phys lecture 5 DigitalRadiography -...

37
Digital Radiography PHYS Lecture Carlos Vinhais Departamento de Física Instituto Superior de Engenharia do Porto [email protected]

Transcript of phys lecture 5 DigitalRadiography -...

Page 1: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Digital Radiography

PHYS Lecture

Carlos Vinhais

Departamento de FísicaInstituto Superior de Engenharia do Porto

[email protected]

Page 2: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 2

Overview

• Digital imaging• Film-screen vs Imaging Plate

• Materials for Digital Detectors• Detectors in Digital Imaging

• Computed Radiography (CR)• Photostimulable Phosphor

• Digital Radiography (DR)• Indirect DR and Direct DR• Charge Coupled Devices• Flat Panel Detectors• Thin-Film Transistors

• Image Processing

• Digital Mammography (FFDM)

• Temporal Subtraction

• Digital Subtraction Angiography (DSA)

• Dual-Energy Subtraction

Page 3: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 3

Digital Imaging

• Common Digital Modalities:

• Digital Chest Radiograph 4096 x 4096 x 12 bit• CT 512 x 512 x 12 bit• SPECT 128 x 128 x 8 bit• MRI 256 x 256 x 8 bit• US 512 x 512 x 8-24 bits

• Highest Quality Viewing Station

• 2k x 2k x 12 bits

Page 4: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 4

Digital Imaging

• Eliminate film• No processing, darkroom, film room,...

• Image archive, retrieve, transmission• Eliminate lost/missing films

• Higher image dynamic range:• Wider exposure latitude• Higher image signal-to-noise ratio (contrast)

• Imediate image• Computer image enhancement• Potencially lower dose

Page 5: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 5

Film-screen vs Imaging Plate

• Film-screen• Non-linear characteristics• Contrast compression• Under/over exposures

• Imaging Plate• linear characteristics• Wide exposure range• Exposure safety

• Dynamic Range

Page 6: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 6

Materials for Digital Detectors

• Ideal Material

• photoelectric interactions → high Z, matched to photon spectrum exiting patient

• adequate thickness to absorb a large number of x-rays, but not so thick as to adversely impact spatial resolution

• low amount of x-ray energy required to produce a light photon or electron (signal)

Page 7: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 7

Materials for Digital Detectors

• gas detectors (Xe)• X-ray →e-

→ ADC

• Photoconductors (Se, CdTe, HgI2, PbI2)• X-ray → e-

→ TFT → ADC

• Scintillators/phosphors (CsI, Gd2O2S)• X-ray→ e-

→Visible Light (VL)→ e-→ TFT → ADC

• Photostimulable phosphors (BaFBr)• X-ray → e-

→ F+/F → laser → e-→ VL → PMT → ADC

Page 8: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 8

Detectors in Digital Imaging

• Solid-state materials

• Electrons arranged in bands with conduction band usually empty

• Solid-state detectors

• Photoconductor – charge collected and measured directly

• Scintillator (phosphor) – some deposited energy converted to visible light

• Photostimulable phosphors – energy stored in electron traps

Page 9: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 9

Digital Technologies

• Computed Radiography (CR)• Digital Radiography (DR)

Page 10: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 10

Computed Radiography (CR)

Page 11: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 11

Computed Radiography (CR)

• Photostimulable Phosphor (PSP)Barium fluorohalide85% BaFBr:Eu + 15% BaFI:Eu

• e- from Eu2+ liberated through absorption of x-rays

• Liberated e- fall from the conduction band into ‘trapping sites’ near F-centers

• Low energy laser light (700 nm) stimulation

• e- repromoted into the conduction band

• Recombination of e- with Eu3+ ions and emission of blue –green (450-550 nm) visible light (VL)

Page 12: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 12

Computed Radiography (CR)

• Imaging plate (IP) made of PSP is exposed identically to SF radiography

• IP in CR cassette taken to CR reader where the IP is separated from cassette

• IP is transferred across a stage with stepping motors and scanned by a laser beam (~700 nm) swept across the IP by a rotating polygonal mirror

• Light emitted from the IP is collected by a fiber-optic bundle and funneled into a photomultiplier tube (PMT) that converts VL into e- current

X-ray → e-→ F+/F → laser →

e- → VL → PMT → ADC → RAM

Page 13: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 13

Computed Radiography (CR)

• Electronic signal output from PMT input to an ADC

• Digital output from ADC stored

• Raster swept out by rotating polygonal mirror and stage stepping motors produces I(t) into PMT which eventually translates into the stored DV(x,y):

• IP exposed to bright light to erase any remaining trapped e- (~50%)

• IP mechanically reinserted into cassette ready for use

• 200µm and 100µm pixel size (14”x17”:1780x2160 and 3560x4320, respectively) X-ray → e-

→ F+/F → laser → e- → VL → PMT → ADC → RAM

Page 14: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 14

Computed Radiography (CR)

• IP dynamic range about 100x that of SF

• Very wide latitude → flat contrast

• Image processing required:• Enhance contrast• Spatial-frequency filtering

• CR’s wide latitude and image processing capabilities produce reasonable OD or DV for either under or overexposed exams

• Portable radiography: where the tight exposure limits of SF are hard to achieve

• Underexposed → ↑ quantum mottle• overexposed → unnecessary patient dose

Page 15: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 15

Computed Radiography (CR)

Page 16: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 16

Digital Radiography (DR)

Page 17: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 17

Digital Radiography (DR)

