PhD Presentation

72
Synthesis of Branched, Cyclic & Functional Polymers Vijay Chavan, Dr. Roderic P. Quirk Department of Polymer Science, The University of Akron, Akron, Ohio- 44325

description

Summary of my research work ( industrial projects are not presented on these slides)

Transcript of PhD Presentation

Synthesis of Branched, Cyclic & Functional Polymers

Vijay Chavan, Dr. Roderic P. QuirkDepartment of Polymer Science,

The University of Akron,Akron, Ohio- 44325

Department of Polymer Science at AkronProgram Since 1967 First College of Polymer Science & Engineering in the world New Building constructed in 1991

Akron & Polymer History

• Goodrich (1869)

• Goodyear (1898)

• Firestone (1900)

• Gojo (1949) Purell Hand Sanitizer

• Akron Polymer Systems (2002) by Dr. Frank Harris – condensation polymerization products

1) Controlled synthesis of Star Branched Polymers

Vijay Chavan, Roderic P. Quirk, Manuela Ocampo

Unique aspects of star polymers

• Different Architecture

• Lower solution viscosity

• Lower melt viscosity ,easier to process

• Preferential migration to surface

Grest, G. S.; Fetters, L. J.; Huang, J. S.; Richter, D. Advances in Chemical Physics 1996, 94, 67-163

Foster, M. D.; Greenberg, C. C.; Teale, D. M.; Turner, C. M.; Corona-Galvan, S.; Cloutet, E.; Butler, P. D.; Hammouda, B.; Quirk, R. P. Macromol. Symp. 2000, 149, 263-268.

Applications of star / branched polymers (500 patents)

• Synthetic Elastomers

• Coatings (improved hardness and drying)1

• Biolubricants2

• Emulsifiers 3

• Photolithographic materials 4

• Dental Cements 5, Adhesives & coatings 6

Prevents Cold Flow

Advantages of Anionic Polymerization

• Controlled Molecular weight , Narrow Molecular Weight Distribution, PDI < 1.1

Li

n

+ -C6H6

30 0C

--+

Li

Li Li

Initiation

Propagation

Ri>Rp most of the times

No termination and no transfer

Mn = grams of monomer

Moles of initiator

One initiator generates onePolymer chain

1) Star PS using DVB

Degree of Branching from 5 to 39

f = Mn branch/Mn linear = 5-39

[DVB]/[PSLi] = 2 to 30

Hseih, H.L.; Quirk, R.P. Anionic Polymerization: Principles and Practical Appplications; Marcel Dekker, Inc.: New York, 1996

P Li +

P Li

P

Possibility of gelling

2) Star polymers by condensing living P-Li+ with chlorosilanes

Cl Si Cl

Cl

ClSi

P Li +

Morton, M.; Helminiak, T. E.; Gadkary, S. D.; Bueche, F. J. Polym. Sci. 1962, 57, 471-482

Mn star / Mn arm = 4.09After fractionation

PDI= 1.09

Combination of vinyl and chlorine group

Si

Cl

Nucleophilic substitution

PS- Li+

VDMCS

VInyldimethylchlorosilane

PS+

SiSiCl PSPS- Li +

Chaumont, P.; Herz, J.; Rempp, P. Eur. Polym. J. 1979, 15, 537-540.

THF, -70 0C

Excess

Mn = 20kPDI = 1.1

Addition of living PSLi to VDMCS

Reaction done in THF at -70 0C

Wilczek, L., US Patent 6,740,723 , Feb 11, 2003

Reaction of PSLi with VDMCS

Branches upon branches

Si

Cl

PSLi +

f max = Mn branched / Mn linear = 5

THF , -780C

Approx 1:1 ratio

Dupont

Aim of the research

• Understand the chemistry and efficiency of VDMCS addition to PSLi

• Find evidence of architecture

ExperimentStyrene

MethanolVDMCS

Methanol

Ampoule for base sample

Vacuum

Methanol

Solution

Ampoule for base sample after 12 hrs

Inlet for initiator

GPC Analysis

PS-VDMCS 30 C-1.5 eq

0

0.2

0.4

0.6

0.8

1

1.2

18 20 22 24 26 28

Retention volume

RI s

ign

al

PS-VDMCSbase at 30 C PS-VDMCS-12hrsPS-VDMCS-3days-30C

Mnbase= 2,500 g/mol

PDI = 1.02

Mn: 23,000 g/mol

PDI: 1.3

1H NMR PS-VDMCS-2.ESP

12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No

rma

lize

d In

ten

sity

CHLOROFORM-d

7.2

7

No Vinyl peaks

TMS Si reference.esp

32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56Chemical Shift (ppm)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No

rma

lize

d In

ten

sity

-37.30

0

TMS

PS-VDMCS-1.5-30C-3day

Reported peaks for –Si-Cl (17.65 ppm) and –Si-OCH3 (6.66 ppm) are absent indicating complete substitution of Cl

29Si NMR

VDMCS-1.5-50C-3DAY-SI.ESP

32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

-37.

