PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

98
PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER

Transcript of PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Page 1: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

PHYSICAL DIAGNOSIS

THE CHEST

DR SHAM A. CADER

Page 2: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

THE ORGANS

Page 3: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                                 

Page 4: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 5: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

ANATOMY

• One should have a clear understanding of anatomy of the respiratory system to perform a proper physical exam. Some of the important anatomical details are outlined below.

Page 6: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

TRACHEA

1. Starts from cricoid cartilage to sternal angle anteriorly and T4 spinous process posteriorly, where it divides into left and right main stem bronchi. This information is important in understanding D'spine sign seen in patients with large Mediastinal mass.

2. Trachea is slightly slanted to right. Bronchovesicular breathing heard in right infraclavicular region is due to this phenomenon.

3. Trachea has intra and extra thoracic components. This has important bearing in the understanding of physiology of variable obstruction.

Page 7: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                                 

Page 8: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                              

Page 9: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

MANUBRIUM ANGLE

• The angle between the body and Manubrium. Many important land marks occur at this level. It is called Louis Angle.

• 2nd rib articulates to Manubrium at this site. The ribs are counted anteriorly starting from this point.

• Carina of trachea is at this level.

• Mediastinum is divided into superior and inferior at this level.

Page 10: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

RIBS

• Anteriorly ribs are counted down starting from 2nd rib. There are 12 ribs and 11 interspaces. You can also count up from 12th rib. Inferior angle of scapula sits on 7th rib posteriorly.

Page 11: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

SPACES

• Anteriorly there are supra clavicular, infraclavicular, precardiac and Traube's space. Posteriorly we have interscapular, supra, and infra scapular spaces.

• Infraclavicular: Space below clavicle • Supraclavicular: Space above clavicle • Precardiac: Space in front of heart • Traube's: Space overlying stomach • Interscapular: Space between scapula • Suprascapular: Space above scapula • Infrascapular: Space below the scapula

Page 12: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

LINES

• Midsternal Line: A vertical line down the middle of sternum

• Parasternal Line: A vertical line along lateral edge of sternum

• Mid-Clavicular Line: A vertical line from middle of clavicle • Anterior Axillary Line: A vertical line along anterior

axillary fold • Mid-Axillary Line: A vertical line at mid point between

anterior and posterior axillary line. • Posterior Axillary Line: Along post axillary fold • Scapular Line: Inferior angle of scapula • Vertebral line: Over spinous processes in the midline

Page 13: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Right Lung:

• With a marking pen start 3 centimeters above clavicle in midclavicular line, come down along right parasternal line , join to 6th rib in midclavicular line, to 8th rib in mid-axillary line, to 10th rib posteriorly, to vertebral line posteriorly.

Page 14: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                                 

Page 15: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                       

Page 16: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Left Lung:

• At angle of Louis, follow the outer margin of heart to 6th rib in mid-clavicular line.

• Appreciate that apex of lung is just under the skin easily palpable in the supraclavicular space.

• Pancoast tumor and TB occur at this site. Hence, the apex of lungs should be routinely examined.

Page 17: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                       

Page 18: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Surface Anatomy of Lobes

• Draw oblique fissure by drawing a line strait from 6th rib in MCN. to 5th rib in mid axillary line and along the medial margin of scapula (with the patients hands on head) to 3rd spinous process

• Transverse fissure can be drawn by drawing a line from 5th rib in mid-axillary line to 4th rib anteriorly

Page 19: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Once the fissures are drawn over the outline of lungs, one can easily recognize the surface anatomy of lobes of lungs. One can then appreciate the importance of examining the patient all around the chest to cover the lobes. Most of lower lobe is in back, upper lobe is in front and all of middle lobe is in front. In the axilla all of the three lobes can be seen.

Page 20: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

DIAPHRAGM

Page 21: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Pleura: Once the diaphragm has been outlined you can appreciate that the pleural gutter is deep posteriorly. Fluid thus tends to accumulate posteriorly• Mediastinum is the space between lungs from inlet to

outlet of thorax. Anteriorly it is between parasternal lines. Posteriorly it is at vertebral line. Mediastinum is narrow posteriorly and widens anteriorly. Inferiorly it extends to xiphisternum. Superiorly it starts at suprasternal notch. Since the inlet of thorax is slanted, only posterior Mediastinum extends to neck.

