PILE Foundation Analysis_ASCE William Saul-1980_searchable

download PILE Foundation Analysis_ASCE William Saul-1980_searchable

of 22

Transcript of PILE Foundation Analysis_ASCE William Saul-1980_searchable

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    1/22

    PILE FOUND TION N LYSIS

    illiam E

    aul

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    2/22

    October

    8 9

    UII EX, bladison

    PTLE

    FOUNDATION N LPSZS

    i l l i a m

    E sau1.l Fellow

    ASCE

    The design of pi le foundatioaa for

    s t a t i r

    o r dynamic lo cur be

    ucom pl i shd through the s t i f f n u s metbod o f

    u u l y s utilizing

    so i l -

    p i l a i n t e r ac t i o n l o d r l r deriuwi from tbe b-prirrg f o d a t l a n

    id -

    ration although ariy

    linear

    o r p iec eu is e l l n u r m o d d v i l l su f f ice -

    the

    Podel a d v w t d

    may

    b e of f i n i t e l e n gt h o r m d e up of a s e r i e s o f

    f i n i t e

    length.

    due to v ri tion

    in

    t he s o i l o r

    th

    pile.

    Tbe st ru ct ur al ana lys is of p il e foun tions requir es computation of

    disp lac eme t of the p i le cap and forces on and displacements of each of

    the p i le s .

    A l en gt hy s e t o f r e f r r e n c n t o this problem were givan by

    Saul, 1968(1), i n a paper vhich presented th e bas ic framework of t he

    material contained herein.

    Subsequent ad di ti on s by O'Ueill(2). Murthy

    and Shrivastava(3). Pr ll uo b

    and

    Chandrarakaran(S), Saul(5.6) and

    S a d

    and 'blf(7. 8) point out shortcomings t o th e orig in al paper and supple-

    ment

    t

    considerably.

    For wi kt io n of th e problem and th e computational

    techniques have not been f o d acking; se e VesiL(9), Eoules(lO), and

    Arya O'Neill and Pfncw(l1).

    Imprweteente and discussion of the pile-

    s o i l int er ac ti on modeling, hovever,

    contin ua t o appear; se e reference:,

    ( 9 , l l ) for , .general d iscussions

    and

    smmaries.

    Ya'ajor work

    i s

    being

    done by ~e n i f ( 9 ) ,Poulo s(l2) and by h'ovak(13) and th ei r collea goea,

    *ere tha references cit ed ar e samples of t he ir exteasive vorks, on pile-

    s o i l i n te r ac t io n .

    The prinur y t hr us t i n th ese worlu, however, has been

    derived from elastic theory although

    in

    a -re compl ete and complex

    sense than the spring foundation idealization. This l e a d s t o a b e t t e r

    underatanding of the problem; but as ye t, vi th s o i l pro per tie s normally

    ava i lab le ,

    t i s

    questionable vhether any model

    s

    b e t t e r s u i t e d f o r

    design

    and

    anr lys f s in pract ice .

    In tera ct ion of the p i le cap with

    th e s o u has been inve sti gat ed by O',Murka and Dobry(l4).

    When t h i s

    f a c t o r is t o be included the s t i f fn ess contr ibut ion of the soi l-cap

    a9y be di re ct ly added t o t he foundation sti ff ne ss matrix a s computed

    herein.

    The object ives in t hi s paper are to:

    1

    Update the material

    presented ear l ier(1) . 2 Include inprovements developed since(5,6,8).

    Professor, Department

    o f

    C i v i l

    and

    Environmental

    Engineering

    The

    Univsr-

    s i t y of Wisconsin, Madison 53706.

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    3/22

    3. Prese nt a major development which a llo vs inclus ion of layered s oi ls ,

    p i l e s which may vary

    i n

    s e c t i o n

    v i t h l e ng th , o r s h o r t p i l l n g

    9).

    And,

    4

    Give exapplr r to i l l us t ra te the coatputat ioaal method.

    A DK3ONSTRATXON

    Consider a p i l e focmdrtioo conr iscing of a rigid r e i n f o r e d cam

    c re t e u p and any rider o f a t t l c h d p i li ng .

    Tho p F l u may b e v e r t i c a l

    o r ba t t e r ed , shor t o r long ,

    a t

    t h e same r e f e r m a c e e l m L I o a vit kl t r

    c a p o r

    a t

    severa l levels a d f s im i l r o r d i f f e r e s c m f . ~

    sec t ions o r s i zes .

    The p i l e a m y

    b m

    m hcod in m y

    m or

    o r

    by d i f f e r en t methods a t t h r

    samm

    t ~ ~r t

    varlolu

    tima

    heir pr in

    c i p a l xes may b e a t ny angle and hm any d e g m of f i x i t y b eernem

    hinged and r ig id v i t h th e cap.

    The cap is ammamed rigid

    in

    l a t o r c o w

    putat ions) , but may be of

    .any s h p

    and

    thichress

    variablm

    thickness such

    s

    stepped, and may be coas t r a r t cd 80 that t h e p i l e s

    are enbedded a t d i f f e r e n t e l m t i o n . v i t h i a tha cap.

    The s o i l mny be

    h o m ~ g m w w ,

    aryLng

    o r layered , i nc lud ing l aye r s o f a r y

    w e ~ k

    r

    n e g l i g i b l e s o l l s .

    The pi le

    cap m y

    be in a m t a c t o r

    embedded

    i n t h r

    top l ay er of s o i l o r e l m t e d

    am

    a

    platfurm.

    I n

    sunnmv, fo r the

    exper

    i m m t

    t h e r e a r e n e a r ly no cons t r a in t s .

    To proceed, a c oo rd ia at m c a t e r f o r t h e p i l a f ou ud at io n

    is

    assigned

    and a s e t of C ar tesian coordinates.

    Although these ~ P Ie asmipad

    a r b i t r a r i l y , it is

    useful

    t o choose

    an

    o r i gi n a t l e a s t v e r t i c a l ly

    a l igned v i th the cen te r o f

    mass

    of the foundation and/or load and have

    o ne h o ri z o n t a l a x i s p a r a l l e l t o a n

    ads

    of syuauetry of found ation or

    loads, should one exist .

