Phase transformations and metallization of magnesium oxide at high pressure and temperature

download Phase transformations and metallization of magnesium oxide at high pressure and temperature

of 7

Transcript of Phase transformations and metallization of magnesium oxide at high pressure and temperature

  • 7/30/2019 Phase transformations and metallization of magnesium oxide at high pressure and temperature

    1/7

    Reports

    /http://www.sciencemag.org/content/early/recent / 22 November 2012 / Page 1/ 10.1126/science.1229450

    MgO is among the simplest oxides constituting the rocky mantles of

    terrestrial planets such as Earth, and the cores of Jupiter and other giant

    planets. Present in the Earths mantle as an end-member component of

    the mineral (Mg, Fe)O magnesiowstite, it can be abundant in larger

    planets due to the theoretically expected dissociation of (Mg, Fe)SiO3

    perovskite (1). Among common planetary constituents, MgO is thought

    to be especially resistant to transformation under pressure and tempera-

    ture, having a high melting temperature (27), a wide electronic band

    gap under pressure (1, 8, 9), and a simple phase diagram featuring three

    phases at the high pressures explored in the present study: the B1-

    structured solid found at ambient conditions, the liquid state, and an as-

    yet unobserved high-pressure crystalline phase having the B2 structure(15, 9, 10).

    To characterize MgO at the elevated pressures and temperatures of

    planetary interiors, we measured its pressurevolume (P, V) equation of

    state to 0.6 TPa (6 Mbar), and its temperature (T) and optical reflectivity

    (R) to beyond 1.4 TPa (14 Mbar) and about 50,000 K, under shock load-

    ing (11). We determined shock temperature and corresponding shock

    velocity (US) using the method of decaying shocks (1114), in which an

    optically thick and reflecting shock wave decreases in amplitude as it

    propagates, revealingthrough time resolved diagnostics of emission,

    velocity, and reflectivitythe properties of a continuum of shock states

    (Fig. 1). Determining the corresponding particle velocity (UP) in separate

    experiments (Fig. 2 and fig. S1) allow

    for the derivation of pressure and vo

    ume from our measurements (11, 15).

    We find that the shock temperatu

    does not change monotonically wi

    pressure, as expected for a single pha

    (15, 16), but instead shows a larg

    anomaly with a temperature minimuat about 0.45 TPa and 8500 K (Figs.

    and 2). Two additional regions

    anomalous behavior (at about 0.65 TP

    and beyond 1 TPa) are most evide

    when examining the specific heat, C

    of the shock states (Fig. 2B) (1113

    In broad regions of our data, CV clos

    ly matches the Dulong-Petit limit (C

    = 6Rgas, where Rgas is the gas consta

    per mole of atoms), consistent with th

    presence of a pure MgO phase abov

    the Debye temperature (~760 K) (1

    13, 15); in three distinct regions, how

    ever, there is substantial deviation fro

    this value. The anomalous values ofCsuggest the influence of latent hea

    associated with structural, bonding

    electronic transitions.

