PlantingScience Power of Sunlight Toolkit

31
PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 1 of 31 Last Updated 7/2013 BACKGROUND: The PlantingScience Power of Sunlight Toolkit provides background, materials lists, detailed procedures, and safety considerations for additional experimental methods related to photosynthesis and respiration. These tools can provide students the opportunity to ask a wider range of research questions during the open inquiry phase of The Power of Sunlight than would be possible using only the leaf disk floatation method. Alternatively, teachers may select one or more of these methods as classroom demonstrations of photosynthesis and/or respiration in action. CONTENTS: Page Preparation of Citrate-Phosphate Buffer for Maintaining pH ...................................................................... 2 Monitoring pH to Assess Photosynthesis & Respiration of Aquatic Plants .................................................. 4 Measuring Cellular Respiration Using a Respirometer ................................................................................. 7 Measuring Photosynthesis & Respiration Using a Computer-Based Probe ............................................... 11 Visualizing & Counting Stomata Using the Leaf Impression Method ......................................................... 13 Visualizing Plant Cells & Chloroplasts Using a Microscope......................................................................... 15 Identifying Starch in Plant Leaves Using an Iodine Staining Method ......................................................... 17 Identifying Chlorophyll & Other Plant Pigments ........................................................................................ 19 Quantifying Fresh & Dry Mass of Plants ..................................................................................................... 22 . PlantingScience Power of Sunlight Toolkit

Transcript of PlantingScience Power of Sunlight Toolkit

Page 1: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 1 of 31 Last Updated 7/2013

BACKGROUND:

ThePlantingSciencePowerofSunlightToolkitprovidesbackground,materialslists,detailedprocedures,andsafetyconsiderationsforadditionalexperimentalmethodsrelatedtophotosynthesis

andrespiration.ThesetoolscanprovidestudentstheopportunitytoaskawiderrangeofresearchquestionsduringtheopeninquiryphaseofThePowerofSunlightthanwouldbepossibleusingonlythe

leafdiskfloatationmethod.Alternatively,teachersmayselectoneormoreofthesemethodsasclassroomdemonstrationsofphotosynthesisand/orrespirationinaction.

CONTENTS:

PagePreparationofCitrate-PhosphateBufferforMaintainingpH ......................................................................2MonitoringpHtoAssessPhotosynthesis&RespirationofAquaticPlants ..................................................4

MeasuringCellularRespirationUsingaRespirometer .................................................................................7MeasuringPhotosynthesis&RespirationUsingaComputer-BasedProbe ...............................................11Visualizing&CountingStomataUsingtheLeafImpressionMethod .........................................................13

VisualizingPlantCells&ChloroplastsUsingaMicroscope.........................................................................15IdentifyingStarchinPlantLeavesUsinganIodineStainingMethod .........................................................17

IdentifyingChlorophyll&OtherPlantPigments ........................................................................................19QuantifyingFresh&DryMassofPlants .....................................................................................................22

.

PlantingScience

PowerofSunlightToolkit

Page 2: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 2 of 31 Last Updated 7/2013

PREPARATIONOFCITRATE-PHOSPHATEBUFFERFORMAINTAININGPH

Purpose:Theadditionofincreasingamountsofsodiumbicarbonatetowatertendstoincreasetheacidityofthesolution,loweringitspH.MostcellsthrivebestinthepHrangeof6to8;therefore,leafdisksinfiltratedwithhigh-concentrationsodiumbicarbonatesolutionsmayhavealtered

levelsofphotosynthesisandcellularrespiration.

AbufferresistspHchangeandthushelpsasolutionmaintainthesamepHunderawiderangeofconditions.Awiderangeofpossiblebuffersareavailable,butmanycommonbuffershaveproblemsinthepH6to8range.TohelpmaintainpHinleafdiskfloatationexperiments,wesuggesttheuseofaphosphate-citratebuffer,asdescribedhere.

TechnicalComplexity:Simple.

TimeRequired:20minutesforfullprocedure;5min.topreparebufferfromstocksolutions.

Materials:Perclass: Perteam:Citricacid(anhydrous) 100mLstockbottle

Disodiumphosphate 100mLgraduatedcylinderWater WaterBalance,accuratetoatleast0.1g,Weighingpaper

ScoopulaTwo1000mLgraduatedcylindersTwo1000mLstockbottleswithcapsorstoppers

Procedure:1. (Oneperclass)PrepareStockSolutionA:

a. Wearsafetygogglesandlabglovesincaseofsplashesandtoavoidskinandeyeirritation.b. Weighout19.2gofanhydrouscitricacidontoweighingpaperonabalance,usinga

scoopula.c. Transferthecrystalstoa1000mLstockbottle.d. Fillthestockbottletwo-thirdsofthewayfullwithwater.

e. Stirorcap/stopperthebottleandgentlyshaketodissolvethecitricacid.f. Whenthesolidiscompletelydissolved,pourthesolutionintoa1000mLgraduatedcylinder

andaddwatertoreach1000mL.g. Returnthefullliterofsolutiontothestockbottle.h. Labelthebottleas0.1Mcitricacid.

Page 3: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 3 of 31 Last Updated 7/2013

2. (Oneperclass)PrepareStockSolutionB:a. Wearsafetygogglesandlabglovesincaseofsplashesandtoavoidskinandeyeirritation.

b. Usescoopulatoweighout28.4gofdisodiumphosphateontoweighingpaperonabalance.c. Transferthecrystalstoa1000mLstockbottle.d. Fillthestockbottletwo-thirdsofthewayfullwithwater.

e. Stirorcap/stopperthebottleandshaketodissolvethedisodiumphosphate.f. Whenthesolidiscompletelydissolved,pourthesolutionintoa1000mLgraduatedcylinder

andaddwatertoreach1000mL.

g. Returnthefullliterofsolutiontothestockbottle.h. Labelthebottleas0.2Mdisodiumphosphate.

3. (Eachteam)Preparecitrate-phosphatebuffer:

a. Wearsafetygogglesincaseofsplashes.b. SelectthedesiredpHforthefinalsolutiontobeusedforleafdiskinfiltration(seeTable).c. MeasurethecorrespondingamountofStockSolutionA(0.1Mcitricacid)intoa100mL

graduatedcylinderandtransfertoa100mLstockbottle.d. MeasurethecorrespondingamountofStockSolutionB(0.2Mdisodiumphosphate)into

thesame100mLgraduatedcylinderandtransfertothesamestockbottle.e. Labelthebottleascitrate-phosphatebuffer,makingsuretoincludethedesiredpH.f. Sodiumbicarbonatecanbedirectlydissolvedintothisbufferforuseinleafdiskinfiltration

andfloatation.

Amountof0.1Mcitricacid(SolutionA)and0.2Mdisodiumphosphate(SolutionB)toachievethedesiredbufferpH:

mLofSolutionA mLofSolutionB DesiredpH

46.4 53.6 5.2

44.2 55.8 5.4

42.0 58.0 5.6

39.5 60.5 5.8

36.8 63.2 6.0

33.9 66.1 6.2

30.7 69.3 6.4

27.2 72.8 6.6

22.7 77.3 6.8

17.6 82.4 7.0

13.0 87.0 7.2

9.1 90.9 7.4

6.3 93.7 7.6

4.2 95.8 7.8

2.7 97.3 8.0

Page 4: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 4 of 31 Last Updated 7/2013

MONITORINGPHTOASSESSPHOTOSYNTHESIS&RESPIRATIONOFAQUATICPLANTS

Purpose:UsepHasanindirectmeasureoftheamountofcarbondioxideinanaquaticsystemcontainingalgaeoratleastoneaquaticplant.

HowtheMethodWorks:Carbondioxide(CO2)isoneoftheproductsofcellularrespirationandacriticalreactantin

photosynthesis.ThesimplestwaytomeasureCO2changesinanaqueoussolutionistomeasurepHchange.Carbondioxidedissolvesinwatertoformcarbonicacid:CO2+H2O!H2CO3.Therefore,asCO2isreleasedbyaquaticorganismsduringrespiration,itformsaweakacidinthesurroundingwater,loweringthepH.AsCO2isconsumedbyaquaticplantsduringphotosynthesis,thepHwilltendtoincrease.Similartotheleafdiskinfiltrationmethod,thedissolvedcarbondioxideinanaquaticplant’senvironmentcanbesupplementedbyaddingsodiumbicarbonate.