Page 22: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 23: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Sternal angle separates superior from inferior Mediastinum. The inferior Mediastinum is divided into anterior, middle and posterior compartments. The space in front of heart is anterior Mediastinum and behind is posterior Mediastinum. Heart itself defines the middle Mediastinum. The posterior Mediastinum is divided into paravertebral and prevertebral space. Superior Mediastinum extends into the neck and is called cervico-Mediastinal space

Page 24: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

It is important to know the structures in each compartment. In the differential of masses in the Mediastinum one uses this knowledge.

Page 25: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

COSTAL ANGLE

• Costal angle is formed by the 10 rib with Costal cartilage on either side and xiphisternum in the middle. The normal angle is . Both sides are symmetrical. Volume changes in each hemithorax will alter this relationship. Hyperinflated lungs will increase the Costal angle. Diaphragmatic paralysis also alters the symmetry of Costal angle.

Page 26: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 27: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Spinous Process • The most prominent spinous process is 7th

cervical vertebra. You can count down the thoracic vertebra and the ribs using this landmark.

Page 28: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Respiratory Rate and Pattern of Breathing

• The patient should not be aware that you are counting his respiratory rate. Count the respiratory rate while pretending to take the patient's pulse.

• Note the rate, pattern and comfort of respiration.

Page 29: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Normal

• Resting rate is between 10-14 per minute, regular with no apparent discomfort..

• Chest wall and abdomen expand during inspiration and is symmetrical.

• Abdominal component of expansion is dominant in men and thoracic component in women.

• Periodic deep breathing (Sighs) less tha 5 per minute.

Page 30: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Abnormal Finding

• Minor changes in rate and rhythm of respiration occur due to anxiety and while it may represent an abnormality, it may not be significant

• Rate

• Rate below 10/min: Bradypnea: (Narcotics, raised intracranial tension, myxedema)

• Rate above 20/min: Tachypnea: (Interstitial, vascular and multitude of diseases, anxiety

Page 31: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Pattern

• Periodic breathing. Cyclical increase and decrease in depth of respiration: Cheyne-stokes breathing: (CHF, Cerebrovascular insufficiency)

• Slow deep breathing: Kussmaul: (Ketoacidosis) • Totally irregular with no pattern:Biot's breathing:

(CNS injury) • Periodic deep breathing: Sighs: (Anxiety state) • Instead of simultaneous chest and abdominal

expansion with inspiration abdomen retracts while chest expands: Abdominal paradox: (Diaphragmatic paralysis)

Page 32: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• On the side of unstable chest wall hemithorax retracts while the normal side expands with inspiration: Thoracic paradox: (Flail chest)

• With lips pursed patient controls expiration slowly: Pursed lip breathing: (Obstructive lung disease)

• No abdominal component : ( Acute abdomen) • No thoracic component: (Pleurisy, Chest wall

pain, Ankylosing spondylitis)

Page 33: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Discomfort

• Labored breathing: (Heart and Lung diseases)

• Unable to assume supine position because of worsening shortness of breath: Orthopnea: (CHF, Diaphragmatic paralysis, SVC syndrome, Anterior mediastinal mass)

• Unable to erect position because of worsening shortness of breath, more comfortable in supine position : Platypnea: (Pulmonary spiders in cirrhotic)

Page 34: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Size of Thorax

• The size of thorax is determined by the balance between elastic recoil of lungs and chest wall compliance. In normal, the FRC position is usually at 60% of the TLC. At this position muscle length tension curve is optimal for muscle contraction. If the elastic recoil of lung decreases the resting position of thorax will be larger, it maybe 80% of the TLC position. This position is very inefficient to generate force by muscles and leads to shortness of breath.

Page 35: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Symmetry of Hemithorax

• Both sides are equal in size and asymmetry is abnormal. Unilateral lung or pleural disease alters negative pressure in pleura, affecting the resting size of hemithorax. e.g. In pneumothorax the negative pressure in pleura is lost and there is nothing to hold chest wall down. Hemithorax on that side will assume TLC position. In patients with atelectasis the negative pressure in pleura increases and the size of hemithorax will become smaller

Page 36: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• It is best to assess symmetry of hemithorax with patient laying flat in bed without pillows. Stand either at head or foot end and look tangentially at the thorax level to assess asymmetry

Page 37: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                                           

Page 38: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                                        

Page 39: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Accessory Inspiratory Muscles

Page 40: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Accessory Expiratory Muscles

• Normal tidal expiration is passive and there is no muscle contraction. Expiratory muscle contraction is always accessory. When you force expiration, expiration muscles come into play. Abdominal muscles and intercostals are expiratory muscles. If a patient is contracting abdominal muscles for quiet respiration it is abnormal and he is attempting to force expiration.