    Indeed, beginning at the secon

    transition (0.60 TPa) we find an i

    crease in optical reflectivity from

    0.5%a value consistent with th

    optical properties of low-pressur

    insulating MgO (17) (figs. S2 an

    S3)toward ~ 20%, indicating su

    stantial changes in electronic prope

    ties. A simple (Drude-semiconducto

    model of the measured reflectiviti

    (1113) is consistent with the energgap between valence and conductio

    electronic bands nearly vanishing du

    ing the transition (Fig. 2C), resulting

    metallic conductivities >100 ( cm)1 above 0.65-0.7 TPa (fig. S4) (11

    To interpret these experimental results, we constructed a Mi

    Grneisen-Debye, finite-strain equation-of-state for MgO (16, 18) co

    strained by the shock data (11). From this model, we assess phas

    transition properties, such as the volume and entropy of transformatio

    (Vtrand Str, respectively). We find that the low-pressure behavior

    MgO (to 0.35 TPa and 9500 K) is well described with this model, takin

    parameters solely from measurements on B1-MgO near ambient cond

    tions (e.g., pressures below 0.005 TPa) (19). Beyond 0.35 TPa, a s

    quence of phase transformations is required in order to explain th

    anomalies in shock temperature, consistent with our specific heat analy

    sis (Table 1).Several interpretations are possible for the first, most promine

    transition, although the observed decrease in shock temperature indicat

    a positive entropy change (positive latent heat) from low- to high

    pressure phases. If the transformation occurs at thermodynamic equili

    rium, the data follow a phase boundary having a negative Clapeyro

    slope and implying a volume change as negative as Vtr/V~ 7% (Tab

    1) (11, 15). This suggests that the first transition corresponds with soli

    solid transformation, and the second (consistent with positive volum

    and entropy change, Table 1) with melting. Indeed, pressure-temperatu

    conditions of the first and second transitions, and Clapeyron slopes o

    tained assuming equilibrium transformation, are close to theoretical

    R. Stewart McWilliams,1,2* Dylan K. Spaulding,3 Jon H. Eggert,4 Peter M.Celliers,4 Damien G. Hicks,4 Raymond F. Smith,4 Gilbert W. Collins,3 RaymondJeanloz31Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington,DC 20015, USA.2Howard University, 2400 Sixth Street NW, Washington, DC 20059, USA.3Department of Earth and Planetary Science, University of Cal ifornia, Berkeley, CA, 94707, USA.4Physics Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory,Livermore, California 94550, USA.

    *To whom correspondence should be addressed. E-mail: [email protected] address: Grupo de Geociencias, Departamento de Fsica, Universidad de Los Andes, Bogot,

    ColombiaPresent address: Commissariat L'nergie Atomique, Dpartement de Physique Thorique et Applique,Bruyres le Chtel, 91297 Arpajon Cedex, France.

    Magnesium oxide (MgO) is representative of the rocky materials comprising themantles of terrestrial planets, such that its properties at high temperatures andpressures reflect the nature of planetary interiors. Shock-compression experimentson MgO to pressures of 1.4 TPa reveal a sequence of two phase transformations:from B1 (NaCl) to B2 (CsCl) crystal structures above 0.36 TPa, and from electricallyinsulating solid to metallic liquid above 0.60 TPa. The transitions exhibit large latentheats that are likely to affect the structure and evolution of super-Earths. Togetherwith data on other oxide liquids, we conclude that magmas deep inside terrestrialplanets can be electrically conductive, enabling magnetic field-producing dynamoaction within oxide-rich regions and blurring the distinction between planetary

    mantles and cores.

    http://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recent
  • 7/30/2019 Phase transformations and metallization of magnesium oxide at high pressure and temperature

    2/7/http://www.sciencemag.org/content/early/recent / 22 November 2012 / Page 2/ 10.1126/science.1229450

    predicted values for the B1-B2 and melting transitions of MgO (Table 1)

    (2). Alternatively, the first transition could be due to melting (3), with

    associated superheating upon shock compression (12). In this case, the

    first transformation can have negligible volume change (Table 1) (11),

    and the second corresponds with a transformation in the fluid.

    Our preferred interpretation is that the two transitions are due to B1-

    B2 (0.45 TPa) and B2-melt (0.65 TPa), respectively. The second trans-

    formation is unlikely to be anything other than melting; there is no theo-retical evidence for a liquid-liquid transition in MgO (8), and known

    fluid-fluid transitions in other shock-compressed insulators typically

    occur over a much broader pressure and temperature range (12, 13).

    Also, the transition from electrically insulating solid to metallic liquid in

    this interpretation is consistent with theoretical predictions of electronic

    properties for MgO (1, 8, 9) (fig. S4), and reflects the melting behavior

    of other nonmetals such as carbon (13), silicon and sulfur (20).

    Continuous changes in the reflectivity of the liquid state suggest that

    liquid electronic properties are strongly sensitive to temperature and

    pressure (8). The large entropy of the first transition relative to typical

    solid-solid transitions remains poorly understood, but is consistent with

    available theory for MgO (Table 1). The broad region of anomalously

    high specific heat beyond ~1 TPa and ~33,000 K is similar to that ob-

    served at extreme temperatures in carbon and SiO2 (12, 13), and is simi-

    larly identified here as a transformation to a complex bonded fluid. Withthis interpretation, we have a self-consistent picture for the phase dia-

    gram of MgO (Fig. 3), involving two crystalline phases (B1, B2) and one

    liquid phase (13, 9).

    We conclude that MgO is solid at conditions found in the present

    Earth (21), in large Earthlike planets (22) andbased on extrapolations

    of the melting curvein Jupiter and its core (23) (Fig. 3). The B2 phase

    of MgO is likely to be stable in the deep mantles of Earthlike planets of

    more than four Earth masses (22) (Fig. 3), and so a B1-B2 transition can

    be relevant to planetary iron-bearing magnesiowstite (24). With the

    corresponding decrease in volume (up to 7%) and large latent heat of

    transformation (Table 1), a B1-B2 transition could influence internal

    structure and dynamics (22, 25), orbital evolution (25), and exoplanet

    mass-radius relationships (22). This is particularly true for terrestrial

    planets exceeding ~ 8 Earth masses (22), where dissociation ofperovskite (1) could make magnesiowstite the most abundant mineral

    of the deep mantle.