Technically,pHisthenegativelogarithmofasolution’shydrogenionconcentration.Freehydrogenionsareacidic,sothepHscaleisusedtoindicatehowacidicasolutionis,withalowernumberindicatingamorestronglyacidicsolution.Eveninpurewater(H2O),afewmoleculesarealwaysdissociatedintohydrogenions(H+)andhydroxideions(OH-)–aboutoneintenmillion(1/10,000,000)moleculesinaliterofpurewater.Inotherwords,thereare10-7hydrogenionsperwatermolecule.ThepHofpurewateristherefore–log(10-7)=7.ThisisconsideredneutralpH,becauseeachacidicH+isaccompaniedbyonebasicOH-inpurewater.EveryunitchangeinpH,e.g.,frompH7topH8orfrompH6topH5,indicatesaten-foldchangeinacidity.Ifmoreacidisaddedtothewatersothatoneineverythousandmoleculesisahydrogenion,theconcentrationis10-3andthepHis–log(10-3)=3.Thisconcentrationhas10,000timesmorehydrogenionsthaninpurewater,sothesolutionis104timesmoreacidicanditspHis4unitslower.

TechnicalComplexity:Simple.

TimeRequired:5minutesperreading.

Materials:Inawater-filledvessel,algaeoraquaticplantsuchasElodea(Optional)OneortwosmallercontainersforeachtreatmentOneofthefollowingsets,dependingonthemethodyoupreferorthematerialsavailable:

Page 5: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 5 of 31 Last Updated 7/2013

METHODA METHODB METHODCpHindicatorpaper pHmeter PhenolRedorBromphenolBluedyepowder

Color/pHkeychart pHbufferstock ScoopulaorspoonScissors Smallcup Long-termstoragecontainer

Squirtbottleofdistilledwater Water Graduatedcylinder Electronicbalance

GeneralInstructions:• Ifthecontainerfortheaquaticplantisverylarge,pHwilltakealongtimetochange.Youcan

transfertheplantorapartofittoacontainerwithlessthan50mLofwatertomonitormore

rapidchangesinpH.• AlgalculturesarebettersuitedtoMethodAorMethodBthantoMethodC,becausetheirgreen

colorwillalterhowtheliquidappears.

• Youmaywishtoremoveaquaticplantsfromtheircontainers,blottheexcesswater,anduseanelectronicbalancetofindtheirmassforexperiments.

o Largerplantswillcarryoutmorephotosynthesisandrespiration,sotreatmentsare

moreequivalentiftheycontainthesameamountsofplantmass.o Foralgalcultures,stirringwellandusingthesamevolumeofculturewillprovide

equivalenttreatments.

• Forexperiments,repeatthepHmeasurementatregularintervals,e.g.,every5min,underthetestconditions.

• Youmayconcludetheexperimentafterapredeterminedtimeperiod(e.g.,30min,recording

thefinalpH)orafterapredeterminedamountofpHchangeoccurs(e.g.,0.5units,recordingthefinaltime).

o MethodCisbestsuitedtorecordingthefinaltime,sinceitcanbedifficulttoassesssubtlechangesincolorofthesolutionandyoumightnothaveacolorkeyforintermediatecolors.

MethodA:MeasuringpHUsingIndicatorPaperThisisthesimplestwaytomeasurepH.IndicatorpaperissimplypaperimpregnatedwithapHindicatordye.ThedyechangescolordependingonthepHofthesolution.

1. Tearoffabouta2cmstripofindicatorpaper(ifinrollform)orpullapiecefromitscontainer(if

instripform).2. Dipthetipofthepaperintothewatercontainingtheaquaticplant.3. Comparethecolorofthewetpapertothecolor/pHkeychart,usuallyfoundontheindicator

papercontainer.ThebestmatchindicatestheapproximatepH.4. Useanewstripofindicatorpaperforeachmeasurement.

MethodB:MeasuringpHUsingapHMeterThisisthemostaccuratewaytomeasurepH.ThepHmeterhasanelectrodewhichmustalwaysbe

keptmoist.Whenitisnotinuse,keeptheelectrodecoveredorimmersedinabuffersolution.

Page 6: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 6 of 31 Last Updated 7/2013

1. TurnonthepHmeterandallowitwarmupforatleastfiveminutes.Keepthecontrolknobinstandbyposition.

2. Ifthereisone,adjustthetemperatureknobtomatchthesolutiontemperatureafterwarm-upiscomplete.

3. StandardizethemeteragainstabufferofknownpHclosetotherangeyouthinkyouwillneed.

a. Ifyou'reunsureoftherange,useapH7buffer.b. Pourasmallamountofbufferintoavesseljustlargeenoughtoholdtheelectrode.c. Inserttheelectrodeintothebuffer.

d. Allowthemetertoreachasteadyreading.e. IfitdoesnotreadthesameasthepHofthebufferyouused,adjustthemetertosetit

totheproperpH.Ifneeded,followthemanufacturer’sinstructionstodothis.4. Makeareadingonyourunknownsolution.

a. Taketheelectrodeoutofthebufferandrinsethetipoftheelectrodewithdistilled

water.Youcanusethebuffercontainertocollecttherinsewater.b. Holdthetipoftheelectrodeagainsttheoutsideofthecontainertoallowanylarge

dropsofwatertoflowofftheelectrode.

c. Inserttheelectrodeintotheunknownsolutionandmakeyourreading.d. Whenyoutaketheelectrodeoutofthesolution,rinseitagainwithdistilledwater

beforerecoveringthetiporplacingtheelectrodebackintothestandingbuffer.

MethodC:MeasuringpHUsinganIndicatorDyeIndicatordyesarepowdersthatchangecolorbasedonpHandcanbedissolvedinwatertomakea

concentratedsolution.BysomeofthedyesolutiontoaliquidofunknownpH,thecolorcanbemonitored.PhenolRediscoloredredinsolutionsofpH>8.4.AsthepHdecreasesandthesolutionbecomesmoreacidic,thecolorlightenstoorangeand,whenpH<6.8,toyellow.BromphenolBlueshifts

fromblueatpH>7.6toyellowatpH<6.0.1. Wearalabcoatandgloves.Indicatordyescanstainyourhandsandclothing.2. ScoopaspoonfuloftheindicatordyePhenolRed(orBromphenolBlue)toacontaineroftap

wateruntilthewaterisdistinctlyred(orblue).AstocksolutionofPhenolRedcanbestoredinadarkcabinetforseveralyearsandusedslowlyovertime,socheckwithyourteachertofindout

astockisalreadyavailable!3. Measureanequalamountoftheindicatorsolutionintotwosmallercontainerspertreatment.

a. Dilutethesolutionineachcontainerusingequalamountsofwater,startingbyadding

thesameamountofwaterastheamountofindicatorsolutioninthecontainer.b. Ifyoucanseethroughtotheothersideofthecontainer,youhavedilutedthesolution

enoughtoproceed.Otherwise,addmorewaterinequalamountstoallcontainers.

4. Blowbubblesintohalfofthecontainersthroughastraw.TheexhaledairwillcontainexcessCO2andthesolutionwillbegintoturnorange(orgreen),thenyellow.

5. Foreachtreatment,placeidenticalpiecesofaquaticplanttissueintoeachred(orblue)and

yellowcoloredpairofcontainers.Labelthecontainerssoyouknowwhichpairsgotogether.6. Observeandrecordthecolorofeachpairofsolutionsovertime.