Page 41: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Forced Expiration

• Only peak flows can be increased by forced expiration. The flow rates cannot be increased for most of expiratory phase by forcing expiration. The increasing positive pressure in pleura compresses airway and further decreases airway size thus countering the increased force to expire.

Page 42: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• In patients with increased airway resistance patients attempt to increase airflow. They have two options either to adopt a rapid shallow breathing or to use pursed lip breathing to counter auto-peep and enhance emptying of lung. When airways are severely narrowed, air trapping occurs and patient may breath with a very high FRC and the only way he can breath is to adopt a rapid shallow breathing.

Page 43: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Negative Pleural Pressure Assessment

• Only peak flows can be increased by forced expiration. The flow rates cannot be increased for most of expiratory phase by forcing expiration. The increasing positive pressure in pleura compresses airway and further decreases airway size thus countering the increased force to expire.

Page 44: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• In patients with increased airway resistance patients attempt to increase airflow. They have two options either to adopt a rapid shallow breathing or to use pursed lip breathing to counter auto-peep and enhance emptying of lung. When airways are severely narrowed, air trapping occurs and patient may breath with a very high FRC and the only way he can breath is to adopt a rapid shallow breathing.

Page 45: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Method Of Exam

1. Position yourself in front of the patient and note the position of the thyroid cartilage.

2. Inspect for the symmetry of clavicular insertion of both sternomastoids.

3. Tracheal Position: Gently bend the head to relax the sternomastoids. By inserting your finger between the trachea and sternomastoid, assess and compare the space on either side

Page 46: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Trachea: Position To evaluate the position of the

upper mediastinum

• Normal: Trachea is slightly tilted to right. As a result, the clavicular insertion of right Sternomastoid is slightly more prominent and the space between trachea and sternomastoid is smaller compared to left.

Page 47: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Abnormal Finding

• Tracheal deviation could be either due to Lung, pleural, Mediastinal or Chest wall disease. The mediastinum can be either pulled or pushed away from the lesion

Page 48: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Lung

Pull: ( Loss of lung volume)

• Atelectasis

• Fibrosis

• Agenesis

• Surgical resection

Push: (Space occupying lesions)

• Large mass lesions

Page 49: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Pleura 1. Push: • Pneumothorax • Pleural effusion 2. Pull: • Pleural fibrosis Mediastinal masses and thyroid tumors Kypho-scoliosis

Page 50: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Atelectasis

Page 51: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Resorptive atelectasis

• When airways are obstructed there is no further ventilation to the lungs and beyond. In the early stages blood flow continues and gradually the oxygen and Nitrogen get absorbed, resulting in atelectasis.

• The following in an example of right lung resorptive atelectasis. In this instance, atelectasis followed bronchial obstruction due to cancer.

Page 52: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                                               

Page 53: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

                                    

Page 54: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 55: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Chest: Observation

Chest asymmetry

• Kyphoscoliosis

• Larger hemithorax : (Pneumothorax, Pleural effusion)

• Smaller hemithorax: (Atelectasis, Pleural fibrosis, Agenesis of Lung)

Page 56: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Increased pleural negative pressure

• Unilateral (airway obstruction) or bilateral (COPD, DIF, Asthma)

• Intercostal and supraclavicular fossa retraction

• Downward movement of trachea with quiet inspiration

Page 57: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Skin and soft tissue

• Puncture sites and Scars (Thoracentesis, FNAB, Chest tube, Surgical scars)

Page 58: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Prominent collateral veins (SVC syndrome)

Page 59: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Swelling (Recent thoracentesis, Empyema, Mesothelioma, Empyema necessitatis, Cystic

hygroma

Page 60: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 61: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 62: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 63: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Erythema (Empyema)

• Warmth (Empyema)

• Tenderness ( Empyema, Rib and chest wall lesions )

• Subcutaneous nodules (Metastasis)