    The demonstration

    s

    t o load the founda t ioa in e ch of s i x comporr

    en t s ,

    one

    component a t

    a

    t i m e . T he se s i x a r e t h e t h r e e r e c t i l i n e a r

    f or ce s m d t he t h re e r m m ~ t s orresponding to the

    ax s

    us t es t ab l i shed

    as

    shown i n

    Fig

    1 When

    w e

    of these forces

    i

    i s

    applied, and no w

    other , the s i x corresponding components of de fle ct i on , ( ~ 1 ~ ~ 3ectf -

    l in ea r and

    3

    r o t a t l o n i l ,

    may

    be measured and plot ted .

    These forces ~y

    be appl ied

    by

    incre men ts of for ce, i.e., dead loads, o r d i s p l a ce m n t ,

    i.e. by jacking, by d e r r l a rg e r incra-ta, s l o w l y o r more

    rapidl y , and mono toniul ly o r cycled. The re su l t i ns c am s may be

    non l inear v i th the r a t e o f de f l ec t ion inc reas ing v i th h ighor loads.

    Creep o r relax atio n, depending on t h e type of load t es t , y e h w a

    t ime dependency, 5-e ., a v is coo las t ic m t e r i r l . In

    many

    c u e s , t he

    load-deflection curva v i l l exh ib i t a regima wi th a s l w l y ch an gin g o r

    air-st constant s l o p s f o l l w e b;

    a regime with a rapidly changing s l o p ,

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    4/22

    a hod

    b

    Displacrrrotr

    Fig 1

    ~ o ~ d a t i o n

    ardr and Dfsplacawntr

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    5/22

    and then anothe r regime v i t h a very stee p, perhaps again constant, s lope.

    Although t h is may appear as a typi cal s t r e s sa t r a i n currre wi th an elas -

    t ic ,

    yield and pl as t i c behavior such

    i s most

    probably

    no t the case and

    it

    may of ten be di f f i cu l t t o dis t ingu ish t he three zones . The reason

    is

    t h a t s o i l is o f t e n v i s c a e l a s t i c and t h a t t h e r e a r e

    sir.

    e f f e c t s ,

    edge

    ef fe c t s , pos s ib la f r i e t i oa be tween cap nd

    soil

    s o i l p r e ss ur es d o v e l o p

    ing

    against

    cmbdded caps,

    and

    y

    nu nk r of o ther pos s ib le in f lueac8r

    v hi ch co ul d i n h i b i e n p m d u d b i l l t y o f

    test

    r e s u l t s .

    N w e r t h e l u ~ , f

    sugges ted that if t h e l o a d

    vere

    c7eL d a m r a 1 , t i m r s

    in

    t he neighbor

    hood o f magnitude which i s . ~ a a t w l l y xpected, t h a t a near ly cons tant

    elo pe t o each cunre would b e found.

    I f

    the

    f luc tua t i on of load magni

    tude

    was

    expectad t o be wid.

    t he c me could be approximated a s bi-

    l i n e a r o r p ie ce wi ne l i n e a r .

    Thus,

    each of t he 6 loading condi t ions

    produces

    6

    def l ect ions d where

    d

    D /Q hat

    is

    t he def l ec t ion

    13 13

    i

    j

    in

    d i r e c t i o n

    i

    due t o a

    uni t

    l o ad i n d i r e c t i o n j dii,

    is

    the measured

    d e f l ec t i on a t

    i

    D

    divided by the load

    Q

    a t

    j '6e 6

    by

    6

    mat t ix

    of

    11 1

    t h e s e f l e x i b i l i t y i n f l u en c e c o e f fi c i e n t s

    [ d l

    where each coluum

    b

    is

    f

    produced by one load, is the e t r u c t u r a l flexibility matrix.

    It

    m y

    be

    inver t ed to ob ta in the s t r uc tu r a l s t i f fn es s mat r ix IS], IS1 [dl ,

    vhere each coef f i c i en t

    S

    i s

    t h e f o r ce a t p o s it i on i duo t o a u n i t dls-

    11

    placement a t pos i t io n j vi th a l l o ther d i sp lacecnmts equal t o zero .

    It

    i s t o be observed t h at the slo pe determined upon immediate load-

    i n g of a p i l e f ou n da ti on , o r v i t h

    a

    l i gh t load ing ,

    o r

    by us ing a di f fer -

    e n t ~ounda tion design, 'such a s a scaled-down configuraei on, would be

    d i f f c r en t , u s u a ll y s t i ffe< than t he va lue ob tained a s described ear l i e r .

    Such a t e s t mu ld

    be expensive, t i m consuming, and tru e only fo r tha t

    foundat ion in t ha t place. Hovever t h e s i g n i f i c a n c e

    i s

    i n understanding

    t h e n a t u r e o f t h e s t r u c t u r a l e t i f f n e s s n a t r i x s i nc e

    it

    i s

    a r ea l and

    h p o r t a n t p r o p er t y o f t h e

    foundation

    i n fa ct , the foundatfon 's s ignature.

    I e la tes fo rces , o r loads , app l i ed to the foundat ion and th e r esu l t ing

    d isplacements i n the coord ina tes a l r eady ucab l i sh ed .

    Thus,

    vhere {Q) ar e loa ds and {A def l ect ions of the foundat ion.

    The

    compon-

    ents o f [S ] a r e c o ns t an t i f t h e s y s t e s

    i s

    l i n e a r

    o r

    quas i- l inear a s

    descr ibed e ar l i er ; otherwise they are var ia bles vhich may be taken a s

    piecewise l inear .

    PTLE

    BEH.4VIOR

    Sinc,e determir . \ t ion of the s t r uc tu ra l s t i f fn es s matr ix

    [ S ]

    by experi-

    ment

    has

    t h e

    limitations

    noted a des ign 3l ternatPre

    is

    necessary and

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    6/22

    provided. I t i s f i r s t usefu l t o cons ider a s im i la r demns t r a t ion con-

    ducted on a s ing le pi le .

    he

    p i l e may be placed i n any mnn er, be of

    any shape or materials ,

    any

    length, be placed n any type of s oi l o r

    so i l s , and be f lush v i th the sur face o r ex tend in t o the a i r

    For this

    d e m n s t r a t i o n t h e p i l e should b e v e r t i c a l .

    Coordinate axem are chosen

    along the lon gi tudina l cen troi dal ax is and the pr in cip al xxas of bend-

    ing. Applying

    6' loads , d on g each axis and

    a

    molnnt about each ,

    one a t a

    tiw as

    shown

    in

    Fig.

    results

    i n

    fn

    dfsplrc8mest vector

    { c ) ~

    o r

    each

    load. Nth arg b vec tor (Cl i

    hU

    6

    coaponeuts, most

    w i l l

    be zero

    s i x

    flmmue

    abou

    a p r inc ipa l

    axis

    shoul m ut-of-

    p h o r s b u d

    and

    axial c a r p o n a f s .