Page 7: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 7 of 31 Last Updated 7/2013

a. Itmaybehelpfultodevelopa“colorscale”beforebeginningtheexperiment.b. Removingasmallvolumeofliquidfromeachcontainerandlookingatthemtogether

againstawhitebackgroundcanhelpensureunbiasedcolorjudgmentoverall.Returnthesolutiontothesamecontainerafterwards.

c. Qualitatively,iftheyellowsolutionchangescolortored(orblue),CO2isbeing

consumedmorequicklythanitisproduced.Ifthered(orblue)solutionchangestoyellow,CO2isbeingproducedmorequicklythanitisconsumed.

d. Theamountoftimerequiredforthecolortoshiftprovidesaquantitativemeasureof

howquicklythepHchangesoverasetnumberofunits.Therefore,itindirectlymeasuresphotosyntheticorrespirationrate.

Page 8: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 8 of 31 Last Updated 7/2013

MEASURINGCELLULARRESPIRATIONUSINGARESPIROMETER

Purpose:Quantifyhowmuchcellularrespirationisoccurringinmosttypesofplanttissueandsmallseedlings.Themaintypeofmaterialbeingconsumed–carbohydrates,fattyacids,orproteins

andaminoacids–canalsobedetermined.

HowtheMethodWorks:Thismethodusesaninstrumentcalledarespirometer.Therespirometerisassembledtocreateaclosedsystem,sothatoncetheexperimenthasbegun,nothinggoesinorout–notevenair.Aplantsampleorsmallseedlingisplacedintoachamber.Astheplantsamplerespiresinsidetheclosedsystem,it

usesoxygen(O2)andreleasescarbondioxide(CO2).Toquantifyrespiration,thesetwogasesmustbeconsideredseparately.CO2canberemovedfromthegasmixtureinthechamberbyachemicalreactionbetweenitandsodiumorpotassiumhydroxide.Thereactionproduceswaterandasolid,K2CO3orNa2CO3,sothatnofreeCO2gasispresent.TheO2usedforrespirationcanthenbedirectlymeasuredbythedecreasinggasvolumeintherespirometer.Carryingoutthesameexperimentinanotherrespirometerwithoutaddingsodiumorpotassiumhydroxide,allowstheamountofCO2producedtobequantified.Athirdtubewithoutanytissueactsasacontrolforanychangesintemperatureandairpressure.

Thechemicalequationforrespirationassumesthattheorganicmoleculebeingbrokendowniscarbohydrate.Ifthisisso,thevolumeofCO2producedwillbeequaltothevolumeofO2consumed.TheratioofCO2producedtoO2consumediscalledtheRespiratoryQuotient(RQ).Ifonlycarbohydrateisbeingbrokendown,thevalueofRQ=1.However,thisneednotbethecase.Whenfattyacidsarebrokendownaloneorwithcarbohydrates,thevalueofRQislessthan1.Metabolizingproteinsorotherorganicacids,aloneorwithcarbohydrates,resultsinanRQgreaterthan1.

TechnicalComplexity:Medium,duetothecomplexityofsettingupthechambersforanexperiment.

TimeRequired:Allowatleast30minforbuildingtherespirometersandatleast45minfortheexperimentitself.

Materials:Toassembleonerespirometer: • Hotgluegun,withgluestick

Page 9: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 9 of 31 Last Updated 7/2013

• 1mLdisposabletuberculinsyringe• 40µLplasticcapillarytube

• Absorbentandnon-absorbentcotton• Clean,thinpipetteortoothpick

• Manometerscaleorlinedpieceofcardstock

• Tape• Dranoor15%potassiumhydroxidesolution

• Water(optional)

Tocarryouttherespirometryexperiment:

• 1-2respirometerspertreatment,plusacontrol

• Waterbathsettoroomtemperature(20oC)• Celsiusthermometer• Plantmaterial

• Smallbeadsorbakedseeds• 3-4washersperrespirometer• Manometerfluid,orsoapywaterwithred

foodcoloring• Eyedropperorpipette

Part1.PrepareMaterialsforMakingRespirometersandtoCarryOuttheExperiment(s).

• Allowtimetogrowyourplantmaterialorsubjectplants/seedstotheenvironmentalconditionsyouaretesting.

o Forexample,ifyouplantomeasureseedrespiration,youwillwanttosoaktheseedsfor

24hoursjustbeforetheexperiment.• Makearrangementswithyourteachertohavematerialsthatyouneedonhand.

o Respirometerscanbemadeandusedforexperimentsduring

separateclassperiods.Gatherthematerialsaccordingly.• Setupadatatable.

o Youwillberecordingtemperatureandrespirometerreading

at2-5mintimepointsforeachrespirometer.o Afteryourexperimentisdoneorbetweendatareadings,you

willalsobecalculatingthechangeinfluidlevelbetween

timepoints.

Part2.MakeRespirometerChambers.1. Pluginthehotgluegun.Makesureagluestickisinthebarrel.

2. Selectasyringe,makingsuretheplungerisallthewayintothebarrel.3. Fromthenarrowendofthesyringewheretheneedleusuallygoes,gentlyinsertacapillarytube

untilittouchestheplungertipandcan’tgoanyfurther.

4. Sealthejointbetweenthecapillaryandthesyringetip:a. Holdthesyringesothatthecapillarytubeispointingupwards.b. Putadroportwoofhotglueatthejointbetweenthecapillaryandoutersyringetipso

thatitsealsallthewayaround.c. Continuetoholdthesyringeinanuprightpositionuntilthegluecoolsandhardens,

about1-2minutes.

5. Checktoensurethegluehasn’tcloggedthecapillary.a. Pullbackontheplungertoseeifaircanpassthroughfreely.

Page 10: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 10 of 31 Last Updated 7/2013

b. Ifitisplugged,youwillnotbeabletopulltheplungerback.Youcanunplugitbycarefullypeelingofftheglue.Startfromstep4toresealthejoint.

6. Makeasmanyrespirometerchambersasyourexperimentrequires,plusoneasacontrol.Ifyouplantomeasurebothoxygenconsumedandcarbondioxideproduced,twoseparaterespirometerswillbeneededforeachtreatment.

7. Ifneeded,youmaystopandstoretherespirometerchambershere,finishingthemduringanotherclassperiod.

Part3.PrepareYourRespirometersforanExperiment.1. Carefullyinsertasmall,absorbentcottonplugintothesyringeendoftherespirometer.

a. Useaclean,thininstrument,suchasapipette,topackthecottontothe0mlor0ccmark.

b. Takecarenottodislodgethecapillarytubeduringthisstep.2. Tapeamanometerscaleontoeachcapillarytubeusingcleartape.

a. Double-sticktapeisbest,butfoldedsingle-sidedtapealsoworks.

b. Placethetapesothatyouareabletoreadthescalebylookingthroughthecapillarytube.

c. Makesurethebottomofthescaleisalignedwiththesamepointonallrespirometers.

3. Ifneeded,youmaystophereandstoretherespirometersuntilanotherclassperiod.Ifyoucontinue,youwillneedtocompletetheexperimentduringthesameclassperiodsothattheliquidaddeddoesnotdryout.

4. Putonyoursafetygogglesandlabgloves,becauseyouwillbeworkingwitheitheradilutesolutionofpotassiumorsodiumhydroxide(Drano).Botharecaustic.

5. Foreachrespirometerthatwillbeusedtomeasureonlyoxygenconsumption,putasmalldropofpotassiumhydroxide(KOH)orsodiumhydroxide(NaOH)ontothecotton.

a. Avoidgettinganyonthewallsofthesyringeabovethecotton.

b. IfyouwillusesomerespirometerstocalculateCO2production,marktherespirometerstoindicatetheirtype.DonotaddKOHorNaOHtotheCO2respirometers!

6. Addasmallplugofnon-absorbentcottonabovetheKOH/NaOH-treatedplug(oruntreated

plug,forrespirometersthatwillbeusedtocalculateCO2production).a. Pushtheplugdownwithaclean,thininstrument,asyoudidwiththeabsorbentcotton.b. ThisnewplugwillnotabsorbtheKOH/NaOH,whichwill

protectyourspecimenfromtouchingthecausticsubstance.7. Keepyourgogglesandgloveson.Pointthetipofanoxygen

respirometerintoasinkorcontainer.Gently,butfirmly,pushthe

plungerintothesyringetosqueezeouttheexcessKOH/NaOH.a. Youmaywishtorinsejustthecapillarytubebydrawingin

waterormanometerfluid,thenexpellingitagain.

