Ψ4Ψ4Ψ4〉 1728

k⟨Ψ2

k

⟩0 11 12 23 64 24

• Cijk = 〈Ψi Ψj Ψk 〉 /⟨Ψ2

k

⟩• and,

〈Ψi Ψj Ψk 〉 = 〈Ψi Ψk Ψj〉 =

〈Ψj Ψi Ψk 〉 = 〈Ψj Ψk Ψi〉 =

〈Ψk Ψi Ψj〉 = 〈Ψk Ψj Ψi〉

• with other not-reported〈Ψi Ψj Ψk 〉 zero

Debusschere – SNL UQ

Page 17: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

1D 4th-Order Cijk Example : Legendre polynomials

〈Ψi Ψj Ψk 〉 value〈Ψ0Ψ0Ψ0〉 1〈Ψ0Ψ1Ψ1〉 1/3〈Ψ0Ψ2Ψ2〉 1/5〈Ψ0Ψ3Ψ3〉 1/7〈Ψ0Ψ4Ψ4〉 1/9〈Ψ1Ψ1Ψ2〉 2/15〈Ψ1Ψ2Ψ3〉 3/35〈Ψ1Ψ3Ψ4〉 4/63〈Ψ2Ψ2Ψ2〉 2/35〈Ψ2Ψ2Ψ4〉 2/35〈Ψ2Ψ3Ψ3〉 4/105〈Ψ2Ψ4Ψ4〉 ≈0.029〈Ψ3Ψ3Ψ4〉 ≈0.026〈Ψ4Ψ4Ψ4〉 ≈0.018

k⟨Ψ2

k

⟩0 11 1/32 1/53 1/74 1/9

• Cijk = 〈Ψi Ψj Ψk 〉 /⟨Ψ2

k

⟩• and,

〈Ψi Ψj Ψk 〉 = 〈Ψi Ψk Ψj〉 =

〈Ψj Ψi Ψk 〉 = 〈Ψj Ψk Ψi〉 =

〈Ψk Ψi Ψj〉 = 〈Ψk Ψj Ψi〉

• with other not-reported〈Ψi Ψj Ψk 〉 zero

Debusschere – SNL UQ

Page 18: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of triple product: v = γ λ u

• Assume v = γ λ u, with γ =∑P

k=0 γk Ψk ,λ =

∑Pk=0 λk Ψk , u =

∑Pk=0 uk Ψk , and v =

∑Pk=0 vk Ψk

• Galerkin projection

vk =〈vΨk〉⟨

Ψ2k

⟩ =〈(γ λ u)Ψk〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

〈(γ λ u)Ψk〉 =

⟨ P∑l=0

γlΨl

P∑i=0

λiΨi

P∑j=0

ujΨj

Ψk

=

⟨P∑

l=0

P∑i=0

P∑j=0

γlλiujΨlΨiΨjΨk

=P∑

l=0

P∑i=0

P∑j=0

γlλiuj 〈ΨlΨiΨjΨk〉

Debusschere – SNL UQ

Page 19: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of product: v = γ λ u

⇒ vk =P∑

l=0

P∑i=0

P∑j=0

γlλiuj〈ΨlΨiΨjΨk〉⟨

Ψ2k

⟩ =P∑

i=0

P∑j=0

γlλiujDlijk

• Dlijk =〈Ψl Ψi Ψj Ψk〉〈Ψ2

k〉• The Dlijk tensor can also be computed up front for any

given PC order and dimension and stored for usewhenever three RVs are multiplied

• While this tensor is sparse, it can be expensive tocompute and store

• This fully spectral formulation is even less practicalfor higher order products

Debusschere – SNL UQ

Page 20: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Pseudo-spectral triple product: v = γ λ u

• Assume v = γ λ, with γ =∑P

k=0 γk Ψk ,λ =

∑Pk=0 λk Ψk , u =

∑Pk=0 uk Ψk , and v =

∑Pk=0 vk Ψk

• Perform product in sub-steps

v = γ λ u = ((γ λ)u)

= vu

• Each sub-step can be performed with regular binaryproduct formula

v = γ λ

v = vu

Debusschere – SNL UQ

Page 21: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Pseudo-spectral product readily generalizes to higherorder products

• Decompose higher order products or powers insequences of binary products• Equivalent to successive multiplication (accounting for

terms up to order 2p) and projecting back to order p

• Efficient and convenient• Can lead to aliasing errors due to loss of information

in higher order modes• See also [Debusschere et al., SIAM J. Sci. Comp,

2004]

Debusschere – SNL UQ

Page 22: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Intrusive propagation through non-polynomialfunctions

Addition, subtraction, and product allow (pseudo-)spectralevaluation of all polynomial functions

How to propagate PC expansions ({uk} ⇒ {vk}) throughtranscendental functions

v =1u, v = ln u, or v = eu

• Use local polynomial approximations, e.g. Taylorseries

• Rework operation into a system of equations• Integration approach• Borchardt-Gauss Algorithm: Arithmetic-Geometric

Mean (AGM) series[Debusschere et al., SISC 2004; McKale, Texas Tech, M.S. Thesis, 2011]

Debusschere – SNL UQ

Page 23: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Taylor series allows computation of manytranscendental functions

• Provides local polynomial approximation• E.g. eu = 1 + u

1! + u2

2! + u3

3! + . . .