    Major end-member oxides of deep planetary interiors (1)SiO2

    (12), MgSiO3 (14), and MgOuniformly exhibit high electrical conduc-

    tivities () in their fluid states, consistent with metallic or semi-metallic

    behavior: ~ 103 to 105 S/m at T~ 5,000 to 15,000 K and P ~ 0.1 to 0.7

    TPa. Planetary magmas comprised of these rocky constituents should

    likewise be highly conductive at high pressure, as compared with mag-

    mas familiar at Earths surface ( ~ 102 to 102 S/m) (26), and would

    thereby resemble liquid iron alloys making up planetary cores (27).

    Our experiments therefore reveal a blurring between traditional defi-

    nitions of planetary mantle and core material: liquid oxides can be con-

    sidered either molten mantle constituents, or electrically conducting core

    components. Indeed, for terrestrial planets with extensive melting (i.e.,

    magma oceans) and sufficient interior pressure, oxides could contributeto the dynamo process sustaining a planetary magnetic field. The mag-

    netic Reynolds number0m

    RvL= (28) for such a magma ocean (Rm ~

    103 to 107) exceeds the critical value required for a self-sustaining field

    (Rm > 101 to 102), considering flow velocities v appropriate for a terres-

    trial magma ocean (4 to 40 m/s) (29), and distance scales L appropriate

    for terrestrial mantles (106 to 107 m); 0 is the permeability of free space.

    While Earth may be too small (P < 0.13 TPa in the mantle) for substan-

    tially elevated oxide conductivity, even a modest (order of magnitude)

    increase in over typical magma values can shift Rm in an early-Earth

    magma ocean from too small (Rm ~ 102 to 102) to large enough to sus-

    tain dynamo action. This suggests that an early, short-lived magnetic

    field could have existed on Earth, perhaps similar to those inferred f

    Mars and the Moon on the basis of remnant crustal magnetism.

    References and Notes

    1. K. Umemoto, R. M. Wentzcovitch, P. B. Allen, Dissociation of MgSiO3 in th

    cores of gas giants and terrestrial exoplanets. Science 311, 983 (2006

    doi:10.1126/science.1120865 Medline

    2. A. B. Belonoshko, S. Arapan, R. Martonak, A. Rosengren, MgO phase diagra

    from first principles in a wide pressure-temperature range. Phys. Rev. B8

    054110 (2010). doi:10.1103/PhysRevB.81.054110

    3. N. de Koker, L. Stixrude, Self-consistent thermodynamic description of silica

    liquids, with application to shock melting of MgO periclase and MgSiO

    perovskite. Geophys. J. Int. 178, 162 (2009). doi:10.1111/j.136

    246X.2009.04142.x

    4. D. Alf, Melting curve of MgO from first-principles simulations. Phys. Re

    Lett.94, 235701 (2005). doi:10.1103/PhysRevLett.94.235701 Medline

    5. A. Aguado, P. A. Madden, New insights into the melting behavior of Mg

    from molecular dynamics simulations: The importance of premelting effec

    Phys. Rev. Lett. 94, 068501 (2005). doi:10.1103/PhysRevLett.94.0685

    Medline

    6. A. Zerr, R. Boehler, Constraints on the melting temperature of the lower mant

    from high-pressure experiments on MgO and magnesiostite.Nature371, 5

    (1994). doi:10.1038/371506a0

    7. L. Zhang, Y. W. Fei, Melting behavior of (Mg,Fe)O solid solutions at hig

    pressure. Geophys. Res. Lett.35, L13302 (2008). doi:10.1029/2008GL034588. B. Karki, D. Bhattarai, L. Stixrude, First-principles calculations of t

    structural, dynamical, and electronic properties of liquid MgO. Phys. Rev.

    73, 174208 (2006). doi:10.1103/PhysRevB.73.174208

    9. A. R. Oganov, M. J. Gillan, G. D. Price, Ab initio lattice dynamics an

    structural stability of MgO. J. Chem. Phys. 118, 10174 (2003

    doi:10.1063/1.1570394

    10. D. Alfe et al., Quantum Monte Carlo calculations of the structural properti

    and the B1-B2 phase transition of MgO. Phys. Rev. B 72, 7 (2005

    doi:10.1103/PhysRevB.72.014114

    11. Materials and methods are available as supplementary materials on Scien

    Online.