8. Removetheplungerandrepeatwiththerestoftheoxygenrespirometers.

Page 11: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 11 of 31 Last Updated 7/2013

Step3.Runtheexperiment.1. Checkthetemperatureofyourwaterbathtoseethatit’satroomtemperature,about20°C.

a. Ifit’snot,adjustthetemperaturewithwarmorcoldtapwater,makingsurethatthebathiswell-mixedwhenyoumeasurethetemperature.

b. Leavethethermometerinthewaterbath.

2. Put0.5mlgerminatingseedsorotherplantmaterialintotherespirometerbarrel(syringe).Pushintheplungertothe1mlmark.Thiscreatesasealedrespirometerchamberwitha1mlvolume.Becarefulnottodamagetheplanttissues.

3. Repeatwithallrespirometersexceptthecontrol.a. Forthecontrol,useeitherglassbeadsorseedsthathavebeenbakedinsteadofliving

plantmaterial.

b. Foreachoxygen-only/oxygenandcarbondioxiderespirometerpair,trytouseassimilaramassofplanttissueineachaspossible.

4. Drop3-4washersaroundeachrespirometertoactasweightsinthewaterbath.

5. Putyourrespirometersintothewaterbathwiththecapillariespointingupward.a. Keepthecapillariesabovewaterlevel,opentotheair.

b. Makesurethesyringebarrelsarecompletelysubmerged.6. Checkthewaterbathtemperatureagain.7. Usingadroppingpipet,putadropofredmanometerfluidtothetipofeachcapillary.Thedrop

shouldgetsuckedintothecapillary,ifeverythingisworking.Themanometerfluidwillformasealonthechambertocreateaclosedsystem.

a. Youmayhavetousetheplungertopulltheredmanometerfluidintothecapillary,

especiallyforthecontrol.Pullthefluidabouthalfwaydownthecapillary.8. Usingathinpermanentmarker,makeamarkoneachcapillarytubewherethebottomofthe

redmanometerfluidispositioned.Thisisyourzero-timeorstartingdatapoint.Recordthe

temperatureinyourdatatable.

9. Atregularintervals(every2or5minutesshouldwork),markthebottomofthepositionofthemanometerfluid.

a. Recordthetimeandtemperaturewhenyoumakethemarks.b. Ifthemeniscusismovingoffthescale,quicklyrepositionitbygentlypushingordrawing

onthesyringeplungertomovethedropintheappropriatedirection.Besuretonote

thedrop’spositionbothbeforeandafterreadjusting,sothatyoucanlatercalculatetheamountofadjustmentmade.

10. Continuetakingdatauntileitherthemanometerfluidhasreachedthesyringetipor25minutes

haspassed.

Step4.Recordthemanometerreadingsandcalculatethechangesingasvolume.1. Removetherespirometersfromthewaterbath.2. Inyourdatatable,recordthemanometerreadingsforeachmark.Dothisforeachmanometer.

Page 12: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 12 of 31 Last Updated 7/2013

3. Calculatehowmuchthegasvolumechangedduringeachtimeinterval.a. Ifthecontrolrespirometershowedanychange,adjustthevolumechangeforallofthe

otherrespirometersbythatamount.b. Intheoxygenrespirometers,thevolumeshouldhavedecreased.Markthevolume

changeasnegative.

c. Intherespirometersthatdidnotremovecarbondioxidegas,thegasvolumemayhaveincreasedordecreased.Markthevolumeaspositiveornegative,accordingly.

d. Tocalculatetheamountofcarbondioxidegasconsumedinsuchsamples,subtractthe

amountofoxygenproducedintheoxygen-onlyrespirometerfromtheamountofchangeobservedinthecorrespondingoxygen-carbondioxiderespirometer.

e. Graphtheresultingdataaschangeingasvolume(y-axis)overtime(x-axis).

Step5.(Optional)CalculateRespiratoryQuotient(RQ).1. Theamountofvolumechangeintheoxygenrespirometersdescribestheamountofoxygen

produced.

2. Theamountofvolumechangeinaoxygen-carbondioxiderespirometerminustheamountofvolumechangeinitscorrespondingoxygen-onlyrespirometerdescribestheamountofcarbondioxideconsumed.

3. RQmaybecalculatedforeachpairas:RQ=volumeofCO2produced/volumeofO2consumed.4. DeterminethetypeofmaterialbeingconsumedinrespirationbasedonRQ:

a. Iftherewasnonetchangeinthecarbondioxide/oxygentube,itmusthaveproduced

exactlyasmuchCO2asitusedO2,andyouknowthisamountfromtheKOHtube:RQ=1.

b. Ifthecarbondioxide/oxygentubeshowedadecreaseinvolume,theamountofCO2producedwaslessthanO2consumed.TheamountofO2consumedwasequaltowhatyoumeasuredinyourKOHtube,butenoughCO2wasproducedtomovethedrop

partwaybacktowardsitsoriginalposition:RQ<1.c. Ifthecarbondioxide/oxygentubeshowedanincreaseinvolume,theCO2producedis

equaltotheO2consumedintheKOHtubeplusanadditionalamounttogetittothe

finalposition:RQ>1.

Page 13: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 13 of 31 Last Updated 7/2013

MEASURINGPHOTOSYNTHESIS&RESPIRATIONUSINGACOMPUTER-BASEDPROBE

Purpose:Quantifyhowmuchphotosynthesisandrespirationisoccurringinanytypeoftissue,stem,orwholeplant.Thismethodcanoftenbeusedinfieldstudies,ifdesired.

HowtheMethodWorks:ThemethodusesacarbondioxidesensortomeasureCO2levelsinaclosedsystem.Aplantorplanttissuesareplacedintoasealedchamber.Thesensoris

placedintothecontainerthroughaholeinastopperorisbuiltintothechamberitself,thensendsdatatoacomputerasitmonitorsthelevelsofCO2overtime.Thecontainercanbecoveredtocreatedarknessorsubjectedtovariedlightintensities.

TechnicalComplexity:Medium.

TimeRequired:About15-20minutespertreatment.

Materials:• Plantsorplantpartsgrownunderexperimentalconditions,orfoundindifferentfieldconditions• Carbondioxidesensor,functionaloveratleasttherange0–5,000ppm

o Ideally,resolutionandaccuracyshouldbeassmallaspossibleo OnepossibleexampleistheVernierCO2gassensor(CO2-BTA)

• Cabletoconnectsensortocomputerorinterface,ifnotbuiltintothesensor

• Computerorotherappropriateinterface,suchasahandhelddatalogger• Datacollectionsoftware

• Clear,sealablechamber,ifnotbuiltaspartofthesensor• (Optional)Aluminumfoil,darkcloth,orothermeansofcreatingadarkenvironment• (Forlab-basedstudies)Lightsourcethatcanbemovedorwithadjustableintensity

GeneralInstructions:SettingUptheSensorforDataCollectionSensorpartsandset-upoftendependonthemanufacturer.Therefore,onlygeneralguidelinescanbeprovidedhere:

1. Readandcarefullyfollowthemanufacturer’sinstructionsonappropriateset-upanduseof

theCO2sensor.2. Makesuretheappropriatesoftwareisavailableonthecomputerordataloggersothatdata

canbesaved.

Page 14: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 14 of 31 Last Updated 7/2013

" Alternatively,ifusinganinstrumentthatgivesdatareadingsbutcannotsavethem,setupadatatabletorecordthisinformationinyourlabnotebookatregulartime

points.3. Linkthesensortothecomputerordataloggerwithanappropriatedatacable.4. Turnonthecomputer,sensor,andsoftwareintheorderrecommendedbythe

manufacturer.5. Letthesensorwarmupforthelengthoftimethemanufacturersuggests.6. Ifnecessary,calibratetheinstrumentaccordingtothemanufacturer’sinstructionsbefore

collectingdata.