    Rw the arial

    and tors-

    l o r d s a r e exputad

    to

    r u u l t in o n l y axia l

    and

    t o r a i o o r l d i r p h ~ t r ,

    r espec t fve ly ,

    and

    t he f l ~ r m - p t o d u c i n g

    oad8

    in only 2 compaornt d i e

    p k r a e n t s each.

    he

    mat r ix [c] t h m

    is

    quit s pa rs e, v i t h o d y s l i g h t

    f l e x u r a l

    coupling.

    Once agaio, the soi l -pi lm intmract lon is malio.at

    s o

    it

    would b e w m f u l t o cycle th. load l n t h e neighborhood of magrdtudm

    of the l ol ds expmcted

    so that

    a r e a l i s t i c l i n e a r a p pm xi rm ti on c a n be

    achieved betueea load apd daf lec t ion .

    Once th i s constant s lop e i s

    selecte d, dividing the

    mwured

    d i sp l ac e wn t s { c ) ~ y th e sagnitude of

    t h e l o ad i n d i r s c t i o n

    i

    t he r e su l t ing d f sp laccmrncs a ra the p i l e

    f l e x u r a l i n f l ue n c e c o e f f i c i e n t s g

    the def l ecr ion in t h e d i r e c t i o n

    i j

    t a u n i t f o r ce i n d i r e c ti o n

    j

    wi th a l l other forces zero.

    The pile

    f l e x i b i l i t y

    catrix s] may

    b e i n v e rt e d t o o b t a in t h e p i l e s t i f f n e s s

    matr ix [b ] where bWij i s t h e f o rc e i n d i r e c t io n

    i

    due to a un i t dis -

    placement i n di rec t ion j w i t h a l l o t h e r d is pl ac e me nt s

    zero

    The forn

    o f t h e s e p i l e r u t r i c e s v ou ld b e

    and thm fo rc es (PIi and displa canmn ts

    a c t i ng o n p i l e a r e

    re la t ed by

    1 l i i and I r I i

    [gllCFli

    3

    GROUP

    CTION

    Xhen placed in to t he foundation coordinate system, as shovn in

    M g 3, th p i l e may b e b a t t e r e d , t h a t i s , placed a t

    an

    angle Y v i t h

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    7/22

    C

    Elevation

    v i t h

    espect

    xis of Pile

    Ng P i l e Cap with P i l e

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    8/22

    t he v e r t i c a l r on a ba t t e r s l ope o f l / h i w he re c o t a nge n t

    Yi

    hi and

    i s t h e c l o c k v i s e a n g l e t o t h e d i r e c t i o n o f b a t t e r f ro m t h e

    a x i s o f

    1

    t h e f o un d at i on i n p l an v i w . F u r th e r , t h e p i l e head is l oc at ed a t

    c oor d ina t e s

    du ,u ,u v i t h r e sp e c t t o t h e u p c o o r d i n a t e s ys te m m d

    1 1 2 3

    t h e p i l e s p r i n c i p a l a xe s may b e r o ta t e d t o n a n g l e E i v i t h r e s p ac t

    t o a c o o r di n a te n p s tc a d e x r l b a d by t h r v e r t i c a l p l a n e co n t a in i n g t h e

    b a t t e r e d p i l a vh e r a

    ui

    i s p e rp e nd i cu l ar t o t h i s

    p h

    ud

    in

    t h a

    hod

    w n t a l p l a n and

    U

    i pe r pe nd i c u l a r

    to

    ui and tha

    l o n g i t u i h d u s

    u; of the p i l e .

    Using t h o approprlrto t r a n s f m e i o n m , t h o s t i f f n e s s

    mat

    o f the p i l o v i t h

    rwpmct

    t o

    the

    fauodrtfo eoardhata

    system

    U

    is

    T T T

    [S Ii

    ~ ~ l ~ ~ a l ~ ~ ~ l ~ ~ b l ~ ~ ~ l ~ ~ a 1 ~ ~ d l ~4 )

    v h e r e

    i

    CO S E sin^

    [ P * ] ~ - [ - . ~ c

     

    and

    sins

    e inyc osa

    C O W si ysina

    0 c osy

    which m y b e v r i t t e n

    T

    Is l,

    [ c a ~ l ~ [ b l ~

    The s t i f f n e s s n a t r i x of t h e f o un d at i on is th e sum of the s t i f f n e ss of a l l

    t h e p i l e s n i n t h e f o un da ti on

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    9/22

    Thus,

    from Eq. t he l oa ds may be de terminad for a g i v e n d i s p k c w r n t

    { }

    of th e foundatiota o r

    the

    displacemenl: deterrakud for a given load

    191

    Once the foundat ion di sp lac aw nt s {A} are det arar ined , t he f o r e a

    and d i s p ~ ~ t sf i n d iv i d ua l p i l i n g may b e . c u b t d

    in

    t h e c w r d i ~ ~

    ate

    sys t e m pa ra L l d

    to the

    foun t i on e oor d i or t r U

    from

    or

    i n member pri nc ip al

    xu

    f r m

    T

    i ~ 1 ~[ c a d

    i { ~ ~d

    ( ~ 1 ~t b - I

    i ~ ) I ~ * J ~ ~ C = P I : { A I

    13)

    whe n e i t he r member p r i n c i p a l

    axis

    is horizonta l [p] [I] and there-

    fore , the rota t ed member s t i f fn es s mat r ix [b] here

    Ibl Ipl D I [PI= 0 4

    becomes id en ti ca l with [b'] . Elements of

    Eq.

    10

    wi th [b'] [b]

    are

    presented

    in

    an al yt ic form i n Appendix I

    SOIL-PILE I ~ T I O N

    ODELS

    l e components of t he pi le s t i f f ne ss mat r ix [b '] , E q s . 2 and 3,

    may be obtalned by experiment ,

    s

    note d , bu t a n a l y t i c node l s us i ng

    r e a d i l y a v a i l a b l e s o i l d a t a a r e n ec es sa ry .

    Herei n f i v e a na l y t i c pode l s

    a r e p rese n te d , a 11 based on t he spr i ng founda t ion i de a l i z a t i on fo r

    l a t e r a l l o a d i ng ( f le x ur e ).