    12. D. G. Hicks et al., Dissociation of liquid silica at high pressures an

    temperatures. Phys. Rev. Lett. 97, 025502 (2006

    doi:10.1103/PhysRevLett.97.025502 Medline

    13. J. H. Eggert et al., Melting temperature of diamond at ultrahigh pressure.Na

    Phys.6, 40 (2010). doi:10.1038/nphys143814. D. K. Spaulding et al., Evidence for a phase transition in silicate melt

    extreme pressure and temperature conditions. Phys. Rev. Lett. 108, 0657

    (2012). doi:10.1103/PhysRevLett.108.065701 Medline

    15. Y. B. Zel'dovich, Y. P. Raizer, in Physics of Shock Waves and Hig

    Temperature Hydrodynamic Phenomena , W. D. Hayes, R. F. Probstein, Ed

    (Dover Publications, Mineola, NY, 2002).

    16. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, W. J. Carter, in Hig

    Velocity Impact Phenomena, R. Kinslow, Ed. (Academic Press, New Yor

    1970).

    17. G. D. Stevens, L. R. Veeser, P. A. Rigg, R. S. Hixson,AIP Conf. Proc.84

    1353 (2006). doi:10.1063/1.2263575

    18. R. Jeanloz, Shock wave equation of state and finite strain theory. J. Geophy

    Res.94, (B5), 5873 (1989). doi:10.1029/JB094iB05p05873

    19. T. J. Ahrens, Ed., AGU Handbook of Physical Constants, vol. II (1995), p

    4597.

    20. D. A. Young, Phase Diagrams of the Elements (University of CalifornPress, Berkeley, 1991).

    21. S. Tateno, K. Hirose, Y. Ohishi, Y. Tatsumi, The structure of iron in Earth

    inner core. Science330, 359 (2010). doi:10.1126/science.1194662 Medline

    22. D. Valencia, R. J. O'Connell, D. Sasselov, Internal structure of massi

    terrestrial planets.Icarus181, 545 (2006). doi:10.1016/j.icarus.2005.11.021

    23. T. Guillot, The interiors of giant planets: Models and outstanding question

    Annu. Rev. Earth Planet. Sci. 33, 493 (2005

    doi:10.1146/annurev.earth.32.101802.120325

    24. B. J. Wood, Phase transformations and partitioning relations in peridoti

    under lower mantle conditions. Earth Planet. Sci. Lett. 174, 341 (2000

    doi:10.1016/S0012-821X(99)00273-3

    25. S.-i. Karato, Rheological structure of the mantle of a super-Earth: Som

    http://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recenthttp://dx.doi.org/10.1126/science.1120865http://dx.doi.org/10.1103/PhysRevB.81.054110http://dx.doi.org/10.1103/PhysRevB.81.054110http://dx.doi.org/10.1111/j.1365-246X.2009.04142.xhttp://dx.doi.org/10.1111/j.1365-246X.2009.04142.xhttp://dx.doi.org/10.1103/PhysRevLett.94.235701http://dx.doi.org/10.1103/PhysRevLett.94.235701http://dx.doi.org/10.1103/PhysRevLett.94.068501http://dx.doi.org/10.1103/PhysRevLett.94.068501http://dx.doi.org/10.1038/371506a0http://dx.doi.org/10.1038/371506a0http://dx.doi.org/10.1029/2008GL034585http://dx.doi.org/10.1029/2008GL034585http://dx.doi.org/10.1103/PhysRevB.73.174208http://dx.doi.org/10.1103/PhysRevB.73.174208http://dx.doi.org/10.1063/1.1570394http://dx.doi.org/10.1103/PhysRevB.72.014114http://dx.doi.org/10.1103/PhysRevLett.97.025502http://dx.doi.org/10.1038/nphys1438http://dx.doi.org/10.1038/nphys1438http://dx.doi.org/10.1103/PhysRevLett.108.065701http://dx.doi.org/10.1103/PhysRevLett.108.065701http://dx.doi.org/10.1063/1.2263575http://dx.doi.org/10.1063/1.2263575http://dx.doi.org/10.1029/JB094iB05p05873http://dx.doi.org/10.1029/JB094iB05p05873http://dx.doi.org/10.1126/science.1194662http://dx.doi.org/10.1126/science.1194662http://dx.doi.org/10.1016/j.icarus.2005.11.021http://dx.doi.org/10.1016/j.icarus.2005.11.021http://dx.doi.org/10.1146/annurev.earth.32.101802.120325http://dx.doi.org/10.1016/S0012-821X(99)00273-3http://dx.doi.org/10.1016/S0012-821X(99)00273-3http://dx.doi.org/10.1146/annurev.earth.32.101802.120325http://dx.doi.org/10.1016/j.icarus.2005.11.021http://dx.doi.org/10.1126/science.1194662http://dx.doi.org/10.1126/science.1194662http://dx.doi.org/10.1029/JB094iB05p05873http://dx.doi.org/10.1063/1.2263575http://dx.doi.org/10.1103/PhysRevLett.108.065701http://dx.doi.org/10.1103/PhysRevLett.108.065701http://dx.doi.org/10.1038/nphys1438http://dx.doi.org/10.1103/PhysRevLett.97.025502http://dx.doi.org/10.1103/PhysRevLett.97.025502http://dx.doi.org/10.1103/PhysRevB.72.014114http://dx.doi.org/10.1063/1.1570394http://dx.doi.org/10.1103/PhysRevB.73.174208http://dx.doi.org/10.1029/2008GL034585http://dx.doi.org/10.1038/371506a0http://dx.doi.org/10.1103/PhysRevLett.94.068501http://dx.doi.org/10.1103/PhysRevLett.94.235701http://dx.doi.org/10.1103/PhysRevLett.94.235701http://dx.doi.org/10.1111/j.1365-246X.2009.04142.xhttp://dx.doi.org/10.1111/j.1365-246X.2009.04142.xhttp://dx.doi.org/10.1103/PhysRevB.81.054110http://dx.doi.org/10.1126/science.1120865http://dx.doi.org/10.1126/science.1120865http://www.sciencemag.org/content/early/recent
  • 7/30/2019 Phase transformations and metallization of magnesium oxide at high pressure and temperature