MethodA:SamplingPlantsorPlantPartsintheLab1. Afterthesensorhaswarmedup,recordtheCO2concentrationintheemptychamberasa

baseline.

2. Selectaplantorplantparttotest,andplaceitinthechamber.3. CloseofforsealthechambersothatthesensorisabletomonitorCO2inside.

" Themanufacturer’sinstructionsmayexplainhowtouseabuilt-inchamber.

4. Placethechambernearalightsourceassimilaraspossibletothegrowthconditionsfortheplant.

5. RecordCO2concentrationdata,eitherusingsoftwareorbyhand." Thesensormayneedtimetoadjust,butitwillnotsettleonasinglevalueifthe

plantmaterialsbeingsampledarealive.

" Checkthemanufacturer’sinstructionstodeterminehowlongtowaitbeforetakingadatapoint,ifyouarecollectingdatabyhand.

" Aftersubtractingthebaseline,thesereadingswillgivethenetCO2consumptionor

productionovertime.6. Coverthechamberwithfoil,cloth,orothermaterialsothatitisentirelydarkened.7. RecordCO2concentrationdataasinstep5.

" Aftersubtractingthebaseline,thesereadingswillgivetheCO2productionduetorespirationovertime.

8. TheCO2consumptionduetophotosynthesiscanbedeterminedbysubtractingthe

respiratoryCO2productionfromthenetCO2consumption/production.Thisvalueshouldbenegative.

9. (Optional)YoumaywishtotestthenetCO2consumptionorproductionatseverallightintensitiestounderstandwhetherthenetCO2consumption/productionchangesbasedonthisvariable.

10. Testtheotherplantsamplesusingthesameprocedure.

MethodB:SamplingPlantsintheFieldForfieldstudies,ahandhelddataloggerorlaptopwillbetheeasiesttouse.

1. Setupandtesttheequipmentinthelabtobesureitworksbeforegoingintothefield.

Page 15: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 15 of 31 Last Updated 7/2013

2. Bringthesensor,datainterface,chamber,andmeanstodarkenthechambertothefieldwithyou.

3. SetuptheequipmentasdescribedintheGeneralInstructions.4. Afterthesensorhaswarmedup,recordtheCO2concentrationintheemptychamberasa

baseline.

5. Selectaplantorplantparttotest,andplaceitinthechamber." Certainchambersmaynotneedtheplantpartremovedtotestit.Ifpossible,leave

theplantintact.

6. CloseoffthechambersothatthesensorisabletomonitorCO2inside." Themanufacturer’sinstructionsmayexplainhowtouseanybuilt-inchamber.

7. Placethechambersothattheplantorplantpartreceivesasclosetoitsnaturallightingaspossible.Besuretostandsothatyoudonotcastanyshadowsoverthechamber!

8. RecordCO2concentrationdata,eitherusingsoftwareorbyhand.

" Thesensormayneedtimetoadjust,butitwillnotsettleonasinglevalueiftheplantmaterialinthechamberisalive.

" Checkthemanufacturer’sinstructionstodeterminehowlongtowaitbeforetaking

adatapoint,ifyouarecollectingdatabyhand." ThesereadingswillgivethenetCO2consumptionorproductionovertime,after

subtractingthebaseline.

9. Coverthechamberwithfoil,cloth,orothermaterialsothatitisentirelydarkened.10. RecordCO2concentrationdataagain,asinstep8.

" ThesereadingswillgivetheCO2productionduetorespirationovertime,relativeto

thebaseline.11. TheCO2consumptionduetophotosynthesiscanbedeterminedbysubtractingthe

respiratoryCO2productionfromthenetCO2consumption/production.Thisvalueshouldbenegative.

12. Testotherplantsamplesusingthesameprocedure.

Page 16: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 16 of 31 Last Updated 7/2013

VISUALIZING&COUNTINGSTOMATAUSINGTHELEAFIMPRESSIONMETHOD

Purpose:Todeterminestomataldensityandexaminethestateofstomatainleaves.

HowtheMethodWorks:Paintingnailpolishontothesurfaceofaleafcreatesanimpressionofitsoutercellularstructure.Theimpressionispeeledfromtheleaf,thenexaminedunderamicroscopetoviewhowwidethestomataareopenedandhowmanyarepresentperunitarea(stomataldensity).

TechnicalComplexity:Moderate.Itcantakesomepracticetolearnhowtobringspecimensintofocuswithoutdamagingthelenses.

TimeRequired:60minutesfromset-uptocompletion.

Materials:• Leaves(1-2pertreatment)• Clearnailpolish

• Compoundmicroscopewith40Xobjective• Preparedleafanatomyslides,ifavailable

• Blankmicroscopeslides• Dissectingprobeorotherpointedinstrument• Forceps

• Distilledwater• Permanentmarker• Metricruler

Procedure:1. Inyournotebook,describetheleavesyouwillsample.

a. Indicatewhereandwheneachleafwasgathered(e.g.,sunorshade,timeofday,season).b. Describethespeciesortypeofplant,ifyouknow.

c. Makeaphotographorsketchoftheleaves,usinglabelsorfilenamestohelpyoukeeptrackforlater.

2. Preparetwoepidermalimpressionsfromeachleaf–onefromtheundersideandonefromthetop.

a. Painta1-cmx1-cmsquareofclearnailpolishontothesurfaceoftheleaf." Makesuretherearenogapsinthelayerofnailpolish.

Thelargedonutshapeaboveismadeupof

thetwocellsthatformastomate.Stomataareopeningsthroughwhichgasesenter

andleavetheleaf.Thecellsaroundthepore,calledguardcells,openandcloseto

maketheporebiggerorsmaller.

Page 17: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 17 of 31 Last Updated 7/2013

" Severalcoatsareokay,sinceyoudon’twantthenailpolishtotearasyoupeelitofftheleaf.

b. Allowthenailpolishtodrythoroughly.

3. Setupandpracticeusingthemicroscopewhilewaitingforthenailpolishtodry.Askyourteacherforassistance.

a. Turnthemicroscopelighton.b. Movethestagefarfromtheobjective,usingtheappropriateknob.c. Pushthelowestpowerobjectiveintoplace(usually4Xor10X).

d. Placeapreparedslideofaleafonthestage.e. Lookingatthestagefromtheside,movethestageclosetotheslidewithouttouchingthe

slideitself.

" Knowwhichwaytoturntheknobtomovethestageawayfromthesample." Becareful.Ifyoucrunchtheslideagainsttheobjective,theobjectivewillbe

permanentlydamagedandexpensivetoreplace.

f. Lookintotheocular." Onlymovethestageawayfromthesampleforroughfocus.

" Usetheotherknobformoresensitivefocus.g. Onceyoucanseethestructuresunderlowpower,youcanswitchtothe40Xobjective.

" Onlyusethesensitive-focusknobatthispower.Theobjectiveislonger,soit’s

easiertoaccidentallydamageitbybumpingintotheslide.

4. Prepareyourmicroscopeslidesoftheleafimpressions.a. Gathertwomicroscopeslidesforeachleaf–oneeachfortheimpressionfromtheupper

andlowersurface.

b. Youwillbeliftingoffeachnailpolishsquare(leafimpression)asonepiece." UseadissectingprobeorotherpointedinstrumenttoGENTLYteasetheedgeofthe

nailpolishup,liftingorpeelingthenailpolishawayfromtheleafuntilabouthalfwaylifted.

" Useforcepstofinishpeelingawaythesquare.

" Rememberwhichsideofthepeelwasfacingtheleaf.c. Placeadropofdistilledwaterontoamicroscopeslide.d. Puttheimpressionontothesurfaceofthewaterwiththesidethatwastouchingtheleaf

facingup,awayfromthewater.e. Gentlysmoothouttheimpressionusingthedissectingprobe,sothatit’sflatagainstthe

slide.

f. Withapermanentmarker,labeltheslidetoindicatetheleafsampledandwhichsideoftheleaftheimpressioncamefrom.

g. Repeatstepsb-fwiththeremainingleafimpressions.