Page 64: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Voice transmission

• Patient to say "99" "1, 2, 3" or "E" • Each time you lay your hands or listen • All around the chest and compare • Dorsal surface of your fingers or ulnar surface of your

hand (tactile fremitus) • Listen with diaphragm (vocal resonance) • If increased have patient whisper • Note the intensity • Quality of pitch • Compare

Page 65: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Tactile Fremitus

Page 66: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Abnormal Finding

• Decreased: (Pleural effusion, Pneumothorax, Atelectasis, Mass)

• Increased: (conditions giving bronchial breathing)

• Bronchophony: (Normal)

• Whispering pectoroliquy ( Normal )

• Qualitative: Egophony

Page 67: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Lungs: Percussion

• Percuss the lung fields, alternating, from top to bottom and comparing sides.

• Percuss over the intercostal space and note the resonance and the feel of percussion.

• Keep the middle finger firmly over the chest wall along intercostal space and tap chest over distal interphalangeal joint with middle finger of the opposite hand.

Page 68: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• The movement of tapping should come from the wrist.

• Tap 2-3 times in a row. • Do not leave the percussing finger on chest ,

otherwise you will dampen the sound. • Stand on one side and with your flat of hand, tap

the chest from top to bottom and from side to side to compare. I use this method as a screening step to identify the area of abnormality

Page 69: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• The movement of tapping should come from the wrist.

• Tap 2-3 times in a row. • Do not leave the percussing finger on chest ,

otherwise you will dampen the sound. • Stand on one side and with your flat of hand, tap

the chest from top to bottom and from side to side to compare. I use this method as a screening step to identify the area of abnormality

Page 70: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Movement of Diaphragm:

• Identify the lower limit of resonance during deep inspiration and deep expiration.

• This determines the range of movement of the diaphragm.

Page 71: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Normal

• The lung is filled with air (99% of lung is air). Hence, percussion of it gives a resonance. This step helps identify areas of lung devoid of air.

• Appreciate the dullness of the left anterior chest due to heart and right lower chest due to liver.

• Note the hyper-resonance of the left lower anterior chest due to air filled stomach.

• Normally, the rest of the lung fields are resonant. • Normal diaphragmatic excursion is 5-6 cm.

Page 72: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 73: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 74: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 75: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 76: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Abnormal Finding

Lungs fields

Dullness: (Mass, Atelectasis, Consolidation, Pleural effusion)

Hyper-resonance: (Emphysema, Asthma, Pneumothorax, Blebs)

Page 77: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Decreased or increased resonance is abnormal. Increased resonances can be noted either due to lung distention as seen in asthma, emphysema, bullous disease or due to Pneumothorax. Decreased resonance is noted with pleural effusion and all other lung diseases. Experienced physicians are able to discriminate between dullness of pleural effusion from a consolidation or a mass lesion of lung. The dullness is flat and the finger is painful to percussion with pleural effusion.

• Diaphragmatic motion

Page 78: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Diaphragmatic motion

• Decreased diaphragmatic excursion: (Emphysema, paralysed diaphragm)

Page 79: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Auscultation of Lungs

• While the patient breathes normally with mouth open, auscultate the lungs, making sure to auscultate the apices and middle and lower lung fields posteriorly, laterally and anteriorly.

• Alternate and compare sides. • Use the diaphragm of the stethoscope. Listen to at least

one complete respiratory cycle at each site. • First listen with quiet respiration. If breath sounds are

inaudible, then have him take deep breaths. • First describe the breath sounds and then the

adventitious sounds.

Page 80: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Note the intensity of breath sounds and make a comparison with the opposite side.

• Assess length of inspiration and expiration. Listen for the pause between inspiration, expiration and the quality of pitch of the sound

• Also compare the intensity of breath sounds between upper and lower chest in upright position. Compare the intensity of breath sounds from dependent to top lung in the decubitus position.

• Note the presence or absence of adventitious sounds

Page 81: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Normal

• There are two normal breath sounds. Bronchial and vesicular. Breath sounds heard over the tracheobronchial tree are called bronchial breathing and breath sounds heard over the lung tissue are called vesicular breathing. The only place where tracheobronchial trees are close to chest wall without surrounding lung tissue are trachea, right sternoclavicular joints and posterior right interscapular space. These are the sites where bronchial breathing can be normally heard. In all other places there is lung tissue and vesicular breathing is heard

Page 82: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• The bronchial breath sounds over the trachea has a higher pitch, louder, inspiration and expiration are equal and there is a pause between inspiration and expiration.