    3/7/http://www.sciencemag.org/content/early/recent / 22 November 2012 / Page 3/ 10.1126/science.1229450

    insights from mineral physics. Icarus 212, 14 (2011).

    doi:10.1016/j.icarus.2010.12.005

    26. F. Gaillard, G. I. Marziano, A synthesis of the POMME physical data set: One

    year monitoring of the upper layer.J. Geophys. Res. Solid Earth110, (C7), 12

    (2005). doi:10.1029/2004JC002764

    27. E. Knittle, R. Jeanloz, Highpressure metallization of FeO and implications

    for the Earths core. Geophys. Res. Lett. 13, 1541 (1986).

    doi:10.1029/GL013i013p01541

    28. D. J. Stevenson, Planetary Magnetic Fields: Achievements and prospects.Space Sci. Rev.152, 651 (2010). doi:10.1007/s11214-009-9572-z

    29. V. Solomatov, in Origin of the Earth and Moon, R. M. Canup, K. Righter,

    Eds. (University of Arizona Press, Tucson, 2000), pp. 323338.

    30. S. P. Marsh, LASL Shock Hugoniot Data (University of California Press,

    Berkeley, 1980).

    31. M. S. Vassiliou, T. J. Ahrens, Hugoniot equation of state of periclase to 200

    GPa. Geophys. Res. Lett.8, 729 (1981). doi:10.1029/GL008i007p00729

    32. T. S. Duffy, T. J. Ahrens, Compressional sound velocity, equation of state,

    and constitutive response of shock-compressed magnesium oxide.J. Geophys.

    Res. Solid Earth100, (B1), 529 (1995). doi:10.1029/94JB02065

    33. L. Zhang, Z. Z. Gong, Y. W. Fei, Shock-induced phase transitions in the

    MgOFeO system to 200GPa. J. Phys. Chem. Solids 69, 2344 (2008).

    doi:10.1016/j.jpcs.2008.04.006

    34. D. G. Hicks et al., High-precision measurements of the diamond Hugoniot in

    and above the melt region. Phys. Rev. B 78, 174102 (2008).

    doi:10.1103/PhysRevB.78.17410235. M. D. Knudson, M. P. Desjarlais, Shock compression of quartz to 1.6 TPa:

    redefining a pressure standard. Phys. Rev. Lett. 103, 225501 (2009).

    doi:10.1103/PhysRevLett.103.225501 Medline

    36. B. Svendsen, T. J. Ahrens, Shock-induced temperatures of MgO. Geophys. J.

    R. Astron. Soc.91, 667 (1987). doi:10.1111/j.1365-246X.1987.tb01664.x

    37. I. Baraffe, G. Chabrier, T. Barman, Structure and evolution of super-Earth to

    super-Jupiter exoplanets. Astron. Astrophys. 482, 315 (2008).