1. Examinetheimpressionsunderthemicroscope.a. ReviewStep3forsafeuseofthemicroscope.

Page 18: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 18 of 31 Last Updated 7/2013

b. Focusontheimpression,butrememberthatyouarelookingataclearimpressionoftheleafsurface,notagreenleaf!

c. Takenotesandmakesketchesofwhatyousee.

2. Collectdataonthestomata.a. Findtheimpressionsofstomata.

" Aretheyopen,closed,inbetween,oramix?Takenotes." Makeaquicksketchofthestateofanaveragestomateintheimpressionforeach

sample.

b. Countthenumberofstomatainthe1cmx1cmimpressionandrecordthenumber." Countityourselftwice." Haveoneotherteammatedothecounttwiceforthesameslidetodoublecheck.

" Ifmanystomataarepresent,considerdoingacountusingthelowest-powerobjectiveinsteadoftheentireimpression.Calculatetheareaofthefieldofview(p.16)tofindthesamplingarea’ssize.

" Stomataldensitycanbecalculatedasthenumberofstomatespercm2.

Page 19: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 19 of 31 Last Updated 7/2013

VISUALIZINGPLANTCELLS&CHLOROPLASTSUSINGAMICROSCOPE

Purpose:Tovisualizechloroplastsandplantcells.

HowtheMethodWorks:Photosynthesisoccursinplantorganellescalledchloroplasts.Becauseoftheirgreencolor,chloroplastscanbeseeneasilyusingalightmicroscope.Awetmountslideofacell

layerteasedfromaleafispreparedandviewedat400Xmagnification.

TechnicalComplexity:Moderate.Youmayneedtomakeseveralsamplestogetathinenoughlayertoseetheindividualcellsclearly.Itcantakesomepracticetolearnhowtobringspecimensintofocuswithoutdamagingthelenses.

TimeRequired:30minutes.

Materials:• Compoundlightmicroscopewith40Xobjectiveandatleastonelower-

poweredobjective• Lenspaper• Leavesorotherorgansfromplants,oralgaecultures

• Scalpel• Microscopeslidesandcoverslips

• Eyedropperorsmallpipette• Water• (Optional)dissectingneedles

• Forceps

LabSafety:Scalpels,brokencoverslips,andbrokenslidesareverysharp.Disposeofthesematerialsinthe“sharps”containerorintheglassdisposal,NOTtheregulartrashcan.Wearingwell-fittinglabglovesis

recommendedtohelppreventaccidentalcuts.

Procedure:1. Beforeyoubegin,carefullycleantheobjectivesandeyepiecesofyourmicroscopewithlenspaper.

2. Prepareaslideofyourspecimen(s):

a. Selectaleaforotherpartoftheplant.Useascalpeltosliceaverythinfragmentfromtheleaf.

Page 20: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 20 of 31 Last Updated 7/2013

" Alternatively,placeadropofalgalcultureontoaslideusinganeyedropperorpipette.

b. Placeadropofwaterintothecenterofamicroscopeslideusinganeyedropperorpipette,thentransfertheleaffragmenttothewaterontheslide.

" Ifusinganalgalculture,thereisnoneedtoaddadditionalwater.

c. Gentlyteaseapartthetissueinthewaterdropletusingthescalpelortwodissectingneedles.

d. Placeoneendofaglasscoversliptotherightorleftofthespecimensothattherest

oftheslipisheldata45oangleoverthespecimen.e. Slowlylowerthecoverslipwithadissectingneedleorforcepssoasnottotrapair

bubbles.Thecoverslipflattensthepreparation,keepsitfromdryingout,andprotectstheobjectivelenses.

f. Pressdownonthecoverslipvery,verylightlywiththeendofthedissectingprobe

orforceps.Thisspreadsandflattensthetissue,soitiseasiertoseeonecelllayer.

3. Observeyourspecimen(s)underthemicroscope:a. Ifyouhavenotusedamicroscope(recently),askateacherforassistanceandseepp.13-14

forpracticeinstructions.b. Beginbyusingthelowest-powerobjective.c. Locateapartoftheslidethathasseemstohavethefewestlayersofcells.

d. Usethefocustohelpdistinguishindividualcells." Abouthowlargearethecells?" Wherearethecellwalls?

" Canyouseeanychloroplastsatthisscale?" Makeasketchofyourobservations,notingthetotalmagnificationinoralongside

eachdrawing.

" Providesomebriefnotesaboutthesample.Wasitpartofanexperiment?Ifso,towhattreatmentwasitsubjected?

" Alternatively,ifyouhaveadigitalcameratotakemicroscopephotos,include

informationaboutthetotalmagnificationandthesampleinthefilename.Writethefilenameinyourlabnotebook.

e. Nowusethe40Xobjectivetolookatthesample.Again,makeasketchordigitalphotoofyourobservations.Trytoanswerthefollowingquestionsinyourlabnotebook:

" Wherearethecellwalls?

" Wherearethechloroplasts,andhowarethepositionedrelativetothecellwalls?

" Abouthowmanychloroplastsareineachcell?

" Doyounoticeanymovementwithinthecell?Ifso,whatisthis?f. Repeatwithanyothersamplesyouwanttoexamine.

4. Cleanupwhenyouarefinished:

Page 21: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 21 of 31 Last Updated 7/2013

a. Washanddryallslidesandplacetheminaglasscontainernearthesink.b. Slipcoversmaybedisposedofintheglassdisposal.

c. Turnoffthemicroscope,coverit,andputitintothestoragecabinet.

Whatisthetotalmagnificationofmyspecimen?

Multiplythemagnificationoftheocularlens(usually10X)bythatoftheobjectivelens.

Example:

Supposeyouhavethe40Xobjectiveinplace.Then

thetotalmagnificationwouldbe:

10x40=400

thatis,400X.

Howbigismyspecimen?

Thefieldofviewisthefullareayoucanseeontheslidewithoutmovingit.Athighmagnification,your

fieldofviewissmall.Atlowmagnification,itislarger.Ifyouhaveaflat,clearruler,placeitonthestage.

Measurethediameteracrossthemiddleofthefieldwhenlookingintothemicroscopewitheachofthe

objectivelenses.Usingtheformulafortheareaofacircle,calculatetheareaofeachfieldofview.

Byestimatinghowmanycellsareinthefieldorhow

muchofthefieldistakenupbyonecell,youcangetaroughestimateofacell’ssize.Thestandardunitof

measureinlightmicroscopyisthemicrometer(µm),so

it’sbesttodescribethefieldofviewandspecimensizesonthisbasis:1mm=0.001µm.

Page 22: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 22 of 31 Last Updated 7/2013

IDENTIFYINGSTARCHINPLANTLEAVESUSINGANIODINESTAININGMETHOD

Purpose:Toexaminestarchgrainsasameasureofphotosyntheticand/orrespiratoryactivity.

HowtheMethodWorks:Themethodallowsyoutoseestarchinleafdisks.Starchisapolysaccharidemadeupofglucosemolecules.Plantscommonlyuseitasastoragecarbohydrate.Here,leafdisksarepreparedfromplantsgrownunderlightanddarkconditionsbeforebeingtreatedfor24hourswithenvironmentalconditionsofyourchoosing–differentlightintensities,wavelengthsoflight,light-darkcycles,temperatures,

CO2levels,orglucosesolutionsarejustafewpossibilities.Afterplacingleafdisksinanexperimentaltreatment,theyarestainedwithLugol’sSolution.Starchgranuleswillappearpurplish-blackunderamicroscope.Theirrelativedensityunderdifferenttreatmentscanbeassessed.

TechnicalComplexity:Moderate.

TimeRequired:Twoclassperiods.

Materials:PreparationPhase:

• PotassiumIodide• Iodine• Water

• Containerofabout75mL• Plantsgrowninthelightandplantsgrown

inthedarkforatleast4days.