• Indirect DR

• create visible light photons from x-rays with scintillator then produce electrons with photodiodes

• typically lower spatial resolution than direct DR and lower dose efficiency than direct DR due to limiting the phosphor thickness so as not to adversely impact spatial resolution

Page 18: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 18

Digital Radiography (DR)

• Direct DR

• directly create electrons from absorbed x-rays

• typically higher spatial resolution than indirect DR

• higher dose efficiency than indirect DR due to electric field lines constraining electron lateral drift

Page 19: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 19

Charge Coupled Devices (CCD)

• Form images from visible light• Videocams & digital cameras

• Each picture element (pixel) a photosensitive ‘bucket’ (PE)• Electrons accumulate in individual pixel cells• Accumulated charge read out pixel by pixel

• After exposure, the elements electronically readout via ‘shiftand-read’ logic and digitized

• Requires coupling between light source and CCD• Fluoroscopy and cine-angiography, digital cineradiography• Digital biopsy system (phosphor screen)

• 1K and 2K CCDs used

Page 20: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 20

Charge Coupled Devices (CCD)

lens coupling

ImageIntensifier

Fiberoptic

coupling

Readout

Page 21: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 21

Indirect Flat Panel Detectors

• Photodetector coupled to x-ray intensifying screen to generate VL photons from an x-ray exposure

• Gd2O2S or CsI• CsI grown in columnar crystals to improve

efficiency

• EK: Cs = 36 keV, I = 33.2 keV

• X-rays absorbed in screen give off visible light

• Visible light absorbed in photodetector• Fill factor determines efficiency

• Each element of the array (pixel) consists of transistor (readout) electronics and a photodetector area

• Detector size determines best spatial resolution• 125 µm -> 4 cycles/mm• 100 µm -> 5 cycles/mm

Page 22: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 22

Thin-Film Transistors (TFT)

• After the exposure is complete and the e- have been stored in the photodetection area (capacitor), rows in the TFT are scanned, activating the transistor gates

• Transistor source (connected to photodetector capacitors is shunted through the drain to associated charge amplifiers

• Amplified signal from each pixel then digitized and stored

X-ray→e-→VL→e →TFT→ADC→RAM

Page 23: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 23

Direct Flat Panel Detectors

• Use a layer of photoconductive material (e.g., α-Se) atop a TFT array

• e- released in the detector layer from x-ray interactions used to form the image directly

• High degree of e- directionality through application of E field

• Photoconductive material can be made thick w/o significant degradation of spatial resolution

• Photoconductive materials• Selenium (Z=34, EK = 12.7 keV)• CdTe, HgI2 and PbI2

X-ray→e-→TFT→ADC→RAM

Page 24: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 24

Digital Mammography

• Full-Field Digital Mammography (FFDM)

• Mosaic of CCD detectors• TFT flat panel detectors• Slot-scan detector

• 1D detector array

• Digital Imaging Detector

• Large dynamic range• Reasonable spatial• resolution (300 µm)• Expensive ~ $300k

Page 25: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 25

Digital Mammography

Digital Detector Film-Screen

Page 26: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 26

Image Processing

• Most common operations based on mathematical convolution

• Convolution kernels:• Soft tissue – smoothing• Bone – edge enhancement

Page 27: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 27

Image Processing

Contrast Enhanced Edge Sharpening Both

Page 28: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 28

Image Processing

original11x11

smooth

edge enhance

edgeminussmooth

Page 29: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 29

Image Processing

histogram equalization

Page 30: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 30

Temporal Subtraction

• Mask (background) subtracted from images during/post contrast injection

• Motion can cause misregistration artifacts

• Digital value proportional to contrast concentration and vessel thickness

Is = ln(Im) – ln(Ic) = µvessel · tvessel

• Temporal subtraction works best when time differences between images is short

• Possible to spatially warp images taken over a longer period of time

Page 31: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 31

Digital Subtraction Angiography (DSA)

Page 32: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 32

Dual-Energy Subtraction

• Exploits differences between the Z of bone (Zeff ≈ 13) and soft tissue (Zeff ≈ 7.6)

• Images taken either at two different kVp (two-shot), or

• One image (one-shot) taken with energy separation provided by a filter (sandwich)

Iout = ln (Ilow) – R · ln (Ihigh)

where R is altered to produce soft-tissue predominant or bone predominant images

Page 33: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 33

Dual-Energy Subtraction

Two-pulse single

detector

One-pulsesandwiched

detector

Page 34: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 34

Dual-Energy Subtraction

HighLow

Page 35: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 35

Dual-Energy Subtraction

Soft tissueBone

Page 36: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

Carlos Vinhais 36

Dual-Energy Subtraction

• MacMahon H. “Dual-energy and temporal subtraction digital chest radiography”. In: Samei E, Flynn MJ, eds. Syllabus: Advances in Digital Radiography: Categorical Course in Diagnostic Radiology Physics. Oak Brook, Ill: RSNA Publications; 2003: 181-188.

• Ho JT, Kruger RA, Sorenson JA. “Comparison of dual and single exposure techniques in dual-energy chest radiography”. Med Phys. 1989; 16:202-208.

Page 37: phys lecture 5 DigitalRadiography - cvinhais.noip.mecvinhais.noip.me/.../lectures/phys_lecture_5_DigitalRadiography.pdf · Digital Radiography PHYS Lecture Carlos Vinhais Departamento

End of Lecture!