30

VDMCS-2.5-50C-3DAY-SI.ESP

32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

-37.

30

VDMCS-2.5-30C-3DAY-SI.ESP

32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

-37

.30

VDMCS-5EQ-30C-3DAY-SI.ESP

32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

-37.

30

VDMCS-5EQ-50C-3DAY-SI.ESP

32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

-37

.30

PS-VDMCS-1.5-50C-3day PS-VDMCS-2.5-30C-3day

PS-VDMCS-2.5-50C-3day PS-VDMCS-5-30C-3day

PS-VDMCS-5-50C-3day

Effect of concentration of VDMCS

No of arms Vs Concentration of VDMCS

123456789

10

0 1 2 3 4 5 6

Eq of VDMCS

f (n

o o

f ar

ms)

Behavior unlike DVB

n

Si

Cl

n

n

n

Si

n

n

Si

n

Si Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

-

-

Li +

Li+

-

-

-

-

Vinyl 1

Anion 2

Vinyl 1

Viscosity of Star and Linear

[n] Intrinsic viscosity Vs Mn

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10000 12000 14000 16000 18000 20000 22000 24000

Mn (g/mol)

[n]

Intr

ins

ic v

isc

os

ity

[n] linear

[n] branched

[η] star

[η] linear=

Contraction parameter

Contraction factor gη = [η]branched/ [η]linear

Deffieux, A.; Schappacher, M. Macromolecules, 1999, 32, 1797-1802*Roovers, J. Branched Polymers II, Springer, 1999, 169

(f = Mn star/ Mn linear )

Experimental contraction factor (gη) Vs No of arms (f)

0

0.1

0.2

0.3

0.4

0.5

0.6

7 7.5 8 8.5 9 9.5 10

f

gη g1 observed

Roover's Equation

gη literatureFor f=8.9 is 0.44*Observed is 0.46

Contraction parameter observed vs theoretical

fObserved

[n]/[n]linCalculated

gn

8.90 0.46 0.44

8.09 0.48 0.47

9.36 0.40 0.42

7.50 0.49 0.49

7.94 0.53 0.47

8.33 0.47 0.46

Melt Viscosity Data

Melt Viscosity of Stars and Linear

0

20

40

60

80

100

120

140

150 160 170 180 190 200 210

Temp (0C)

Mel

t V

isco

sity

(P

a.s)

Linear 18K

Star 17K-6

Star 22k-1

Linear Mn = 18k, PDI= 1.02Star 17k, PDI = 1.21, Star 22k , PDI = 1.30

Constant strain Cone and plate rheometerNewtonian region

VDMCS star , Mn = 23k , PDI = 1.47 DVB Star , Mn = 26k , PDI = 1.58

TGA curve

0

20

40

60

80

100

120

200 300 400 500 600Temperature

We

igh

t L

os

s (

%)

VDMCS 23k StarDVB 26k Star

Thermal Stability

Star Polystyrene

SiSiSi

Si Si

SiSi

HSi Si

Conclusion

• Efficient synthesis of star polymers was achieved

• Viscosities lower than linear analogues

• Just 1.5 eq of VDMCS are enough to generate 8 arms Behavior is different than DVB

• No residual double bonds or chlorine groups

Vijay Chavan*, Roderic P. Quirk, Shih Fan Wang, Mark D. Foster, Rebecca Agapov, Rahul Kulkarni, Xinfei Yu, Wumin Yu

Topographical Evidence of Cyclic Polymers

Cyclic Polymer

Two main methods of making cyclic polymers

1) End to end chain coupling

-Very low quantities obtained

-Needs very high dilution ( mg product per liter of solvent)

- Good for low mol weight polymers

2) Ring opening metathesis

• -Very efficient, vol of solvent can be as little as that of the monomer or even bulk

• -High quantity of polymer obtained

• -Potential to make continuous process ?