• Expanding the series for f (u) around u0 speeds upconvergence

• Works well in most cases, especially for smalluncertainties

• Not very robust for larger uncertainties• Series can take too long to converge• High-order PC multiplications lead to aliasing• Instabilities if Taylor series range of convergence

exceeded; e.g. log(u) expanded around u0 onlyconverges for |u − u0| < 1

Debusschere – SNL UQ

Page 24: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Inversion and division can be computed through asystem of equations

• Assume three uncertain variables u, v, and w

w =uv⇒ v w = u

• Mode k of the stochastic productP∑

i=0

P∑j=0

Cijkvi wj = uk

• System of P + 1 linear equations in wj with known uk

and vi ,Vkj =

P∑i=0

Cijkvi ⇒ Vw = u

• More robust than Taylor series expansion for 1/u

Debusschere – SNL UQ

Page 25: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Integration approach for non-polynomial functions

• Consider the ODE dvdu = v , with solution v = eu

⇒f (u) = eu can be obtained from

dv = v du ⇒ eu − euo =

∫ u

uo

v du

• Similarly for e−u2, and ln(u)

e−u2 − e−u2o =

∫ u

uo

−2uv du, ln(u)− ln(uo) =

∫ u

uo

duu

• Accurate if PC order is high enough to properlycapture the random variable v = f (u)

Debusschere – SNL UQ

Page 26: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

More general formulation of integration approach forirrational functions

• To evaluate v(u), u =∑P

k=0 uk Ψk , v =∑P

k=0 vk Ψk ,• Use a deterministic IC ua such that v(ua) is known• Express v = dv/du = f (v ,u);

... require: f is a rational function

... ensures that (v)k are found from vk and ukcoeffs

• Evaluate the integral:

vk (ub)− vk (ua) =P∑

j=0

∫ (ub)j

(ua)j

P∑i=0

Cijk (v)i duj

• ok for eu, eu2, and ln(u), with v = v , 2uv , and 1/uresp.• but not for esin u, with v = v cos u

• More robust than Taylor series, but CPU-intensiveDebusschere – SNL UQ

Page 27: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Overloading of operations

• Construction allows for a general representationusing pseudo-spectral (PS) overloaded operations.• E.g. multiplication operation ‘∗’

w = λ ∗ u ∗ u ∗ v

• Each deterministic function multiplication istransformed into a corresponding PC product

• Potential meta-code: take a general deterministiccode function F (u), produce a pseudo-spectralstochastic function F (u)• Possibility of transforming legacy deterministic code

into corresponding pseudo-spectral stochastic code.• UQToolkit: contains library of utilities for operations

on random variables represented with PCEs

Debusschere – SNL UQ

Page 28: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model

3 ODEs for a monomer (u), dimer (v ), and inert species(w) adsorbing onto a surface out of gas phase.

dudt

= az − cu − 4duv

dvdt

= 2bz2 − 4duv

dwdt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior forb ∈ [20.2,21.2]

[Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002]Debusschere – SNL UQ

Page 29: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface reaction model shows wide range of dynamics

0 1000 2000 3000 4000 5000t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

u(t)

b=19.4

b=20.2

b=21.0

b=21.8

b=22.6

0 1000 2000 3000 4000 5000t

0.00

0.05

0.10

0.15

0.20

v(t)

b=19.4

b=20.2

b=21.0

b=21.8

b=22.6

0 1000 2000 3000 4000 5000t

0.50

0.55

0.60

0.65

0.70

0.75

0.80

w(t)

b=19.4

b=20.2

b=21.0

b=21.8

b=22.6

a = 1.6 b = [19.4 . . . 22.6]

c = 0.04 d = 1.0e = 0.36 f = 0.016

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem.Phys., 2002)

Debusschere – SNL UQ

Page 30: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Intrusive SpectralPropagation (ISP) of Uncertainty

• Assume PCE for uncertain parameter b and for theoutput variables, u, v ,w

• Substitute PCEs into the governing equations• Project the governing equations onto the PC basis

functions• Multiply with Ψk and take the expectation

• Apply pseudo-spectral approximations wherenecessary

Debusschere – SNL UQ

Page 31: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Specify PCEs for inputs andoutputs

Represent uncertain inputs with PCEs with knowncoefficients:

b =P∑

i=0

biΨi(ξ)

Represent all uncertain variables with PCEs withunknown coefficients:

u(t) =P∑

i=0

ui(t)Ψi(ξ) v(t) =P∑

i=0

vi(t)Ψi(ξ)

w(t) =P∑

i=0

wi(t)Ψi(ξ) z(t) =P∑

i=0

zi(t)Ψi(ξ)