    It nay

    be

    assumed th a t i n the ne ightborhood of in te r es t , i .e .,

    load magni tude and p i l e dimensions, the so i l ' s rea c t iv e pressure on

    t h e p i l e

    i s

    l i n e a r l y p ropor t i ona l t o t he de f l e c t i on , t hus , de f i n i ng

    3

    a

    value

    ks

    i n units

    of

    p r e ss u r e p e r u n i t d e f l e ct i o n su ch a s l b / i n o r

    3

    N m

    which

    is

    a p r o p e rt y of t h e s o i l .

    The pressure then

    i s

    k x

    s i

    which is a nal ogous t o a l i ne a r sp r i ng . C ons ide ri ng t he p i l e a s a

    b-az t h e r e a c t i v e f o r c e p r uni t l engt h of bean

    may be

    expressed a s

    k D.x where

    D

    is t h e p ro j e c te d wi d t h of t he beam i n t he d i r r e t l os o f

    s r i

    bending. ow

    k

    s n o t

    a

    pr ima ry s o i l p rope r ty bu t

    may

    be e x p r e s s~ d n

    s

    t e n s of e l a s t i c c on st an ts

    (15) or adjus ted

    f o r

    size

    and shape (16)

    from tes t da ta .

    Thus,

    i t m y

    e t h a t t he p roduct

    kSDi=k:

    is

    nore aean-

    i n g f u l t h a n

    k

    alone.

    S i nce t ba spring concept neglec ts shear coupl ing

    s

    i n t h e i d e a l i z a ci o n , i t a ppea rs t ha t t he re c e r t a i n l y should

    b e

    considered

    an c ge ef

    fecr

    a s

    w e l l as

    a

    irecc

    s pr l ng

    e f f e c t . This, hovever,

    i s

    done

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    10/22

    when t es t s v i th

    a u n i t

    p l a t e s i z e a r e used as a s t andard to de te rn ine

    k and th is value i s then adjusted f or shape and size .

    s

    The subgrade modulus al so v ar ie s with depth because of confinement

    of the so i l , so i l p roper t ies , and poss ib le var i a t ion of so i l wi th depth ,

    i.e., la ye ri ng (17).

    I t

    i s ea s i l y pos tulated and confi rmed by mar su rr

    ment th a t the s o i l a t su r f ace about a freestanding p i l e has no ver t i ca l

    cons t r a in t

    and

    there fore, cannot support even

    ow

    values of hor izontal

    pressure.

    Bowever, prw.nce of a

    cap

    may p rm r id r t h e c o o r t r a i n t o r

    accounc f o r t h e c a p m i l f r i c t i o n . The rubgradr;nodulua for an over-

    coruolldatd c o h e s i a s o i l a p p u r r t o approach e oasc aa r d u e with

    depth once out of

    ran-

    o f s u r f a c s e f f e c t s , i.a.

    k

    D coastant. Raw

    a i

    e w r ,

    n

    granuLu

    o r nonmlLy

    10

    co ha iv a soi l. , th o rub+e

    modu

    1

    in ruses vith

    depth and uny be a s s c ud t o 'do so l i n u r l y s o

    tha t

    k @ vhera 2 is d e pt h o f s o i l and t h e soil p a r t o r

    h s the

    s

    d t s

    of 1 b / h e 4 o r N/= .

    Solut ion of the beam equat ion int roduces p a r w c e r s and

    9

    vhera

    1

    which hap.

    d t s

    of p e t un it lengt h, i.e., in.-1 o r

    mn

    .

    Note that

    thene parameters

    are

    directional, i .e. , ~ b e d i f f e r e n t v i t h r e s p ec t t o

    each p d c i p a l a d s i f Ii and or D ar e no t equal .

    I f o r I.n

    where L is th e eubedded l eng th of the p i l e , the p i l e aay be considered

    u being long o r in f in i t e in l eng th ; which

    means

    t h a t l a t e r a l de f le c -

    t io n has been ef fec t iv el y damped to ne gl i gib le above th e pi l e t i p .

    For

    the

    case

    of

    a

    long p i l e four models f o r t he f l exura l s t i f fne s s coef f i -

    c i t r a re p sented ' in Appendix X I

    They

    are:

    Al s i n g l e l a y e r o f s o i l v i t h k a constant.

    s

    A2. s i n g l e l a y er o f s o i l v i t h k -2 i.e. increas ing l i nea r ly wi th

    s

    depth.

    81.

    A two-layer system where

    kS=O

    in

    the top laye r because of an ele-

    vated cap (platform), neg l igi ble or poor so i l , o r lack of confinement

    to develop n e f f e c ti v e l a t e r a l s o i l p r es su re .

    The lov er laye r has

    k A constant,

    BZ. Wo-la yer system where k

    0

    i n t h e t o p la y e r, s i m i la r t o 8 1 and

    s

    k-WZ i n t h e l o v e r 1 e v e l ~ Z - O t t h e t o p of t h e second l ay e r.

    When o r JlLca l a t e ra l d i sp lac emat oE th e p i l e t i p may occur

    and th e s t i f f ne ss co eff i cie nts which apply fo r long pi le s become le ss

    usefu l. The smalle'r BL o r 9L th e nore pronounced the e ffe ct.

    I n

    addi t ion to shor t o r in te rned ia te l eng th p i l es , non l inear var i a t ion of

    9

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    11/22

    ks

    v i t h d e pt h, l a y e ri n g o r s t r a t a o f t h e

    soil,

    o r v a r i at i o n s i n t h e p i l e

    sec t ion p roper t i e s o r naa ter i al s a lonq

    i t s

    length protride application

    f o r

    a

    f i f t h model based on

    a

    layered system.

    Model C is based on a

    beam

    o r spr ing foundat ion element

    of

    f i d t e l en gth v f t h

    lateral

    kin-

    matic degrees of

    freedam

    (2

    r ec t i l ine ar d i sp laceemnts

    and

    2

    r o t a t i o o r l

    d i sp lacements a t each

    end , see

    A p d i x 111

    t

    is assumui f o r rl

    C that fo r each sectioa o r cf t

    kaDIis

    cons tan t md the

    p i l e

    fs

    p r i s r n t i c ; hovevet, erch e l 5 r any h m d i f f a r a a t s o i l

    and

    p i l e

    proper t i es , i nc lud ing

    k s 4 aad th m

    any

    he

    here

    f r o m one to

    r

    fo rg e number of segments.