    doi:10.1051/0004-6361:20079321

    38. R. E. Stephens, I. H. Malitson, Index of refraction of magnesium oxide. J.

    Res. Natl. Bur. Stand.49, 249 (1952). doi:10.6028/jres.049.025

    39. D. G. Hicks et al., Shock compression of quartz in the high-pressure fluid

    regime. Phys. Plasmas12, 082702 (2005). doi:10.1063/1.2009528

    40. K. Vedam, T. A. Davis, Nonlinear variation of the refractive indices of -

    quartz with pressure. J. Opt. Soc. Am. 57, 1140 (1967).

    doi:10.1364/JOSA.57.001140

    41. T. R. Boehly et al., Properties of fluid deuterium under double-shockcompression to several Mbar. Phys. Plasmas 11, L49 (2004).

    doi:10.1063/1.1778164

    42. P. M. Celliers et al., Line-imaging velocimeter for shock diagnostics at the

    OMEGA laser facility. Rev. Sci. Instrum. 75, 4916 (2004).

    doi:10.1063/1.1807008

    43. P. M. Celliers et al., Insulator-to-conducting transition in dense fluid helium.

    Phys. Rev. Lett. 104, 184503 (2010). doi:10.1103/PhysRevLett.104.184503

    Medline

    44. J. E. Miller et al., Streaked optical pyrometer system for laser-driven shock-

    wave experiments on OMEGA. Rev. Sci. Instrum. 78, 034903 (2007).

    doi:10.1063/1.2712189 Medline

    45. D. K. Spaulding et al., inAIP Conference Proceedings (AIP, 2007), vol. 955,

    pp. 10711074.

    46. D. E. Grady, in High Pressure Research: Applications in Geophysics M. H.

    Manghnani, S. Akimoto, Eds. (Academic Press, Inc., New York, 1977).

    47. T. J. Ahrens, High-pressure electrical behavior and equation of state ofmagnesium oxide from shock wave measurements. J. Appl. Phys. 37, 2532

    (1966). doi:10.1063/1.1782080

    48. M. van Thiel, Compendium of shock wave data Tech. Report No. UCRL-

    50108(Lawrence Livermore National Laboratory, 1977).

    49. G. E. Duvall, R. A. Graham, Phase transitions under shock-wave loading.Rev.

    Mod. Phys.49, 523 (1977). doi:10.1103/RevModPhys.49.523

    50. W. C. Overton, Relation between ultrasonically measured properties and the

    coefficients in the solid equation of state. J. Chem. Phys. 37, 116 (1962).

    doi:10.1063/1.1732931

    51. A. F. Ioffe, A. R. Regel, in Progress in Semiconductors (1960), vol. 4, pp.

    237.

    52. C. Kittel, H. Kroemer, Thermal Physics (Macmillan, San Francisco, 1980).

    53. M. Born, E. Wolf, Principles of Optics (Cambridge University Pre

    Cambridge, ed. 7th, 1999).

    Acknowledgments: We wish to thank N. Gmez-Prez, R. Hemley, D. Swift,

    Cohen, D. Dalton, and W. Unites for helpful discussions. This work w

    performed under the auspices of the U.S. Department of Energy by Lawren

    Livermore National Laboratory in part under Contract No. W-7405-Eng-4

    and in part under Contract No. DE-AC52-07NA27344. Financial suppo

    from the U.S. Army Research Office (Grant No. 56122-CH-H), a Kre

    Institute DOE/NNSA graduate fellowship (Contract No. DE-FC508NA28752), the DOE/NNSA National Laser User Facility Program, th

    Miller Institute for Basic Research in Science, and the University

    California are also acknowledged. Data are available in this manuscript and

    the Supporting Online Material.

    Supplementary Materials

    www.sciencemag.org/cgi/content/full/science.1229450/DC1

    Materials and Methods

    Figs. S1 to S6

    Tables S1 to S3

    References (3853)