Debusschere – SNL UQ

Page 32: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Substitute PCEs intogoverning equations and project onto basis functions

dudt

= az − cu − 4duv

ddt

P∑i=0

uiΨi = aP∑

i=0

ziΨi − cP∑

i=0

uiΨi − 4dP∑

i=0

uiΨi

P∑j=0

vjΨj⟨Ψk

ddt

P∑i=0

uiΨi

⟩=

⟨aΨk

P∑i=0

ziΨi

⟩−

⟨cΨk

P∑i=0

uiΨi

⟨4dΨk

P∑i=0

uiΨi

P∑j=0

vjΨj

Debusschere – SNL UQ

Page 33: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Reorganize terms

ddt

uk⟨

Ψ2k

⟩= azk

⟨Ψ2

k

⟩− cuk

⟨Ψ2

k

⟩− 4d

P∑i=0

P∑j=0

uivj 〈ΨiΨjΨk〉

ddt

uk = azk − cuk − 4dP∑

i=0

P∑j=0

uivj〈ΨiΨjΨk〉⟨

Ψ2k

⟩ddt

uk = azk − cuk − 4dP∑

i=0

P∑j=0

uivjCijk

• Triple products Cijk =〈Ψi Ψj Ψk〉〈Ψ2

k〉can be pre-computed

and stored for repeated use

Debusschere – SNL UQ

Page 34: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Substitute PCEs intogoverning equations and project onto basis functions

dvdt

= 2bz2 − 4duv

ddt

P∑i=0

vi Ψi = 2P∑

h=0

bhΨh

P∑i=0

zi Ψi

P∑j=0

zj Ψj − 4dP∑

i=0

ui Ψi

P∑j=0

vj Ψj⟨Ψk

ddt

P∑i=0

vi Ψi

⟩=

⟨2Ψk

P∑h=0

bhΨh

P∑i=0

zi Ψi

P∑j=0

zj Ψj

⟨4dΨk

P∑i=0

ui Ψi

P∑j=0

vj Ψj

Debusschere – SNL UQ

Page 35: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Reorganize terms

ddt

vk⟨Ψ2

k⟩

= 2P∑

h=0

P∑i=0

P∑j=0

bhzizj 〈ΨhΨi Ψj Ψk 〉 − 4dP∑

i=0

P∑j=0

uivj 〈Ψi Ψj Ψk 〉

ddt

vk = 2P∑

h=0

P∑i=0

P∑j=0

bhzizj〈ΨhΨi Ψj Ψk 〉⟨

Ψ2k

⟩ − 4dP∑

i=0

P∑j=0

uivj〈Ψi Ψj Ψk 〉⟨

Ψ2k

⟩ddt

vk = 2P∑

h=0

P∑i=0

P∑j=0

bhzizjDhijk − 4dP∑

i=0

P∑j=0

uivjCijk

• Pre-computing and storing the quad product Dhijk

becomes cumbersome• Use pseudo-spectral approach instead

Debusschere – SNL UQ

Page 36: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Pseudo-Spectral approachfor products

• Introduce auxiliary variable g = z2

g = z2

f = 2bz2 = 2bg

gk =P∑

i=0

P∑j=0

zizjCijk

fk = 2P∑

i=0

P∑j=0

bigjCijk

• Limits the complexity of computing product terms• Higher products can be computed by repeated use of

the same binary product rule

• Does introduce errors if order of PCE is not largeenough

Debusschere – SNL UQ

Page 37: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: ISP results

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

• Assume 0.5% uncertainty in b around nominal value• Legendre-Uniform intrusive PC• Mean and standard deviation for u, v , and w• Uncertainty grows in time

Debusschere – SNL UQ

Page 38: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: ISP results

0 200 400 600 800 1000Time [-]

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

ui

[-]

u0

u1

u2

u3

u4

u5

• Modes of u• Modes decay with higher order• Amplitudes of oscillations of higher order modes grow

in timeDebusschere – SNL UQ

Page 39: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: ISP results: PDFs

0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350u

0

50

100

150

200

250

300

350

Prob. Dens. [-]

t = 330.5t = 756.5

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

12

14

16

Prob. Dens. [-]

t = 377.8t = 803.0

• Pdfs of u at maximum mean (left) and maximumstandard deviation (right)

• Distributions get broader and multimodal as timeincreases• Effect of accumulating uncertainty in phase of

oscillationDebusschere – SNL UQ

Page 40: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Remainder of this section focuses on Galerkinprojection methods

• Intrusive Galerkin projection• Non-intrusive Galerkin projection

Debusschere – SNL UQ

Page 41: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Non-intrusive Galerkin projection

uk =〈uΨk〉⟨

Ψ2k

⟩ =1⟨

Ψ2k

⟩ ∫ uΨk (ξ)w(ξ)dξ, k = 0, . . . ,P

Evaluate projection integrals numerically• Pick samples of uncertain parameters, e.g. b(ξ) by

sampling ξ• Run deterministic forward model for each of the

sampled input parameter values bi = b(ξ i)• Integration using random sampling or quadrature

methodsReconstruct uncertain model output

u(x , t ; θ) =P∑

k=0

uk (x , t)Ψk (ξ(θ))

Debusschere – SNL UQ

Page 42: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Random sampling approaches for Galerkin projection

• Evaluate integral through sampling∫uΨk (ξ)w(ξ)dξ =

1Ns

Ns∑i=1

u(ξ i)Ψk (ξ i)

• Samples are drawn according to the distribution of ξ• Monte-Carlo (MC)• Latin-Hypercube-Sampling (LHS)

• Pros:• Can be easily made fault tolerant• Sometimes random samples is all we have

• Cons: slow convergence, but less dependent onnumber of stochastic dimensions

Debusschere – SNL UQ

Page 43: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Quadrature approaches for Galerkin projection

• Use numerical quadrature rules to evaluate integrals∫uΨk (ξ)w(ξ)dξ =

Nq∑i=1

q iu(ξ i)Ψk (ξ i)