• Paperholepunch,plasticstraw,orNo.3corkborer

• Lightsourceforlight-grownleafdisks

• Aluminumfoilorotherlight-blockingmaterialfordark-grownleafdisks

• (Optional)Materialstoprovidean

environmentaltreatment

StainingPhase:

• Hotplateorsomeothermeanstocreateheatedliquidbath

• Beakerofwaterwithboilingchips

• Beakerofethanol• Forceps• Timerorclock/watchwithasecondhand

• Papertowels• Aluminumfoil,Petridish,orshallow

container

• Water• Compoundmicroscopewith40Xobjective

Page 23: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 23 of 31 Last Updated 7/2013

Procedure:Part1.PrepareLugol’sSolution(ifnecessary,5minutes):3. Measure60mLofdistilledwaterintoacontainer.

4. Weighout0.4gofpotassiumiodide.5. Transferthesolidintothecontaineranddissolve.6. Add0.2giodinetothesolutionandstirorswirltomix.

Part2.PrepareLeafDisks(10minutes):1. Useapaperholepunch,plasticstraw,orNo.3corkborertopunchoutyourleafdisks.

o Avoidtheheavyveins.

o Cutoutequalnumbersof leafdisksfromthelight-grownanddark-grownplants,using1-2leavesforeachenvironmentaltreatmentyouplantocarryout.

o Includeatleastonehealthygreenleafandonedark-growninadditiontoyourtestsamples.

Theseareyourcontrols,andtheywon’tbetreatedduringthe24hourperiod.o Alternatively,youcancutsquaresfromtheleavesusingscissors.

2. Dividetheleafdisksintoequivalently-sizedtreatmentgroups.o Ifyouhaveindexcardsorsmallpiecesofpaper,puttheleafdisksforeachtreatmentonto

theirowncard.Thiswillmakeiteasiertokeeptrackofthedisksforonetreatment.

3. Placethecontrolsintothesameconditionsthatwereusedduringpre-treatmentoftheleaves,lightanddark.

4. Place the treatmentgroups into their respective treatmentconditions. Treat the leafdisks for24

hours.

Part3.StaintheLeafDisksforStarch(30minutes):1. Wearsafetygoggles,alabcoat,andgloves.Youwillbeworkingwithboilingwaterandhotethanol

thatcancauseburns,andadyethatcanstainyourskinandclothing.

2. Prepareaboilingwaterbath.Askyourteachertoprepareahotethanolbath.3. Usingtheforceps,dropaleafdiskintotheboilingwaterbath.Leavefor30seconds.Thiswillkill

thecells.

4. Carefullyremovetheleaffromtheboilingwaterwithyourforcepsandplaceontoapapertowel.5. Repeatwiththeotherleafdisks,makingsuretokeeptrackofwhichtreatmenteachdiskwasgiven.6. Usingyourforceps,transferaleafdiskintothehotethanolbathandleaveittherefor2minutes.

Thiswillremovemostofthechlorophyllfromtheleaf.7. Withyourforceps,transfertheleaffromthehotethanolbathtoaroomtemperatureethanolbath

(inaglassbeaker,flask,oropenjar).Leavetheleafintheroomtemperatureethanolforone

minute.Theleafshouldbenearlywhite.8. Removetheleaffromtheroomtemperatureethanolandblotitonapapertowel.

9. RepeatSteps6-8withtheotherleafdisks,makingsuretokeeptrackofthetreatmentforeachdisk.10. Usingasquareofaluminumfoil,makeasmall“bowl,”oruseaPetridishorshallowcontainer.

Page 24: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 24 of 31 Last Updated 7/2013

11. PlaceenoughLugol’sSolutionintothebowltocoverthebottom.12. Usingtheforceps,putyourblottedleafdisksintothebowlofLugol’ssolution,eachforabout1

minute.13. Removetheleafdisksandrinsethemoffwithwater.14. Blottheleafdisksonpapertowels.

Part4.RecordData(15minutes):1. Recordthecolorintensityofyoursamplesandvariationswitheachsample.

o Starchwillbestainedadarkreddish-brown.

o Itmaybehelpfultocreateacolorguideorrankingsystemtojudgecolorintensity.o Inwhatwayarelight-grownanddark-grownsamplesdistinctfromeachother?o Aresamplesfromdifferentenvironmentalsamplesdistinctfromeachother?

2. Makeasketchofrepresentativesamplesofleafdisksfromeachtreatmentleafdisk,includingcolorvariations.

3. Visualizerepresentativesamplesfromeachtreatmentunderamicroscopeusinga40Xobjective,

andsketchwhatyousee.o Ifyouhavenotusedamicroscope(recently),askateacherforassistanceandseepp.13-14

forpracticeinstructions.

Page 25: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 25 of 31 Last Updated 7/2013

IDENTIFYINGCHLOROPHYLL&OTHERPLANTPIGMENTS

Purpose:Identifyingthepresenceorabsenceofchlorophyllandotherplantpigmentsinleaves.

HowtheMethodWorks:Allplantpigmentshaveuniquechemicalproperties,allowingustotellthemapart.Here,paperchromatographywillbeusedtoseparateplantpigments.First,fluidissqueezedoutofplantleavesontofilterpaper.Thepaperisputintoachambersothatitstiptouchesachromatography

solvent--inthiscase,acetoneorisopropylalcohol.Asthesolventisabsorbedandtravelsupthefilterpaper,theplantpigmentsarecarriedwithit.Eachpigmentwillmoveupthepaperatacharacteristicratedependingonitschemicalproperties,includingsolubilityinthesolvent,molecularmass,andamountofhydrogenbondingwiththefilterpaper.Sincethepigmentsarecolored,thesinglesamplewillseparateintopigmentbandsofdifferentcolors.

TechnicalComplexity:Simple.

TimeRequired:60minutesfromset-uptocompletion.

Materials:• 1-2plantleavespertestsample• Jars,wide-mouthedtesttubes,400-600mLbeakers,10mLgraduatedcylinders,orothervesselof

similardepth,Coverssuitableforthevessels

• 3mmlaboratoryfilterpaper(orbleachedcoffeefilters,butthesedon’tworkaswell)• Metricruler• Pencils

• Scissors• Coin• Acetone(fingernailpolishremover)orisopropylalcohol(rubbingalcohol)

• Thindowel,straws,orpaperclips• Tape

Procedure:1. Selectoneormoreidentically-sizedvesselstouseaschromatographychambers.

o Measuretheirheight,sothatyouwillknowhowlongtocutyourpaperstrips.

Page 26: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 26 of 31 Last Updated 7/2013

o Ifyouhavemanysamplestotest,makesurethechamber(s)arelargeenoughforonevertically-placedchromatographystripperplantsamplewithoutanyofthestripstouching

anyothersorthechamber’ssides.

2. Preparethechromatographypaperstrips:a. Handlethesheet(s)offilterpaperfromtheedges,andaslittleaspossible.Thenaturaloils

fromyourhandscaninterferewithmovementofsolventupthestrip.b. Usingaruler,measureoutthesizeofthestripsontothefilterpaper.

" Allstripsshouldbeaslongasthedepthofthechromatographychamber.

" Theyshouldbeabout1.5cmwide." Measureonestripforeachsample.

c. Cutthestripswithscissors.

d. 1cmfromthebottomofeachstrip,lightlydrawapencillineasshownatright." DoNOTuseapenormarker.Pigmentsfromtheinkwillinterferewiththetest!

e. Cutthebottomintoan“arrowpoint”uptothe1cmmarkasshownatright.

3. Preparetheextractfromaleafsampledirectlyonastrip:a. Placethepaperstriponthetable.b. Positionyourleafoverthepencilmark,rememberingnottoplaceyour

fingersontothemiddleofthestrip.c. Traceoverthepencilmark,nowunderneaththeleaf,byrollingtheedgeof

acoinovertheleafabout15times.

d. Repeatthisprocesstwomoretimeswithanunusedportionofthesameleaf(oranotherfromthesameexperimentaltreatment)inthesameplaceonthestrip.Thiscompletesonestrip.

e. Repeatthisentireprocessforeachleafsampleandstrip.f. Allowtheleafextractsonthestripstodryforabout10minutes.