    A

    pile of

    ¶ 9 p a t t S

    w i l l have 4 P t l ) ?at

    e ra 1 d e g r m of freedom i n d i s p h c r i w a t ,

    Since

    the egrees of

    freedom, comprnsiarr

    and

    totsioa, arm

    not

    coupled v i t h the f 3 m

    t h e y a r e

    included

    k t - although they could err r i ly be included a t thim

    stage. In th e computatioa t he 8 by stiff s matrix shavn r

    Appendix III

    i s

    computed fo r each segment and the element sti ff ne ss

    m trices summai

    to

    produce a 4 -) square s t i f fn es s mat r ix o f the

    p l l e .

    This matr ix +a than condensed

    to

    e l imina te

    all

    degrees

    of

    f r e e

    don except those o f in te r es t fb ], a t t h e p i l o head.

    The large matrix

    map be

    r e t a in e d i f l a t e r c om pu ta ti on f o r

    stress

    resu l tan ts , i .e ., d is -

    placements, she ar, moments, a re desi red d o n g th e pile . The proccduta

    o u t l in e d f o r m d e l C

    is

    best accompiished thmugh.use of a computer.

    The f a c t o r

    6

    used n expressions

    f o r

    the p i l e s t i f f n e s s c o e f f i -

    c i e n t s

    b

    i n f l e xu r e

    s

    a measure of t h e c o n n e c t iv i t y o f t h e p i l e

    v

    t o. t h e p i l e c a p .

    Thus, 61

    1.0 where 6 0 f o r a pinned o r hinged

    condi t ion

    aud

    6

    1.0 for a f ixe d condi t ion. I f the connection fs

    seai- r igid, i .e . , 0

    <

    6 (1.0, the

    d u e

    f

    6 may be

    estimated.

    With

    m ~ d e l t h e l ay er ed o r f i n i t e l e ng t h p i l e , 6 should be formulated

    a mul t ip l i e r t o the coef f i c i en t s coutputed ear l i e r . These mul t ip l i e r s

    a r e 6 fo r b 44s bnS6, bPLS a d b Z4; fo r bVli and

    b 2Z

    t is 0 5 ( 1 ~ ) .

    The long i tud inal member s t i f fn es s coe ff ic ient s , b j fa xia l and

    b 66-torsion

    have been sugguted ( I ) in t h e form

    vhcre hE/L and JC/L a r e axial

    and

    t o r s i a n d member s t i f fnmss , respect lo aly,

    txis

    been def ined ear l i e r ,

    and

    t h e c o e f f i c f e n t s

    kL

    and

    k

    are emperical

    T

    p a r t i c i p a t i o n f a c t o r s .

    I f t h e p i l e were f ix ed a t i t s end only, these

    fac to r s vou ld

    e

    1.0; however, they

    nay

    d if fe r considerably. O Neill(2)

    n o t e s t h a t may b e much

    larger, larger

    than the 2.0 pre vio usly sugges-

    ted.

    The f a c t o r kL

    may

    b e l e s s

    o r

    greater than 1.0.

    I f t he p i l e t i p

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    12/22

    did not move and re l i ed on f r i c t io n fo r bear ing

    k

    v o d d b e about-=

    kvement of the pi le t i p , however, ac t s to decrease \.

    Vorks vhich

    may be con sulted inc lu de tho se by Novak(l8), Pouloa(19).

    nd

    m l p h

    .Pd Wroth(20) fo r di scuss ion or alternative c i l c u k t i o n o f b Vj 3. F or

    rmving t i p o r l a ye ra d syst em be s t e va l ur t i oo of t h e l ong i t ud i mf

    s t i f f n e s s ap p ea rs t o b r e m u n c ia l .

    I n

    r

    k y e r d s ystem t he relatiara-

    sh ip between lo rd om th. p i l e

    nd

    d i r r p l a c u p t a t thm t op of t h e

    l a y er , where d i s p k w n d u d a s r ig id body

    - of

    t h e p i l e

    b r u u s e o f soil

    shear

    a d horten ing of th e pF1. due

    to

    a h t i c OIF

    .

    pre sri oo, may be denoted by bi j i f o r lay-r

    1.

    The s t i f f n e u c o a ff i-

    c i c n t o f t he p i l e i n n l a ye rs i e t he n ca.lcul.tad f rom

    1 1

    1

    1-- -...

    (17)

    ill b;3i

    b33,1 b33,2

    A

    similar c a l c u l a t i on c a n be

    d e

    o d et er mi n e t h e t o r s i o n a l s t i f f n e s s

    c oe f f i c i e n t , bqb6 , i n a l a ye re d syst em.

    COMPUTATIONS

    A

    10 inch

    MI

    pi pe p i l e was

    used in

    computations t o compare pi l e

    s t i f f n e s s p r o pe r ti e s ruing t h e f f n i t e l e n g t h p i l e , Hodel

    C

    and the long

    p i l e . t b d e l

    Al

    Results

    a r e g i ven

    bdov

    (ft . ) b l l (k/ in.) bi4(in -klrad ian) bi5(k/rad. or in.-k/in.)

    2 51.31

    9,821 614.2

    95.10 69,494 2196.3

    6 114 -02 157,355 3461.2

    10 117.04 212,505

    3598.2

    1 8 125.83 215,886

    3683.3

    24 126. 06 216,786 3696.9

    i n f i n i t e 126.08 216,802 3697.0

    2 4

    P i l e p r o p e r t i e s a r e :

    A

    16.1 in.

    I x =

    I

    211.9 in.

    ,

    x

    =

    D

    10.75 in.,

    E =

    30,000 hi

    nd G

    12,000 hi

    So il md ulu s ks 0.2

    cc

    . -

    I .

    I

    I

    kc i .

    It c a n be

    seen

    t h a t t h e r e

    is

    a r a p i d ch an ge a f t e r 6 f t . v i t h t h e .

    s t i f f n e s s c o e f f i ~ i e n t s pp ro ac hi ng t h e v a l u e f o r I nf ln Ct e.

    Note tha t

    \

    0.0171/in., thua

    &

    f i e l d s

    I 2

    15.35 ft.

    as

    long pi le .

    I f

    t h e above p i l e

    i s

    t oppe d v i t h a 2 f t . c a n t i l e v e r , i.e. a 26 f t -

    p i l e v i t h 24 f t . embedded and 2 f t . i n

    air

    t he e oe f f i c i mnt s are:

    I

    i l

    =

    78.82 klin ., b14 211,508 in-k /rad, and

    bi5 =

    3257.1 k/rad.