• The Nq ξi are quadrature points, with corresponding

weights q i

• Choice of quadrature points important for accuracy• Also referred to as deterministic sampling approach

• Pros:• Can use existing codes as black box to evaluate u(ξi)• Embarrassingly parallel

• Cons: Tensor product rule for d dimensions requiresNd

q samples

Debusschere – SNL UQ

Page 44: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Gauss quadrature rules are very efficient

∫uΨk (ξ)w(ξ)dξ =

Nq∑i=1

q iu(ξ i)Ψk (ξ i)

• Nq quadrature points can integrate polynomial oforder 2Nq − 1 exactly

• Gauss-Hermite and Gauss-Legendre quadraturetailored to specific choices of the weight function w(ξ)

• As a rule of thumb, p + 1 quadrature points areneeded for Galerkin projection of PCE of order p• If both u and Ψk are of order p, then integrand is of

order 2p• 2p ≤ 2Nq − 1 or Nq ≥ p + 1

2• Only exact if u is indeed a polynomial of order ≤ p

Debusschere – SNL UQ

Page 45: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model

3 ODEs for a monomer (u), dimer (v ), and inert species(w) adsorbing onto a surface out of gas phase.

dudt

= az − cu − 4duv

dvdt

= 2bz2 − 4duv

dwdt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior forb ∈ [20.2,21.2]

[Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002]Debusschere – SNL UQ

Page 46: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: NISP results

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

NISP Quadrature

u v w

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

NISP MC

u v w

• Mean and standard deviation for u, v , and w• Quadrature approach agrees well with ISP approach

using 6 quadrature points• Monte Carlo sampling approach converges slowly

• With a 1000 samples, results are quite different fromISP and NISP

Debusschere – SNL UQ

Page 47: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Comparison ISP and NISP

0 200 400 600 800 1000Time [-]

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004ui

[-]

u4,ISP

u4,NISP

u5,ISP

u5,NISP

• Lower order modes agree perfectly• Very small differences in higher order modes

• Difference increases with time

Debusschere – SNL UQ

Page 48: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Comparison ISP and NISP

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

Prob. Dens. [-]

ISP, t = 803.0NISP, t = 803.0

• All pdf’s based on 50K samples each and evaluatedwith Kernel Density Estimation (KDE)

• No difference in PDFs of sampled PCEs betweenNISP and ISP

Debusschere – SNL UQ

Page 49: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Comparison ISP, NISP, andMC

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

Prob. Dens. [-]

ISP, t = 803.0NISP, t = 803.0MC, t = 803.0

• All pdf’s based on 50K samples each and evaluatedwith Kernel Density Estimation (KDE)

• Good agreement between intrusive, non-intrusiveprojection, and Monte Carlo sampling

Debusschere – SNL UQ

Page 50: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

ISP pros and cons

• Pros:• Elegant• One time solution of system of equations for the PC

coefficients fully characterizes uncertainty in allvariables at all times

• Tailored solvers can (potentially) take advantage ofnew hardware developments

• Cons:• Often requires re-write of the original code• Reformulated system is factor (P+1) larger than the

original system and can be challenging to solve• Challenges with increasing time-horizon for ODEs

• Many efforts in the community to automate ISP

Debusschere – SNL UQ

Page 51: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

NISP pros and cons

• Pros:• Easy to use as wrappers around existing codes• Embarassingly parallel

• Cons:• Most methods suffer from curse of dimensionality

Nq = nNd

• Many development efforts for smarter samplingapproaches and dimensionality reduction• (Adaptive) Sparse Quadrature approaches• Compressive Sensing• ...

• Sampling methods have found very wide spread usein the community

Debusschere – SNL UQ

Page 52: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Software for intrusive and non-intrusive UQ

• DAKOTA: http://dakota.sandia.gov/• Wide variety of non-intrusive methods for uncertainty

propagation, sensitivity analysis, etc.• Mature and well-supported

• UQ Toolkit (UQTk):http://www.sandia.gov/UQToolkit/

• Intrusive and non-intrusive• Geared towards algorithm development and

educational use• Sundance:http://www.math.ttu.edu/~klong/Sundance/html/

• UQ-enabled finite-element solution of PDEs• Stokhos:http://trilinos.sandia.gov/packages/stokhos/

• Package for intrusive Galerkin based UQ• ...

Debusschere – SNL UQ

Page 53: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Extra Material on Forward Propagation

• Alternative derivation of v = a + λ

• Simple ODE example• Intrusive UQ of incompressible flow• Uncertainty Quantification Toolkit (UQTk)

implementation of intrusive and non-intrusive UQ insurface reaction example (3 ODE system)

Debusschere – SNL UQ

Page 54: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Projection of linear operations: v = a + λ

• Assume v = a + λ, witha deterministic, λ =

∑Pk=0 λk Ψk , and v =

∑Pk=0 vk Ψk

• Galerkin projection

vk =〈vΨk〉⟨

Ψ2k

⟩ =〈(a + λ)Ψk〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

〈(a + λ)Ψk〉 = 〈aΨk〉+

⟨P∑

j=0

λjΨjΨk

= a 〈Ψk〉+P∑

j=0

λj 〈ΨjΨk〉

= a δ0k + λk⟨

Ψ2k

⟩• ⇒ v0 = a + λ0, vk>0 = λk

Debusschere – SNL UQ

Page 55: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Intrusive Spectral Stochastic UQ Formulation: ODEExample