A)Cyclization by anionic polymerization

Na, Napthalene-

Na Na

Cl

Cl

+

+

mg of product in liters of solventMixtures of products

Geiser, D.; Hocker, H. Macromolecules 1980,13, 653.

Slow addition

Tetrahydropyran

Mn = 4k-24 k,

Smart way of separationReacted the linear polymers with High MW PSLi and fractionated

B)Cyclization by click chemistry

Br Br

1) NaN3 2) Click reaction, CuBr, BiPy, 120oC, 1 hr

N

N

N

DMF, 25oC

Laurent, B.A.; Grayson, S.M. J. Am. Chem. Soc., 2006, 128 (13), 4238

75o C, CuBr,PMDETA, ATRP

Mn = 2k, PDI = 1.08200 mg product for 1 liter solvent

2) Ring opening metathesis by Dr. Robert Grubbs

Nobel Prize Winner in Chemistry 2005

http://en.wikipedia.org/wiki/File:Robert_Grubbs.jpg

Can cyclic catalyst make cyclic polymer ?

Fürstner, A.; Ackermann, L.; Babor, B.; Goddard, R.; Lehmann, C. W.; Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236.

Polymer

catalyst

http://upload.wikimedia.org/wikipedia/commons/0/0e/Making_soapbubbles-SteveEF.jpg

Ru Complex A

t-BuOK/ Toluene, rt, 1.5hr

Ru CH

PCy3

PCy3Cl

Cl

Ph

N

CH3

H3C

CH3

HC CH

N

C

Ru CH

PCy3Cl

Cl

Ph

N

CH3

H3C

CH3

HC CH

N

C

Br -

H

1)

2)

Fürstner, A.; Ackermann, L.; Babor, B.; Goddard, R.; Lehmann, C. W.; Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236.Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Science 2002, 297, 2041-2044.Bielawski, C. W.; Benitez, D.; Grubbs, R. H. J. Am. Chem. Soc. 2003,125, 8424-8425.

Complex A

Cyclic catalyst

N

CH3

H3C

CH3

HC CH

N

CH

Ru

PCy3Cl

Cl

n-Hexane

reflux 1hr

N

CH3

H3C

CH3

HC CH

N

CH

Ru CH

PCy3Cl

Cl

Ph

3

Fürstner, A.; Ackermann, L.; Babor, B.; Goddard, R.; Lehmann, C. W.; Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236.

Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Science 2002, 297, 2041-2044.Bielawski, C. W.; Benitez, D.; Grubbs, R. H. J. Am. Chem. Soc. 2003,125, 8424-8425.

Red

Yellow

Complex 12c

Fürstner, A.; Ackermann, L.; Babor, B.; Goddard, R.; Lehmann, C. W.; Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236.

Pentane/Ether : 4:1 volume ratio

Argon

Argon

31P NMR linear catalyst

12CP31.ESP

45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No

rma

lize

d In

ten

sity

34

.31

N

CH3

H3C

CH3

HC CH

N

C

Ru CH

PCy3Cl

Cl

Ph

31P NMR Cyclic catalystCYCLICCATAPUREP31.ESP

40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No

rma

lize

d In

ten

sity

28

.94

N

CH3

H3C

CH3

HC CH

N

CH

Ru

PCy3Cl

Cl

3

N N

Ru

PCy33

CH2Cl2, Vacuum, 40oC, 14 hrsCl

Cl

n

Synthesis of Cyclic Polybutadiene

Mn = 88 k, PDI = 2.06

CDT conc. 2.92 mol/L

5 g cyclic polymer in 10 mL solution

80% yield

Log Mn vs elution time

Intrinsic viscosity vs Log Mn of linear (broad polydispersity index PDI) and cyclic polybutadiene

SEC chromatogram of cyclic polybutadiene and linear polybutadiene (narrow PDI prepared by anionic polymerization)

Some interesting examples related to cyclic synthesis!

Synthesis of cyclic polymer brush

Schappacher, M.; Deffieux, A. Science 2008, 319, 1512-1515

AFM images

H Si Cl

Si

Cl

Example of grafting on 1,4-polybutadiene

Hydrosilation on backbone

Iraqi, A.; Seth, S.; Vincent, C. A.; Cole-Hamilton, D.; Watkinson, M. D.; Graham, I. M.; Jeffrey, D. Journal of Materials Chemistry 1992, 2, 1057-1064.