    29 August 2012; accepted 26 October 2012

    10.1126/science.1229450

    http://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recenthttp://dx.doi.org/10.1016/j.icarus.2010.12.005http://dx.doi.org/10.1016/j.icarus.2010.12.005http://dx.doi.org/10.1029/2004JC002764http://dx.doi.org/10.1029/2004JC002764http://dx.doi.org/10.1029/GL013i013p01541http://dx.doi.org/10.1029/GL013i013p01541http://dx.doi.org/10.1007/s11214-009-9572-zhttp://dx.doi.org/10.1007/s11214-009-9572-zhttp://dx.doi.org/10.1007/s11214-009-9572-zhttp://dx.doi.org/10.1029/GL008i007p00729http://dx.doi.org/10.1029/GL008i007p00729http://dx.doi.org/10.1029/94JB02065http://dx.doi.org/10.1029/94JB02065http://dx.doi.org/10.1016/j.jpcs.2008.04.006http://dx.doi.org/10.1016/j.jpcs.2008.04.006http://dx.doi.org/10.1103/PhysRevB.78.174102http://dx.doi.org/10.1103/PhysRevLett.103.225501http://dx.doi.org/10.1103/PhysRevLett.103.225501http://dx.doi.org/10.1111/j.1365-246X.1987.tb01664.xhttp://dx.doi.org/10.1111/j.1365-246X.1987.tb01664.xhttp://dx.doi.org/10.1051/0004-6361:20079321http://dx.doi.org/10.1051/0004-6361:20079321http://dx.doi.org/10.6028/jres.049.025http://dx.doi.org/10.6028/jres.049.025http://dx.doi.org/10.1063/1.2009528http://dx.doi.org/10.1063/1.2009528http://dx.doi.org/10.1364/JOSA.57.001140http://dx.doi.org/10.1364/JOSA.57.001140http://dx.doi.org/10.1063/1.1778164http://dx.doi.org/10.1063/1.1778164http://dx.doi.org/10.1063/1.1807008http://dx.doi.org/10.1063/1.1807008http://dx.doi.org/10.1103/PhysRevLett.104.184503http://dx.doi.org/10.1103/PhysRevLett.104.184503http://dx.doi.org/10.1063/1.2712189http://dx.doi.org/10.1063/1.2712189http://dx.doi.org/10.1063/1.1782080http://dx.doi.org/10.1063/1.1782080http://dx.doi.org/10.1063/1.1782080http://dx.doi.org/10.1103/RevModPhys.49.523http://dx.doi.org/10.1103/RevModPhys.49.523http://dx.doi.org/10.1063/1.1732931http://dx.doi.org/10.1063/1.1732931http://dx.doi.org/10.1063/1.1732931http://dx.doi.org/10.1103/RevModPhys.49.523http://dx.doi.org/10.1063/1.1782080http://dx.doi.org/10.1063/1.2712189http://dx.doi.org/10.1063/1.2712189http://dx.doi.org/10.1103/PhysRevLett.104.184503http://dx.doi.org/10.1103/PhysRevLett.104.184503http://dx.doi.org/10.1063/1.1807008http://dx.doi.org/10.1063/1.1778164http://dx.doi.org/10.1364/JOSA.57.001140http://dx.doi.org/10.1063/1.2009528http://dx.doi.org/10.6028/jres.049.025http://dx.doi.org/10.1051/0004-6361:20079321http://dx.doi.org/10.1111/j.1365-246X.1987.tb01664.xhttp://dx.doi.org/10.1103/PhysRevLett.103.225501http://dx.doi.org/10.1103/PhysRevLett.103.225501http://dx.doi.org/10.1103/PhysRevB.78.174102http://dx.doi.org/10.1016/j.jpcs.2008.04.006http://dx.doi.org/10.1029/94JB02065http://dx.doi.org/10.1029/GL008i007p00729http://dx.doi.org/10.1007/s11214-009-9572-zhttp://dx.doi.org/10.1029/GL013i013p01541http://dx.doi.org/10.1029/2004JC002764http://dx.doi.org/10.1016/j.icarus.2010.12.005http://www.sciencemag.org/content/early/recent
  • 7/30/2019 Phase transformations and metallization of magnesium oxide at high pressure and temperature

    4/7/http://www.sciencemag.org/content/early/recent / 22 November 2012 / Page 4/ 10.1126/science.1229450

    Fig. 1. Schematic of laser-shock experiments (A) showingtarget configuration with drive laser impinging on an Al bufferplate, to which the sample (MgO) or a combination ofstandard (SiO2) and sample were attached (11). Shockvelocity, temperature, and reflectivity were determined usingvelocity interferometry (B) and streaked optical pyrometry (C)that document intensity (of interference fringes or self-emission, respectively) as a function of distance across thesample (vertical axis, ~500 m fullscale) and time (horizontalaxis, ~25 ns fullscale) (1114). Reflectivity and velocity aredetermined, respectively, from the observed intensity and

    fringe shift in (B), with shock velocities extrapolated below US= 17.3 km/s where reflection from the shock was notdetectable (11). In the shock-velocity (black dots, dashed linewhere extrapolated) and emission-intensity (blue dots)records (D), events are labeled e1 to e6: entry of the shockinto the MgO sample (e1) and a period of nearly steady shockpropagation are followed by steady decay of velocity andemission until e2, where the rate of emission decaydecreases, then increases (e3), while velocity continues todecay steadily; then emission increases (e4 to e5) anddecays again before the shock exits the MgO (e6).