• Sample ODE with parameter λ:

dudt

= λu

• Let λ be uncertain; introduce ξ ∼ N (0,1).• Express λ and u using PCEs in ξ:

λ =P∑

k=0

λk Ψk (ξ), u(t) =P∑

k=0

uk (t)Ψk (ξ)

• Substitute in ODE and apply a Galerkinprojection on Ψi(ξ),

Debusschere – SNL UQ

Page 56: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Galerkin Projection on Ψi(ξ)

ddt

(P∑

k=0

uk (t)Ψk (ξ)

)=

P∑p=0

λpΨp(ξ)

P∑q=0

uq(t)Ψq(ξ)

P∑

k=0

duk (t)dt

Ψk (ξ) =P∑

p=0

P∑q=0

λpuq(t)Ψp(ξ)Ψq(ξ)

⟨P∑

k=0

duk (t)dt

Ψk (ξ)Ψi(ξ)

⟩=

⟨P∑

p=0

P∑q=0

λpuq(t)Ψp(ξ)Ψq(ξ)Ψi(ξ)

⟩P∑

k=0

duk (t)dt

〈Ψk (ξ)Ψi(ξ)〉 =P∑

p=0

P∑q=0

λpuq(t) 〈Ψp(ξ)Ψq(ξ)Ψi(ξ)〉

dui

dt

⟨Ψ2

i

⟩=

P∑p=0

P∑q=0

λpuq 〈ΨpΨqΨi〉

Debusschere – SNL UQ

Page 57: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Resulting Spectral ODE system

• (P + 1)-dimensional ODE system

dui

dt=

P∑p=0

P∑q=0

λpuqCpqi , i = 0, . . . ,P

where Cpqi = 〈ΨpΨqΨi〉 /⟨

Ψ2i

⟩• The tensor Cpqi can be evaluated once and

stored for any given PC order and dimension• This tensor is sparse, i.e. many elements are

zero

Debusschere – SNL UQ

Page 58: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Pseudo-Spectral Construction–1

w = λu2v , u =P∑

k=0

uk Ψk , similarly for λ & v

Spectral:

wi =⟨λu2v

⟩i

=P∑

j=0

P∑k=0

P∑l=0

P∑m=0

λjukulvm 〈ΨjΨk ΨlΨm〉i , i = 0, . . . ,P

• The corresponding tensor of basis productexpectations becomes too large to pre-compute andstore

Pseudo-Spectral: Project each PC product onto a(P + 1)-polynomial before proceeding further, thus:

Debusschere – SNL UQ

Page 59: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Pseudo-Spectral Construction–2

w = uv : wi = 〈uv〉i =P∑

j=0

P∑k=0

ukvj 〈Ψk Ψj〉i , i = 0, . . . ,P

w = uw : wi = 〈uw〉i =P∑

j=0

P∑k=0

uk wj 〈Ψk Ψj〉i , i = 0, . . . ,P

w = λw : wi = 〈λw〉i =P∑

j=0

P∑k=0

λk wj 〈Ψk Ψj〉i , i = 0, . . . ,P

• Aliasing errors• Efficiency, and convenience

[Debusschere et al., SIAM J. Sci. Comp., 2004.]Debusschere – SNL UQ

Page 60: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Spectral UQ: Incompressible Flow - StochasticProjection Method

• (P + 1) Galerkin-Projected Mom./Cont. Eqns, q = 0, . . . ,P:∂vq

∂t+∇ · 〈vv〉q = −∇pq +

1Re∇ ·⟨µ[(∇v) + (∇v)T ]

⟩q

∇ · vq = 0

• Projection: for q = 0, . . . ,P :vq − vn

q

∆t= Cn

q + Dnq

∇2pq = − 1∆t∇ · vq

vn+1q − vq

∆t= −∇pq

• P + 1 decoupled Poisson Eqns for the pressure modes

[Le Maître et al., J. Comp. Phys., 2001.]Debusschere – SNL UQ

Page 61: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Laminar 2D Channel Flow with Uncertain Viscosity

• Incompressible flow• Gaussian viscosity

PDF• ν = ν0 + ν1ξ

• Streamwise velocity

• v =P∑

i=0

viΨi

• v0: mean• vi : i-th order

mode• σ2 =

P∑i=1

v2i

⟨Ψ2

i

⟩v0 v1 v2 v3 sd

v0 v1 v2 v3 σ

Debusschere – SNL UQ

Page 62: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Uncertainty Quantification Toolkit (UQTk)

• A library of C++ and Matlab functions for propagation ofuncertainty through computational models

• Mainly relies on Polynomial Chaos Expansions (PCEs) forrepresenting random variables and stochastic processes

• Target usage:• Rapid prototyping• Algorithmic research• Tutorials / Educational

• Version 2.0 about to be released under the GNU LesserGeneral Public License• C++ Tools for intrusive and non-intrusive UQ• Matlab tools for intrusive and non-intrusive UQ• Karhunen-Loève decomposition• Bayesian inference tools

• Downloadable fromhttp://www.sandia.gov/UQToolkit/

Debusschere – SNL UQ

Page 63: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

PCEs in the UQToolkit

// Initialize PC classint ord = 5; // Order of PCEint dim = 1; // Number of uncertain parametersPCSet myPCSet("ISP",ord,dim,"LU"); // Legendre-Uniform PCEs