4. Preparethechromatographychamber(s):

a. Isopropylalcoholandacetonearevolatileandflammable.Wearsafetygoggles,avoidinhalingthefumes,anddonotusenearflames.

b. Fillthechamber(s)witheitherisopropylalcoholoracetoneto1cmindepth.

c. Coverthechamber.Allowthechambertofillwithfumeswhileyourstripsaredrying.d. Howyoucreatethesetuptorunsampleswilldependonthechambersizeandshape.

Forexample,youcouldattachthedriedstripstoapencil(left).

Oryoucouldhookapaperclip

throughtheflatendofastrip

andthenthrougharubberstopper(right).

Page 27: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 27 of 31 Last Updated 7/2013

5. Runthechromatographysamples:a. Openthechamberandloweryourstrip(s)intoitsothetipsaretouchingthesolventandthe

plantextractlineiswellabovethesolvent.

" Iftheplantextracttouchesthesolvent,itwilldissolveintotheliquid!" Makesurethesidesofthestripdonottouchthewallsofthechamber." Makesurethestripsarelevel.

b. Coverthechamberandletthesolventwickupthestrips.Donotdisturbthechamberwhileitiswicking.

" Theleafextractwillbegintoseparateintobandsofcolorasittravelsupwards.

c. Stopthechromatographywhenthesolventreaches2cmfromthetopofthestrips,orwhenyouseeatleastfourcolorbandsclearlyseparatedonthestrips.

d. Removethestripsfromthechromatographychamber(s).

6. Markandidentifythedistinctplantpigmentsforanalysis:a. Inpencil,drawahorizontallinewherethesolventstoppedmovingupeachstrip.b. Drawsimilarpencillinestomarkthecolorbandsoneachstrip.

c. Measurethedistancefromthelinewhereyouoriginallyputyourleafextractwiththecoin(theorigin)toeachofthelinesyouhavemarked.

" Thedistancebetweentheoriginandthefinalsolventlineisconsideredtobethe

distancethesolventtraveled." Thedistancebetweentheoriginandtheindividualpigmentlinesarethedistances

thepigmentstraveled.d. Identifythepigmentsoneachstrip.Theorder,fromtoptobottom,shouldbe:

" carotenes(yellow-orange)

" xanthophylls(yellow)" chlorophylla(brightgreentoblue-green)" chlorophyllb(yellow-greentoolivegreen)

" anthocyanin(red)" Youmaynotseeallofthesecolors.Whatyouseedependsonwhatpigmentsare

presentineachleaf.

e. Foreachpigment,calculatetheRfvalueas:Rf=DistancepigmenttraveledDistancesolventtraveled

7. Cleanupwhenyouarefinished:a. Youmightnotbeallowedtopourthesolventdownthesink,soaskyourteacherhowyou

shoulddiscardit.

b. Afterdiscardingthesolvent,rinseoutthechamberswithwater.Leavenearthesinktodry.

Page 28: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 28 of 31 Last Updated 7/2013

c. Donotthrowyourstripsawayuntilyouhaverecordedallthemeasurementsandcarriedoutallthecalculations.

Page 29: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 29 of 31 Last Updated 7/2013

QUANTIFYINGFRESH&DRYMASSOFPLANTS

Purpose:Determinechangesinplantmassovertime.

HowtheMethodWorks:Therearetwowaystomeasureplantmass:freshorwetmassanddrymass.Inthefreshmassmethod,

thewholeplantisweighedoncethesoilisremoved.Forthedrymassmethod,plantsaredriedatlowheatbeforeweighing.Theplantsthatareweighedcannotbeusedforfurtherstudies,butyoucandeterminethefreshmassofaplantandthendryittoalsodetermineitsdrymass.Thisallowsyoutocalculatethewatercontentofthatplant.Youshouldusethemethod(s)bestsuitedtoyourresearchquestion.Forexample,aquestionabouttheamountofcarbonfixedduringgrowthisbettersuitedtomeasurementsofdrymass,sincethewatercontentofaplantcanvary.

TechnicalComplexity:Simple.

TimeRequired:About5minperplant.Fordryweightmeasurements,anovernightdryingtimeisrequired.

Materials:• Sinkwithrunningwater• Papertowels• Ascalewithmilligram(0.001g)accuracy

• Adryingoven• (Optional)Paperlunchbags• (Optional)Ziplocsandwichorgallon-sizedbags

GeneralInstructions:• Removingaplantfromitsgrowingmediumwillusuallyaffectitsgrowthrate,possiblydamaging

itintheprocess.Dryingovernightwillkillnearlyallplants.So,bothfreshanddrymass

measurementsaretypesofdestructivesampling.• Tomeasurechangesinplantmassovertime,thetotalnumberofplantsneededforthe

experimentwillbethenumberofplantssampledateachtimepoint(typicallythreeormore)

multipliedbythetotaltimepointsatwhichmeasurementsaretaken.

MethodA:MeasuringFreshMassThismethodisthefastestwaytomeasureplantmass.Becauseaplantcanbecomposedofvaryingamountsofwaterunderdifferentenvironmentalconditionsordevelopmentalstages,itislessaccurate

thanmeasuringdrymass.

Page 30: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 30 of 31 Last Updated 7/2013

1. Removeplantsfromsoilandwashoffanyloosesoil.2. Blotplantsgentlywithsoftpapertoweltoremoveanyfreesurfacemoisture.

3. Weighimmediately.o Plantshaveahighwatercomposition,sowaitingtoweighthemmayleadtosome

dryingandproduceinaccuratedata.

4. (AlternativeOption)Freshmassforrootandshootdatamaybetakenseparatelybycuttingtheshootsatthe“crown”oftheplant,thenweighingeachpartseparately.Thecrown,orplacewhereaplant’srootsandstemmeet,isusuallyfoundatsoillevel.

MethodB:MeasuringDryMassThismethodremoveswaterfromtheplantsbyfirstdryingtheminanoven.Sinceplantscontainlotof

water,usingdryweightisamorereliablemeasurethanfreshweight.1. CompletethefirsttwostepsdescribedinMethodA.2. Ifdesired,completeStep3orStep4fromMethodAaswell.Youwillendupwithbothfresh

anddrymassdata.3. Drytheplantsinanovensettolowheat(60oC)overnight.

o Ifyouhavemanyplantstodry,itmaybehelpfultoplacethemindividuallyinpaperlunchbags.

o Uselabelsormakeachartofthedryingpositionstokeeptrackoftheirrespective

treatments.4. Lettheplantscoolinadryenvironment.

o Inahumidenvironmenttheplanttissuemaytakeupwater.

o Aplasticsandwichbagwillkeepmoistureoutifyouliveinahumidclimate.5. Oncetheplantshavecooled,weighthemonascale.

o Plantscontainmostlywater,sothedriedplantswillnotweighverymuch.

o Makesureyouhaveascalethatmeasuresmilligramstoensureaccuracy.

MethodC:CalculatingWaterContentWatercontentcanpotentiallybeusefultoidentifyplantsthathaveadifferentresponsetotheirenvironment.Forexample,plantslivingunderhightemperatureorlowwaterconditionsmayhavea

lowerwatercontentthanwell-wateredplantsatamoremoderatetemperature.1. CompletethefirsttwostepsinMethodA.

2. Weighthewholeplantortherootsandshootsseparatelyasdesired.3. Placeeachplant,shoot,orrootsysteminitsownpaperlunchbag,andmarkthemtokeeptrack

ofwhichplantiswhich.

4. Drytheplantsinanovensettolowheat(60oC)overnight.5. CompletethelasttwostepsofMethodB,makingsuretorecordthedataalongsidethe

correspondingfreshmassdataforeachplantorplantpart.

6. Thewatercontentofaplantsample(%water)canbecalculatedasfollows:a. Watermass(g)=Freshmass(g)–Drymass(g)b. %water=100%xWatermass(g)

Page 31: PlantingScience Power of Sunlight Toolkit

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Power of Sunlight—Toolkit Page 31 of 31 Last Updated 7/2013

Freshmass(g)