    http://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recent
  • 7/30/2019 Phase transformations and metallization of magnesium oxide at high pressure and temperature

    5/7/http://www.sciencemag.org/content/early/recent / 22 November 2012 / Page 5/ 10.1126/science.1229450

    Fig. 2. Shock temperature T (A), specific heat CV (B) and shock-front reflectivity R (C)measured for MgO in two experiments [blue and red solid curves, systematic uncertaintybounds (11) shown by dotted curves (mean SD)] are shown as a function of shock-wavevelocity (bottom scale) and pressure (top scale), determined from a linearUS-UP equation-of-state (D) based on a fit (11) to data at low-pressure data (3033) (off scale, fig. S1) andhigh-pressure (open symbols, table S1) measured (34) relative to SiO2 (35). A Drude-semiconductor model fit to the reflectivity data are shown by the green curve in C (11);solid and dashed black lines respectively indicate the band gap (Eg) for modelsconstrained to the zero-pressure value for MgO, or not. Events, labeled as in Fig. 1,correspond to transitions between anomalous (grey shading) and normal (6Rgas) values ofCV.

    http://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recent
  • 7/30/2019 Phase transformations and metallization of magnesium oxide at high pressure and temperature

    6/7/http://www.sciencemag.org/content/early/recent / 22 November 2012 / Page 6/ 10.1126/science.1229450

    Fig. 3. Phase diagram of MgO constructed from shock temperature data [solid circles:this study, red and blue for two shots; open black circles (36)] with B1-phasetemperature model (dot-dashed black line) (36). Our proposed phase diagram (heavyblack lines) is a modification of the recent theoretical phase diagram of Refs (2, 4), inwhich the melt curve is identical but the B1-B2 transition has moved to higher pressure.Zero-temperature B1-B2 transition pressures from theory (excluding outliers) are givenby the gray bracket (10). Experimental melting temperatures (6, 7) are open triangles.

    Also shown are the conditions of planetary interiors for Earth (21), a theoretical Earth-likeplanet of 5 earth masses (Super Earth) (22), Jupiter (23), and a hot Jupiter-mass planet(average prediction) (37); temperature discontinuities at 1.3 and 6.5 Mbar in theterrestrial planets correspond to the base of the oxide mantle.

    http://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recenthttp://www.sciencemag.org/content/early/recent
  • 7/30/2019 Phase transformations and metallization of magnesium oxide at high pressure and temperature

    7/7

    Table 1. Comparison between experimental and theoretical properties of phase

    transitions in MgO. Experimental ranges include thermodynamic equilibrium and

    nonequilibrium [e.g., superheating (12)] interpretations of the transitions (11). The

    Clapeyron slope is ( )B

    TP / . Uncertainties are mean SD.

    P(TPa)

    T(10

    3K)

    ( )BTP / (10

    4TPa/K)

    Str/Rgas Vtr/ V(%)

    1stTransition

    Experiment

    (this study)

    0.44 0.08 9.0 0.7 3.9 3.0 3.9 0.6 3.8 3.1

    B1-B2

    (theory)

    0.33 0.04

    (2)

    8.1 0.7

    (2)

    0.60 0.18

    (2)

    1.9 0.9

    4.0 0.8

    (9)

    2ndTransition

    Experiment

    (this study)

    0.65 0.05 14.0 1.1 1.2 0.8 1.6 0.1 4.1 2.9

    Melt

    (theory)

    0.59 0.05

    (2)

    13.6 0.6

    (2)

    0.77

    (2)

    0.5 0.1 0.9 0.2

    (3, 8)

    Upper bound, assuming VTr/Vto be constant along the phase boundary, and calculatingStrfrom the Clausius-Clapeyron relation ( ) tr tr / /BP T S V = ; lower bounds are Str

    ~ 0 and Vtr~ 0, obtained ifStris presumed to be constant along the boundary above

    zero temperature, and infinitesimal (11).Estimated assuming that Vtr/Von the melting curve is similar at high pressure for the

    B1 and B2 phases, and using the Clapeyron relation to calculate Str.