// Initialize PC classint ord = 5; // Order of PCEint dim = 1; // Number of uncertain parametersPCSet myPCSet("NISP",ord,dim,"LU"); // Legendre-Uniform PCEs

• Currently support Wiener-Hermite,Legendre-Uniform, and Gamma-Laguerre (limited),Jacobi-Beta (development version)

• PCSet class initializes PC basis type andpre-computes information needed for working withPC expansions

Debusschere – SNL UQ

Page 64: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Operations on PCEs in the UQToolkit

// PC coefficients in double*double* a = new double[npc];double* b = new double[npc];double* c = new double[npc];

// Initializationa[0] = 2.0;a[1] = 0.1;...// Perform some arithmeticmyPCSet.Subtract(a,b,c);myPCSet.Prod(a,b,c);myPCSet.Exp(a,c);myPCSet.Log(a,c);

// PC coefficients in ArraysArray1D<double> aa(npc,0.e0);Array1D<double> ab(npc,0.e0);Array1D<double> ac(npc,0.e0);

// Initializationaa(0) = 2.0;aa(1) = 0.1;...// Perform arithmeticmyPCSet.Subtract(aa,ab,ac);myPCSet.Prod(aa,ab,ac);myPCSet.Exp(aa,ac);myPCSet.Log(aa,ac);

• PC coefficients are either stored in double* vectorsor in more advanced custom Array1D<double>classes

• Functions can take either data type as argument

Debusschere – SNL UQ

Page 65: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: UQTk implementation

// Build du/dt = a*z - c*u - 4.0*d*u*vaPCSet.Multiply(z,a,dummy1); // dummy1 = a*zaPCSet.Multiply(u,c,dummy2); // dummy2 = c*uaPCSet.SubtractInPlace(dummy1,dummy2); // dummy1 = a*z - c*uaPCSet.Prod(u,v,dummy2); // dummy2 = u*vaPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*vaPCSet.Subtract(dummy1,dummy2,dudt); // dudt = a*z - c*u - 4.0*d*u*v

• All operations are replaced with their equivalentintrusive UQ counterparts

• Results in a set of coupled ODEs for the PCcoefficients• u, v ,w , z represent vector of PC coefficients

• This set of equations is integrated to get the evolutionof the PC coefficients in time

Debusschere – SNL UQ

Page 66: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: Second equationimplementation

// Build dv/dt = 2.0*b*z*z - 4.0*d*u*vaPCSet.Prod(z,z,dummy1); // dummy1 = z*zaPCSet.Prod(dummy1,b,dummy2); // dummy2 = b*z*zaPCSet.Multiply(dummy2,2.e0,dummy1); // dummy1 = 2.0*b*z*zaPCSet.Prod(u,v,dummy2); // dummy2 = u*vaPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*vaPCSet.Subtract(dummy1,dummy2,dvdt); // dvdt = 2.0*b*z*z - 4.0*d*u*v

// Build dw/dt = e*z - f*waPCSet.Multiply(z,e,dummy1); // dummy1 = e*zaPCSet.Multiply(w,f,dummy2); // dummy2 = f*waPCSet.Subtract(dummy1,dummy2,dwdt); // dwdt = e*z - f*w

• Dummy variables used where needed to build theterms in the equations

• Data structure is currently being enhanced to providethe operation result as the function return value• Will allow more elegant inline replacement of

operators with their stochastic counterpartsDebusschere – SNL UQ

Page 67: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: NISP implementation inUQTk

Quadrature:// Get the quadrature pointsint nQdpts=myPCSet.GetNQuadPoints();double* qdpts=new double[nQdpts];myPCSet.GetQuadPoints(qdpts);...// Evaluate parameter at quad ptsfor(int i=0;i<nQdpts;i++){

bval[i]=myPCSet.EvalPC(b,&qdpts[i]);}...// Run model for all samplesfor(int i=0;i<nQdpts;i++){

u_val[i] = ...}// Spectral projectionmyPCSet.GalerkProjection(u_val,u);myPCSet.GalerkProjection(v_val,v);myPCSet.GalerkProjection(w_val,w);

Monte-Carlo Sampling:// Get the sample pointsint nSamples=1000;Array2D<double> samPts(nSamples,dim);myPCSet.DrawSampleVar(samPts);...// Evaluate parameter at sample ptsfor(int i=0;i<nSamples;i++){

... // select samPt from samPtsbval[i]=myPCSet.EvalPC(b,&samPt)

}...// Run model for all samplesfor(int i=0;i<nSamples;i++){

u_val[i] = ...}// Spectral projectionmyPCSet.GalerkProjectionMC(samPts,u_val,u);myPCSet.GalerkProjectionMC(samPts,v_val,v);myPCSet.GalerkProjectionMC(samPts,w_val,w);

Debusschere – SNL UQ

Page 68: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Outline

1 Introduction

2 Forward Propagation of Uncertainty

3 Sensitivity Analysis

4 Sparse Quadrature Approaches for High-DimensionalSystems

5 References

Debusschere – SNL UQ

Page 69: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Sensitivity Analysis

• Obtaining global sensitivity analysis from PCEs• Identify dominant sources of uncertainty• Attribution