    Obviously, the condit io n of

    t he t op l a ye r

    i s

    of major importance.

    A

    problem vas solved, see Fig. 4 , t o i l lu s t r a t e the method of

    computation. The pi le pro per t ies

    are:

    11

    i

    .

    .-

    -*.

    . - .-.-..---

    .

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    13/22

    Fig Example rob lem

    1 2

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    14/22

    4

    I

    in .

    1

    in 1

    u in

    1

    u

    i n

    ~ ~ ~ - 2 )

    P i l e No. L in.1 1 2

    -

    400 30 20 1.32 30- 3 16.10 211.9

    2 400 0

    0

    -7.68 0

    0 113.09 1017.9

    3 400 -20

    -20

    1.32

    300.

    16.76 294.7

    i 4

    P i l e No.

    Ix in.

    1

    D x i n . )

    D in- ) Elcei) G k s i ) Mater ial

    211.9

    10.75 10.75

    30,000

    1 2 , 0 0 0 S t - l P i p

    2 1017.9 12

    1 2

    1,500

    300 Timber Pole

    3

    100.6 10.224 10.03

    30 000

    12,000 BPlO

    The soil subgrad.

    d U ; L W

    k,

    =

    0.1

    kci

    A

    follObLiOO Qd of

    jQIT = [40.k, 2O.k. 600.k. 0 , 500 in-k, 01

    w a r

    used.

    Resul ts arm

    as

    follows:

    a l l

    units

    i n k ip s and

    inch-

    1

    P i l e

    stiffness v h r

    . :.\ - -

    i l e

    b l

    -

    i 2

    5

    b4

    -

    ;5

    -

    i 6

    -

    i 5 b;4

    -

    74.90

    74.96 1207.5

    182,302

    182,302

    12,714

    2614.0 -2616.0

    2

    57.00 57.00

    424.1

    64,291

    64,291

    4,071

    1353.6 -1353.6

    3 58.99 78.40

    1257.0 230,558

    102,426

    ll.859

    1736.1 -3006.3

    2. The foundation s t i f m a matrix,

    308.06

    -

    26.93 276.97

    SYn

    - '

    ---

    435.18 74.24 2704.86

    11

    - [

    497.66 2600.15 -1699.42 1,277,722

    i

    327.69. -9410.49 -9449.02 -1,202,452 1,905,765

    756.74 421.86 6912.82

    -

    285,315 189,44 8 327,523

    3. The

    fmmdation

    displacemmts ,

    { } ~

    t-0.5132, 0.4991, 0.3741, 0.009045, 0.010398, -0.0054891

    I

    4

    The

    pi le displacmnents in member coordinates,

    {XI: -

    [-0.2441, 0.4742, 0.1749, 0.014099. 0.004483, -0.0010861

    {XI

    - [-0.5931, 0.5686, 0.3741, 0.009015, 0.010398. -0.0051891

    1x1: -

    -0.8944. -0.2291, 0.1899, -0.003017, 0.013032. -0.0064121

    5.

    The

    pi le force s i n member coordin ates.

    T

    {rI l

    -

    1-6-58, -1.31,

    211.2,

    1330.8. 179.2. -11.81

    {z}:

    =

    1-19.72. 20.16, 158.7. -188.1. -134.3. -22.31

    I

    - 1 3

    z

    1

    q

    J

    -.

    .

    . . 3

    =

    .

    I

    - -

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    15/22

    Although

    o

    computer program

    as

    used t o sol - the p m l - m t h e s t i f f n e s s

    mat r ix c n b e assembled using the equati ons i n Appendix

    I

    The or

    s t i f f n e s s m a t r ic e s

    Ib1Ix

    can be determin+d

    from

    n d o l Al but vero coa-

    puted f o r th is problem

    u h g

    C t o

    check Al

    CONCLUSIONS

    The spring formdacioa

    model has r nuder

    of advantag.. f o r arod.1

    i n g l a t e r a l l o rd i ng including t ho a b i l i t y t o

    compute

    det loet ions ,

    shears, bending momeats and s t r u s o s along the p i l a .

    The

    corapur t i a ru

    a r e s t r a i g h t f o m ar d and

    und8rstandable.

    Vark

    rcautns

    t o be done on

    impmvlng the soi l - pi la inte ract ion models snd

    adding

    t o t h o l i b r a r y

    of

    models mai la bl e to the des igner.

    It

    i s u s e fu l t o r e a l i z e t h a t when p i l b g a r e hinged o r v e r t ic a l ,

    a

    number

    of variahlu

    b u m zero. Io addi t ion, tho Ib ] matrix nay b e

    t h e s w i f sever l o r

    ll

    p i l e s i n t he

    fou d tioo

    are the same.

    f ir-

    t he r, s p e t r y of t h e arr an ge ws nt of p i l i n g n a folmdation

    m y l l ow

    a

    d e c re a se i n t h e amount of cosputations.

    yrmacem

    of loadlag

    may

    a l so shor ten computa tioos, espec ia l ly i f

    a

    combination of

    gaometrp and

    l o ad i ng a l l w t h e f o un da ti on t o

    be

    analyzcd as

    a

    plane figuro.

    P a r t i a l c o n s t r a i n t o f t h e p i l e t o t h o c a p s accounted f o r through

    choice of

    d

    b e t v e e n and 1.

    The add itio n of the finite le ngt h model, C herein, i s

    an

    impor-

    - t a n t

    and

    valuable Step forvard

    alloving

    use of shor t p i l ea , var i ab l e

    o r

    layered

    soils

    and

    var iab le s ec t ion p i l es .

    oHram PILEFDN, b J

    Dep;.-.tmcnt

    of Ci vi l and Environmental Enginrering.