Polybutadiene composition

1,4-polybutadiene units

Results of hydrosilation

n

SiH

Karstedt's catalyst,800C, 24 hrs

Sim

Si

m

Si

m

Si

m

Si m

Si

m

Si

m

Si

m

Si

m

Si

m

Sim

Si

m

Si

m

Si

m

Si

m

Si m

Si

m

Si

m

Si

m

Si

m

Grafting of CyPBD with PS-SiH

0.24 mmols

SEC curves

10 15 20 25 30

Elution Volume (mL)

Lig

ht

Sc

att

eri

ng

Inte

ns

ity

RALS of CyPBD

RALS of PSSiH

RALS of Grafted Ring

SEC chromatograms of cylic polybutadiene, starting PS-SiH and grafted polymer.

Table 1 Molecular weight data of starting and grafted polymers

Sr.NoSample ID Mn (g/mol) Mw (g/mol) Mw/Mn

1 PS-SiH 8,300 8,300 1.01

2 CyPBD 88,400 182,600 2.06

3 Grafted Ring

2,004,000 12,410,000 6.19

AFM imgaes

Inner diameter: 70-80 nm

Outer diameter:

160-190 nmHeight: ~ 4 Ǻ

Calculated:61k

Conclusion

• Cyclic polybutadiene was grafted with PS

• The cyclic nature was proven with the help of AFM

Preference for reduction over electrophilic addition by polyisobutylene cations

Vijay Chavan, Prof Roderic P.Quirk, Prof. Judit E. Puskas

Cationic Stability

Si

H

H

CF3COOH, CH2Cl2

OH

3-ethyl-3-pentanol

H

Carey, F. A.; Tremper, H. S. J. Org. Chem. 1971, 36, 758-761.

Reaction scheme

Hexanes: MeCl60 : 40

Si

H

Cl

TiCl4

TMPCl IB

VPDS Si

H

[DtBP]= 0.007 mol/L; [TMPCl] = 0.035 mol/L; [IB] = 0.577 mol/L; [VPDS]= 0.047 mol/L; [TiCl4]= 0.227 mol/L; [DMA]= 0.019 mol/L

GPC data

0

100

200

300

400

500

600

700

10 15 20 25 30 35

Retention Vol (mL)

RI d

etec

tor

resp

on

se

PIB-Cl

Part 2

Figure 1: GPC trace of PIB-Cl and Part 2 a) Refractive Index (RI) detector response b) Light scattering data.

GPC Light scattering

730

740

750

760

770

780

790

10 15 20 25 30 35

Retention Vol (mL)

RA

LS

PIB-Cl lightscattering

Part 2 lightscattering

Table 1: Molecular weight data

Mn

Base(GPC)(g/mol)

Mw base

(GPC)(g/mol)

PDIBase

Mn

Base(NMR)(g/mol)

Mn part 2

(GPC)(g/mol)

Mw

Part 2(GPC)(g/mol)

PDIPart 2

1,550 1,950 1.25 1,900 1,700 2,150 1.27

[DtBP]= 0.007 mol/L; [TMPCl] = 0.035 mol/L; [IB] = 0.577 mol/L; [VPDS]= 0.047 mol/L; [TiCl4]= 0.227 mol/L; [DMA]= 0.019 mol/L

B4P33 proton on 500 MHz newest 64 scans 5 s relax delay.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

No

rma

lize

d In

ten

sity

312.505.802.00

CHLOROFORM-d

7.2

7

1.9

8

1.7

0

1.4

3

1.1

2

Figure 2: Proton NMR of PIB-Cl starting polymer

Cl

1.12

1.43

1.98

1.70

1.12

1.43

cdcl3_01

8 7 6 5 4 3 2 1Chemical Shift (ppm)

0.05

0.10

0.15

0.20

0.25

0.30

Nor

mal

ized

Inte

nsity

CHLOROFORM-d

7.27

1.70

1.43

1.13

1.01

Figure 3: Proton NMR of part 2.