Debusschere – SNL UQ

Page 70: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

PC postprocessing: global sensitivity information isreadily obtained from PCE

g(x1, . . . , xd ) =P∑

k=0

ck Ψk (x)

• Global sensitivity analysis ≡ Variancedecomposition• Total variance

Var [g(x)] =∑k>0

c2k ||Ψk ||2

Debusschere – SNL UQ

Page 71: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

PC postprocessing: global sensitivity information isreadily obtained from PCE

• Main effect sensitivity indices

Si =Var [E(g(x |xi)]

Var [g(x)]=

∑k∈Ii

c2k ||Ψk ||2∑

k>0 c2k ||Ψk ||2

Ii is the set of bases with only xi involved. Si is theuncertainty contribution that is due to i-th parameteronly.• Joint sensitivity indices

Sij =Var [E(g(x |xi , xj)]

Var [g(x)]−Si−Sj =

∑k∈Iij

c2k ||Ψk ||2∑

k>0 c2k ||Ψk ||2

Iij is the set of bases with only xi and xj involved. Sij

is the uncertainty contribution that is due to (i , j)parameter pair.

Debusschere – SNL UQ

Page 72: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

PC postprocessing: sampling-based approaches

g(x1, . . . , xd ) =P∑

k=0

ck Ψk (x)

• In some cases, need to resort to Monte-Carloestimation, e.g.• Piecewise-PC with irregular

subdomains• Output transformations, e.g. build PC

for log g(x), but inquire sensitivity withrespect to g(x)

• A brute-force sampling of Var [E(g(x |xi)] isextremely inefficient.

Debusschere – SNL UQ

Page 73: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

PC postprocessing: sampling-based approaches

• Tricks are available, given a single set ofsampled input [Saltelli, 2002]. E.g., use

E[g(x |xi)2] = E[g(x |xi)g(x ′|xi)] =

1N − 1

N∑r=1

g(x (r))g(x (r)),

where x is x ′ with i-th element replaced by xi .• Similar formulae available for joint sensitivity

indices.

• Con: as all Monte-Carlo algorithms, convergesslowly.• Pro: sampling is cheap.

Debusschere – SNL UQ

Page 74: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Outline

1 Introduction

2 Forward Propagation of Uncertainty

3 Sensitivity Analysis

4 Sparse Quadrature Approaches for High-DimensionalSystems

5 References

Debusschere – SNL UQ

Page 75: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Sparse Quadrature Approaches for High-DimensionalSystems

• Need for sparse quadrature• Sparse quadrature grids• Application to surface reaction example

Debusschere – SNL UQ

Page 76: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Full product quadrature is wasteful in high-dimensionalsystems

• Define the precision as the highest order of apolynomial that is integrated exactly by thequadrature rule.• Gaussian quadratures are optimal in 1d• N points achieve the highest possible

precision of 2N − 1.• In multi-d, full product quadrature is wasteful:• a 5 ppd (point per dimension) rule is of

precision P = 9, but it integrates apolynomial x9y9 exactly.

Debusschere – SNL UQ

Page 77: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Sparse quadrature drastically reduces the number offunction evaluations

Sparse, level 2, total 21

Full, ppd 7, total 49Gauss-Hermite

Sparse, level 2, total 17

Full, ppd 5, total 25Gauss-Legendre

• Sparse grids are built to achieve maximalprecision with fewest possible points

Debusschere – SNL UQ

Page 78: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Clenshaw-Curtis nested quadrature rules allow reuseof function evalutions

Clenshaw-Curtis, level 1, total 5

Debusschere – SNL UQ

Page 79: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Clenshaw-Curtis nested quadrature rules allow reuseof function evalutions

Clenshaw-Curtis, level 2, total 13

Debusschere – SNL UQ

Page 80: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Clenshaw-Curtis nested quadrature rules allow reuseof function evalutions

Clenshaw-Curtis, level 3, total 29

Debusschere – SNL UQ

Page 81: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Clenshaw-Curtis nested quadrature rules allow reuseof function evalutions

Clenshaw-Curtis, level 4, total 65

Debusschere – SNL UQ

Page 82: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Clenshaw-Curtis nested quadrature rules allow reuseof function evalutions

Clenshaw-Curtis, level 5, total 145

Debusschere – SNL UQ

Page 83: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

The number of function evaluations is drasticallyreduced compared to full quadrature

Table : The number of Clenshaw-Curtis sparse grid quadraturepoints for various levels and dimensionalities.

Level Precision N N N N(d)L p = 2L− 1 (d = 2) (d = 5) (d = 10) General1 1 1 1 1 12 3 5 11 21 1 + 2d3 5 13 61 221 1 + 2d + 2d2

4 7 29 241 1581 1 + 143 d + 2d2 + 4

3 d3

5 9 65 801 8801 1 + 203 d + 22

3 d2 + 43 d3 + 2

3 d4

6 11 145 2433 41265 · · ·7 13 321 6993 171425 · · ·8 15 705 19313 652065 · · ·9 17 1537 51713 2320385 · · ·

Debusschere – SNL UQ

Page 84: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

The number of function evaluations is drasticallyreduced compared to full quadrature