    1 4

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    16/22

      PPENDIX

    I

    - FORHUTAS FOR STIFFNESS

    ItWLUOJCE

    COEFFICICFTS

    Formulas are 8iv .n for s in gle pi loa. St i f fne ss coeff ic ien t

    S

    S'

    i

    j i

    by reciproci ty nd frurction Bi ar e def ined f or convd8ncm ae followa:

    2

    B1   bll cos Y - bZ2

    2

    bj3 in

    B2

    -

    b b 8inY coeY

    11 33

    B (blS+bZ4) COSY 8 i ~ Ooea

    Bb

    q sina -

    u2

    cons

    2 2

    B5 bll sin y b33

    cos y

    2 2

    B6 bgq cos y

    -

    bS5 bb6

    sin

    y

    B1 = u3 [b22+i31 c o s 2 d

    B u (b22+Bl sh20 )

    2 2

    B16   b15 s i n a - b24 cos a)cosy

    B17

      u1 bZ2

    -

    bZ4 sinY cosa

    bg B~ u3 s in a cosu B

    18-

    sins C O S ~

    B19

      (b44

    -

    b

    sin y cosy

    66

    Thus StU

    B10 cosa bZ2

    S*12 B1 18

    13 B1l

    Stl4 -u2 Bll

    -

    Bg-B3

    15 B1l 7 '14

    .

    S'16 I B10 - u2b22 bZ4 sLL~ s im

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    17/22

    2 2

    S 44 u2B5+2u2Bl5~iua+B6~~s+bS5+U3 (2u2B13+B8+2B16)

    -u

    u B +B B -B (u sina+osa)-u (u B +u B +u B +2B3)

    45 1 2 5 6 1 8 15 1 3 2 1 1 1 1 3 3 1 1 8

    (B -B B 1 u B -B C O ~ Q ~ ~ ~ ( B ~ ~ B ~ + B ~ , )

    46 2 2 4 1 16 19

    2

    U +B sin a++ +2 6 cosWu3(B,+2tyBU+2B14)

    55 1 5

    6

    55

    l

    15

    56

    q

    B ~ B ~ + B ~ ) - B ~ ~ s ~ u ~ B ~ ~ + u ~shy gBlc~W+b24sino)~2 ~ ~ ~ c o s 0 c b ~ ~ ~ l

    2

    2 2

    2

    S'

    66

    blB4+(~l~Z)bU-2b24(~1~~~~2~i~)~inY+(b44-b66)~b

    +b66

    -

    vhere U1(u1,u2.u3) are the coordinates of the pifa t p in thm f o d r

    tion ai is the angle to the direction of batter elockuiss

    in

    p l w

    fron the U1

    and

    yi

    is the angle of batter r om the vertical n

    the plane of batter.

    .

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    18/22

      PPENDIX

    I STIFFNESS COEFRCIEfiTS FOR LON P I L E S

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    19/22

    APPENDIX - STIFFNESS KATRIX

    FOR

    A PILE SEGMENT

    where, Tli (C S

    - C S q

    n (C S - CS )K~

    2

    T3i 2(CS C S*)KB q

    T4i

    2(C S CS )KB q

    Segment of Pile

    vlth

    Hembe

    T5 (s*

    s2)rk

    egrees of Fretdoa

    T6, 2SS dq

    q

    l/(sq2-s2) 2

    C COSSL

    S sia0L

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    20/22

    APPENDIX

    I V

    - REFERENCES

    1

    S a d .

    W i l l i a m E.

    S t a t i c and Dynamic Ana lyst s of P l l e Foundations,

    Jo urn al of t he St ru ct ur al Div isio n, ASCE, Vol. 94, No. STS,

    Uay.

    1968, pp. 1077-1100.

    2.

    O'Neill, Hiclue1

    U,,

    discuss ion of Stat ic and Dynamic hualyl i8 of

    P l l e Fuun&tlmu,

    by

    William

    E.

    Saul , J ou rn a~ f t h e S t ruc tu ra l

    Division,

    CE,

    Vol. 95,

    NO.

    ST?

    Feb., 1969, pp. 289-295.

    ' .

    i 3. ~ b r t h y ,

    v.N.s.,

    and sht ivast rwa,

    s.P.

    discusaioa of s t a t i c and

    D y n m i c nalpis

    o f P i l e

    Foua&efoar,

    by W i U p p

    2 Saul

    J o u d

    of tho Stmctural Mvia ioo ,

    AS=

    Vol. 95,

    No.

    SR, Feb., 1969,

    pp. 288-289.

    i

    -

    4

    Prakash. Shaadiar,

    rrd

    Cluadrasokaran,

    v.,

    d i s c u u i o n o f S t a ti c

    and Dynamic Analysis o f PUe ~oun&t ioos , by U i l l k n E. Saul,

    Journal o f the S t ruc t u ra l Mvis ion . ASCE. Vol. 95, No.

    STIl

    &v., 1969, p. 762.

    5

    S a i l W i l l i a m E., clo su re t o St at ic and Dynamic Analysis of P i l e

    Foundations, Jou rnal of the St ru ct ur al Division, ASCE, Vol. 95

    No. ST ll , Nov., 1969,

    p.

    2511.

    6

    Saul, Willlam

    E.,

    disc uss ion of Full-Scale Lat era l Load Tes ts of

    P il e Groups, by J a i

    B. Kim

    and Robert J. Brungraber, J o u n d o f

    the Gmt ech nka l Div is ion , ASCZ Vol. 10 3, No. CT2 Feb., 1977,

    pp. 147-148.

    7.

    Saul,

    W i l l i a m E.

    and Wolf, Thomas V., dis cu ss io n of Design of

    Hachina Foundations on Piles, by Jogeshvar P. Singh, Neville C.

    Ibnovan, and

    Adrianus C.

    Job sis, Journal of the Ceotechnical

    Division, ASCE Vol. 104, No. GTl2, Dec., 1978, pp. 15261530.

    8.

    .Saul , Uf l l iaa E. and Wolf, ~hontas ., Ap pli ca tio ns For New Research

    fo r P i le Supported Hachine Foundations, paper presen ted a t the 1979

    nnual

    Conventloo,

    ACI

    H i l v a k e e ,

    W i s . ,

    March, 1979.

    9.

    ~esi; , Aleksandar S., Design of Pi le ~ou ndat ioos ,

    NCARP

    Synthesis

    42, TRB 1977.

    10. Bovles, Joseph E., Found ation An aly si s and Desim, 2d Ed., HcGrar

    H i l l ,

    N.Y.,

    1977.

    ll.

    Arya, Suresh C., O'Nei l l , Mchael W. and Pfncus, George, Design of

    St ru ct ur es and Foundations foe Vi bra tin g Fachinas, 'Gulf Publ. Co.,

    Houston, 1979.

    ?

    12

    Poulos,

    Harry C.,

    Group F a ct o rs f o r P i d e f l e e t i o n E a ti rm ti oa ,

    Journa l of the Ceo tech nicd Ennineerinx Division,

    ASCZ

    Vol. 105,

    No. GT12, Dec., 1979 , pp. 1489-1509.