H

1.12

1.431.70

1.12

1.43

B4P33 PIBCL C13 SPECTRA.ESP

104 96 88 80 72 64 56 48 40 32 24Chemical Shift (ppm)

0.05

0.10

0.15

0.20

0.25

0.30

No

rma

lize

d In

ten

sity

CHLOROFORM-d

77

.00

71

.71

59

.58

58

.89

58

.26

38

.19

37

.82

36

.02

35

.19

32

.61

31

.23

Figure 4: 13C NMR of PIB-Cl

Cl

31.2359.58

58.89

36.02

32.61

58.26

71.71

32.61

32.61 32.61 38.19

cdcl3_01

96 88 80 72 64 56 48 40 32 24 16Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No

rma

lize

d In

ten

sity

CHLOROFORM-d

77

.00

59

.59

58

.90

58

.27

56

.64

55

.23

38

.21

36

.09

32

.52

31

.31

29

.61

25

.88

24

.23

Figure 5: 13C NMR of part 2

H

32.52

32.52

55.2358.2736.0931.31

38.21

59.59

36.09

24.23

32.52

32.52 31.31

Si

H

Cl

TiCl4Rate determining step

H

Si

+

TiCl5

Rapid

Si

Cl

+TiCl4

TMPCl IB

VPDS

Figure 6 : Mechanism

Conclusion of cationic polymerization

• Hydride transfer dominates over vinyl group addition

• No vinyl group addition

Acknowledgements• Prof. Roderic Quirk• Prof. Mark Foster• Prof. Judit Puskas• Prof. Scott Collins• Prof. Chrys Wesdemiotis, David Dabney, Aleer (MALDI)• Marcia Weidknecht, Prof. Isayev• Bob Ponton (Glass apparatus), Jack Gillespie• Ania Supady, Sachin Chavan, Family back in India• John Page (GPC), Venkat Dudipala (Si-NMR)• Mike Olechnowicz• Shih-Fan Wang• Camila, Jon, Elizabeth, Wenbin, Xinfei, Manuela,Sumana,• Lucas, Sham, Kurt• Friends in Akron

FundingRepsol YPF, SpainDynasol ElastomersFMC, Lithium DivisionChemetall Foote Corporation

Thanks

• 1-Simms, J. A. Prog. Org. Coat. 1993, 22, 367-377

• 2- Grinstaff, M. W.; Wathier, M.; Joshi, N.; Stoddart, S., WO 2010033137, March 25, 2010

• 3- Findlay, P. H.; Rannard, S. P.l; Royles, B. J.; Weaver, J.V., WO 2009144471 , Dec 3, 2009

• 4- Taketsuji, K.; Yokoyama, S.; Otomo, A., JP 2009249500 , Oct 29, 2009

• 5- Xie, D., WO 2009129221, Oct 22, 2009

• 6-Du Fresne V.H.; Schoenfelder, D.; Bruchmann, B.; Schroeder, M.; Schumacher, K.; Terrenoire,

• A., WO 2009109622 , Sept 11, 2009

• 7-Nakayama, Y.; Nemoto, Y. , JP 2008086558, Apr 17, 2008

• 8- Wang, Y.; Gale, D.C.; Huang, B.; Trollsas, M. O.; Glauser, T.; Ludwig, F. , US 20070282435 , Dec 6, 2007

Applications of branched polymers references

References

• (1) Quirk, R. P.; Chen, W. C. Makromol. Chem. 1982, 183, 2071-2076• (2) Quirk, R. P.; Kim, H.; Polce, M. J.; Wesdemiotis, C. Macromolecules• 2005, 38, 7895.• (3) Roovers, J. Polym. Prepr.(Am. Chem. Soc. Div. Polym. Chem.)1989, 30• (1), 77-78.• (4) Um, J.; Park, J.; Lee, M. Annual Technical Conference - Society of• Plastics Engineers 2006, 64th, 436-440.• (5) Gilman, H.; Cartledge, F. K. J. Organomet. Chem. 1964, 2, 447.• (6) Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Science 2002, 297, 2041-• 2044.• (7) Bielawski, C. W.; Benitez, D.; Grubbs, R. H. J. Am. Chem. Soc. 2003,• 125, 8424-8425.• (8) Schappacher, M.; Deffieux, A. Science 2008, 319, 1512-1515.• (9) Iraqi, A.; Seth, S.; Vincent, C. A.; Cole-Hamilton, D. J.; Watkinson, M.• D.; Graham, I. M.; Jeffrey, D. J. Mater. Chem. 1992, 2, 1057-1064• (10) Furstner, A.; Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C. W.;• Mynott, R.; Stelzer,F.; Thiel, O. R. Chemistry--A European Journal 2001• 7, 3236-3253.