10 20 30 40 50 60 70 80 90 100

Dimensionality, d

1

10

100

1000

10000

1e+05

1e+06

Nu

mb

er o

f C

C s

par

se g

rid

po

ints

, N

p=7

p=5

p=3

Sparse grid: polynomialgrowth, O(d

p−12 )

0 20 40 60 80 100

Dimensionality, d

1

1e+20

1e+40

1e+60

1e+80

1e+100

Nu

mb

er o

f C

C f

ull

gri

d p

oin

ts,

N

p=7

p=5

p=3

Full grid: exponentialgrowth, (p + 1)d

Debusschere – SNL UQ

Page 85: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model

3 ODEs for a monomer (u), dimer (v ), and inert species(w) adsorbing onto a surface out of gas phase.

dudt

= az − cu − 4duv

dvdt

= 2bz2 − 4duv

dwdt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior forb ∈ [20.2,21.2]

[Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002]Debusschere – SNL UQ

Page 86: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Surface Reaction Model: 6d results

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5u

ss

0

2

4

6

8

10

PD

F (

uss

)a b c d e f

a

b

c

d

e

f

10−3

10−2

10−1

• Output observable: time averaged u at steady state uss• Assume all input parameters have Gaussian distributions

with σ/µ = 0.01, i.e. 1% deviation.• 6-d, level 3 Gauss-Hermite sparse quadrature point set

includes 713 distinct points (a 2-d case is plotted)• Output PDF generated from 100K samples of 3rd order PC• Variance-based sensitivity information comes for free with

the PC expansion

Debusschere – SNL UQ

Page 87: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Advantages and caveats of sparse quadratureapproaches

• Pro: number of required samples scales much moregracefully with number of dimensions than full tensorproduct quadrature rule

• Caveats:• Function to be integrated needs to be smooth• Due to negative quadrature weights, integrating a

noisy positive function can give a negative answer• For very high dimensions, even sparse quadrature is

too expensive

Debusschere – SNL UQ

Page 88: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Taking Advantage of Sparsity in the System

• For really high dimensional systems, even sparsequadrature requires too many function evaluations• For 80-dimensional climate land model, L = 4

requires ≈ 106 points• Such systems can only be tackled with dimensionality

reduction and/or adaptive order• Sensitivity analysis• High Dimensional Model Representation (HDMR)• Adaptive sparse quadrature approaches

• More generally, use only the basis terms needed torepresent the physics / information in the system /data• (Bayesian) Compressive Sensing (CS) approaches

• If information content is sparse, it can be representedat reasonable cost• If not, you need to pay the price

Debusschere – SNL UQ

Page 89: Polynomial Chaos Based Uncertainty Propagationcadmus.usc.edu/UQ-SummerSchool-2013/debusschere2.pdf · Polynomial Chaos Based Uncertainty Propagation Lecture 2: Forward Propagation:

Introduction Forward UQ Sensitivity Sparse Quadrature References

Further Reading

• N. Wiener, “Homogeneous Chaos", American Journal of Mathematics, 60:4, pp. 897-936, 1938.• M. Rosenblatt, “Remarks on a Multivariate Transformation", Ann. Math. Statist., 23:3, pp. 470-472, 1952.• R. Ghanem and P. Spanos, “Stochastic Finite Elements: a Spectral Approach", Springer, 1991.• O. Le Maître and O. Knio, “Spectral Methods for Uncertainty Quantification with Applications to

Computational Fluid Dynamics", Springer, 2010.• D. Xiu, “Numerical Methods for Stochastic Computations: A Spectral Method Approach", Princeton U.

Press, 2010.• O.G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann, “On the convergence of generalized polynomial

chaos expansions,” ESAIM: M2AN, 46:2, pp. 317-339, 2011.• J. Li and Y. Marzouk, “Multivariate semi-parametric density estimation using polynomial chaos expansions,”

in preparation, 2013.• D. Xiu and G.E. Karniadakis, “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations",

SIAM J. Sci. Comput., 24:2, 2002.• Le Maître, Ghanem, Knio, and Najm, J. Comp. Phys., 197:28-57 (2004)• Le Maître, Najm, Ghanem, and Knio, J. Comp. Phys., 197:502-531 (2004)• B. Debusschere, H. Najm, P. Pébay, O. Knio, R. Ghanem and O. Le Maître, “Numerical Challenges in the

Use of Polynomial Chaos Representations for Stochastic Processes", SIAM J. Sci. Comp., 26:2, 2004.• S. Ji, Y. Xue and L. Carin, “Bayesian Compressive Sensing", IEEE Trans. Signal Proc., 56:6, 2008.• A. Saltelli and S. Tarantola and F. Campolongo and M. Ratto, “Sensitivity Analysis in Practice: A Guide to

Assessing Scientific Models”. John Wiley & Sons, 2004.• K. Sargsyan, B. Debusschere, H. Najm and O. Le Maître, “Spectral representation and reduced order

modeling of the dynamics of stochastic reaction networks via adaptive data partitioning". SIAM J. Sci.Comp., 31:6, 2010.

• K. Sargsyan, B. Debusschere, H. Najm and Y. Marzouk, “Bayesian inference of spectral expansions forpredictability assessment in stochastic reaction networks," J. Comp. Theor. Nanosc., 6:10, 2009.

• D.S. Sivia, “Data Analysis: A Bayesian Tutorial,” Oxford Science, 1996.

Debusschere – SNL UQ