Page 83: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• The vesicular breathing is heard over the thorax, lower pitched and softer than bronchial breathing. Expiration is shorter and there is no pause between inspiration and expiration. The intensity of breath sound is higher in bases in erect position and dependent lung in decubitus position

Page 84: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• The breath sounds are symmetrical and louder in intensity in bases compared to apices in erect position. No adventitious sounds are heard.

Page 85: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.
Page 86: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Abnormal Finding

• Intensity of breath sounds, in general, is a good index of ventilation of the underlying lung. If the intensity increases there is more ventilation and vice versa. Breath sounds are markedly decreased in emphysema

Page 87: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Symmetry: If there is asymmetry in intensity, the side where there is decreased intensity is abnormal.

Page 88: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Bronchial breathing anywhere other than over the trachea, right clavicle or right interscapular space is abnormal. Presence of bronchial breathing would suggest

Page 89: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Consolidation

• Cavitation

• Complete alveolar atelectasis with patent airways

• Mass interposed between chest wall and large airways

• Tension Pneumothorax

• Massive pleural effusion with complete atelectasis of lung

Page 90: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Experienced physicians could discriminate between consolidation and cavitation by noting the quality of bronchial breathing. In consolidation, the bronchial breathing is low pitched and sticky and is termed tubular type of bronchial breathing. In cavitary disease, it is high pitched and hollow and is called cavernous breathing. You can simulate this sound by blowing over an empty coke bottle. In tension pneumothorax bronchial breath sounds has a metallic quality and is called amphoric breathing

Page 91: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

Adventitious sounds

• Wheeze

• Stridor (rhonchi)

• Crackles

• Pleural Rub 91

Page 92: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

AUSCULTATION

• Tracheal Breath Sounds: Loud, harsh, high pitched.

• Bronchial Breath Sounds: Loud, high-pitched with air swishing past.

• Bronchovesicular Sounds: Heard near branching of main bronchi, combination of bronchial and vesicular sounds.

• Vesicular Sounds: Soft, low-pitched, airy, swishing, heard below the level of the bronchi

Page 93: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• PLEURAL FRICTION RUB: Grating sound heard during breathing that stops when the breath is held. Caused by friction of visceral and parietal pleura.

• PULMONARY CONSOLIDATION: Occurs with late-stage lobar pneumonia.

• BRONCHOPHONY: Increased transmission of sound to the lung periphery. Indicative of pulmonary consolidation

Page 94: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• WHISPERED PECTORILOQUY: Words being understood better when whispered. Also indicative of pulmonary consolidation.

• EGOPHONY: "E" to "A" sound-changes. Indicative of pulmonary consolidation or pleural effusion.

Page 95: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• HAMMAN'S SIGN: Crunching, crackling sound over chest heard synchronous with the heart beat. Occurs with mediastinal emphysema -- air in the mediastinum.

• CAUSES: Can follow thoracic surgery, trauma.

• Boerhaave's Syndrome: Esophageal rupture causing air in mediastinum. Rare

Page 96: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

LUNG DISEASES

• Asthma • Atelectasis: Bronchial plug ------>

decreased lung volume ------> higher lung density ------> lung mass is pulled toward chest wall by negative pressure

• Tracheal deviation toward affected side • crackles, maybe • no breath sounds

Page 97: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Bronchiectasis: Chronic bronchial dilation.

• Caused by frequent pulmonary infections or pneumonia.

• Large amounts of sputum will be expectorated when patient lies prone hanging toward floor.

• Bronchitis: Acute (infectious) or chronic (smoker's)

• Bronchiolitis: Common in infants and children

Page 98: PHYSICAL DIAGNOSIS THE CHEST DR SHAM A. CADER. THE ORGANS.

• Lung Cancer • Cor Pulmonale • Croup: Kids under 3 years old. Rapid, staccato coughs. • Differential Diagnosis is between inflammatory Croup or

Spasmodic Croup. • Cystic Fibrosis • Pleural Effusion: Dullness on percussion. Decreased fremitus.

Reduced breath sounds. • Emphysema • Epiglottitis: In kiddies, don't inspect the pharynx without a chest

tube nearby. • Pneumonia