    13.

    Novak, Milos, Ver tica l Vibratio n of Floa ting Pil es , Jou rnal of t h e

    Lhgineering Mechanics Division,

    ASCE

    Vo1. 103, No. EHl Feb. 1977,

    pp. 153-168.

    14-

    O 'burka , Mchar l J. and

    Dobry

    Picardo, Spririg

    and

    Dashpot Caeffi-

    c i en ts fo r rachine Foundat ious on Pi les ,

    paper

    presented a t t he 1979

    Annual

    Convention, ACI. Htlwaukea U i s . , Parch, i979.

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    21/22

    15.

    vesif .

    A. H

    Bending of Beams Resting on Iso tr op ic E la st ic Solid*

    Jo ur na l Engi nee rin g KechanLcs Div fsi on, ASCE,

    Vol.

    87, EHZ Apr.,

    1961,

    pp 35-53.

    16.

    Terzaghi,

    K.,

    Evaluation of Coe ffi cie nt of Subgradm Re. cti om, ~

    Ceotechni que, Vol. 5, No. 6 Dec., 1955,

    pp

    297-326.

    17. Robinson, K.E., Horfzone;ll Subgrade Re ac ti ons Estimated f r o m

    Lateral

    Loading

    ests on

    Timber Pi le s, Behavior of Deep Founda-

    t ions , STH

    Sr

    670, Raymond Lundgren,

    Ed.,

    1979,

    pp. 520 536.

    8. Novak, W o s , Dynamft Stf f fneas nd Damping of Pi le s, Canu firo

    C e o t e c M c a l Jou- Vol.

    11

    No.

    4,

    Elov.

    1974,

    19. Podos,

    H.G., and TIIvts E X

    The Set tle men t Behavior of S ing le

    Axi all y Loaded Incom press ible P i l es and Pie rs, Ccotechaique, Vol.

    18 , 1968, pp. 351-371.

    20.

    Randolph, H F and Wroth,

    C.P., A

    Simple Approach

    t o

    P i l e

    D w i g u

    and Evaluation of Pi le Tests, Behavior of P il e Foundations,

    ASTM STP 670, RayraondLundgren,

    Ed.,

    1979,

    pp

    484-499.

  • 8/17/2019 PILE Foundation Analysis_ASCE William Saul-1980_searchable

    22/22

    E r r a t a D i s c us s i o n s R e l a t i n g t o P a pe r

    "S ta t i c a nd Dynamic Ana lys i s o f P i l e F ounda t ions"

    by Will iam

    E .

    S a u l

    Pu bl ish ed i n th e S t r u c t u ra l Jo ur na l , ASCE, May 1968, pp . 1077=1100

    1.

    E r r a t a :

    pp. 1080-81-82 1 Change s u b s c r i p t s i n e x p r e s s i o n f o r b t o i n

    Eqs.

    3 ,

    1 3

    1 9 .

    11

    2. Change s u b s c r i p t s i n e x p r e s s i o n f o r b t o 1 i n

    Eqs. 4 , 14 , 20 .

    22

    3. Change s u b s c r i p t s i n e x p r e s s i o n f o r b = b t o

    2 i n Eqs. .9, 1 7 , & 2 3 . 1 5 5 1

    4 . Change s u b s c r i p t s i n e x p r e s s i o n f o r b =b t o

    1 i n Eqs. 10 , 18 , 24. 24 42

    5.

    C hanqe e xp r e s s io n i n Eqs . 19 20 t o

    1 2 B i k ) ;

    ( i . e . , c h a n g e - t o +.)

    p.

    1084 Note u n o t shown i n F ig . 5 ,

    it

    i s

    t h e v e r t i c a l c o m p o n e n t .

    3

    p. 1086

    1

    Change Eq. 47 t o

    Qi = m r

    2 a'

    i )

    2.

    Chanqe Eq. 49 t o -[S] {A}= r n [ ~ ] { h }

    3. Change Eq. 50 t o [

    -

    X ~ [ I ] ] { A ) = 0

    n

    p . 1 0 9 1 ( c a u t i o n ) I t h a s b een s a i d and n o t y e t v e r i f i e d t h a t t h e

    c h a r a c t e r i s t i c v e c t o r s i n T ab le 4 ( g ) a r e i n c o r r e c t .

    p. 1095

    F o l l ow i n g t h e Eq. f o r

    S h 5

    change 8

    46

    t o S i 6 .

    2. D i s c u s s i o n s o f t h e a bo v e p a p e r w er e p u b l i s h e d a s f o l l o w s :

    1

    O N e i l l ,

    M . W . , S t r u c t u r a l Jo u r na l , ASCE, Fe b. 1969 , pp. 289-295.

    2. V.

    N . S.

    Murthy and

    S.

    P. S h r i v a s t a v a , S t r u c t u r a l J o u r n a l

    ASCE,

    Feb. 1969, p. 288.

    3. Shamsher Pr akas h and

    V.

    C h an dr as ek ar an S t r u c t u r a l J o u r n a l ,

    ASCE, Nov. 19 69 , p.

    7 6 2

    4 . C l o s u r e , s t r u c t u r e s j o u r n a l ASCE, N o v . 1 9 6 9 , p . 2 5 1 1 .

    3. D i s c u s s i o n s o r o t h e r p a p e r s wh ic h a dd t o t h e a bo v e.

    1. Jo ur n a l o f t he Ge o te c nn ic a l D i v i s ion , ASCE, Feb 1977 , pp. 147-148.

    E xt en d m odels t o i n c lu d e s e m i - i n f i n i t e p i l e i n

    s c i l

    w i t h

    l i n e a r l y i n c r e a s i n g modulus o f s u bg r ad e r e a c t i o n .

    2. J o u r n a l o f t h e G e o t e c h n i c a l D i v i s i o n ASCE Dec 1978 , pp. 1526-1530.

    3.

    "A pp l ic a t i on s f o r New Research f o r P i l e Suppor ted Machine Founda-

    t i o n s " by W i l l ia m E Saul Thomas W . W ol f, p r e s e n t e d a t A C I Annual

    Conference , Milwaukee ,

    W I ,

    March 1979.

    4

    " P i l e

    F ounda t ion Ana lys i s "

    by Willian

    E. S a u l ,

    Preprint 80-102,