Oregon DOT Training Material Pushover Analysis - Bridge/Tutorials... · 2019. 2. 8. · Microsoft...

37
Oregon DOT Training Material Pushover Analysis Tanarat Potisuk, PhD, PE, SE Prestressed Concrete Standards Engineer Bridge Engineering Section Oregon Department of Transportation

Transcript of Oregon DOT Training Material Pushover Analysis - Bridge/Tutorials... · 2019. 2. 8. · Microsoft...

  • Oregon DOTTraining MaterialPushover Analysis

    Tanarat Potisuk, PhD, PE, SEPrestressed Concrete Standards EngineerBridge Engineering SectionOregon Department of Transportation

  • Introduction

    Pushover Analysis (Nonlinear Static Procedure) required for SDC D

  • Pushover Analysis StepsStep 1 – Develop Pushover Analysis model

    Step 2 – Define expected material properties

    Step 3 – Define section properties

    Step 4 – Define hinge properties and assign hinges

    Step 5 – Run analyses (2)

    Step 6 – Post processing

    Step 7 – Determine displacement capacity for 1000 year and CSZE

    Step 8 – Determine ductility index for each individual hinge

  • Step 1Use EDA aka. RSA 3D Model – delete superstructure

  • Step 1 (cont.)Set bent cap, columns, and foundation – consistent with EDA

    Apply girder dead load reactions

  • Step 1 (cont.)Calculate analytical plastic hinge length

  • Step 2Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

    Dc = 72 in. Clr. = 2.5 in.Ds = 66.25 in.

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 2 (cont.)Define material properties, i.e. steel rebar, unconfined concrete, confined concrete

  • Step 3Define section properties

  • Step 3 (cont.)Define section properties

  • Step 3 (cont.)Define section properties

  • Step 3 (cont.)Define section properties

  • Step 3 (cont.)Define section properties – curvature unit = 1/in

  • Step 4Define hinge - global control

  • Step 4 (cont.)Set load cases

  • Step 4 (cont.)Define hinge properties

  • Step 4 (cont.)Assign hinges to elements

  • Step 5Push two perform analysis buttons

  • Step 6Observe deformed shape, bending moment and shear diagram, reaction

  • Step 6 (cont.)Observe pushover curve

  • Step 6 (cont.)Pushover hinge result – total deformation

    One hinge and one section of 3

  • Step 6 (cont.)Pushover hinge result – plastic deformation

    Elem 117 yields at Step 10

  • Step 6 (cont.)Find reaction, when columns all yield

  • Step 6 (cont.)Obtain Moment – Curvature data with selected column reaction

  • Step 7Establish strain limits per BDDM 1.17.3.1

    1000-Year “Life Safety” – All Bridges in Oregon

    CSZE “Operational” – All Bridges on and West of US97

  • Step 7 (cont.)Obtain section curvature (1/in) at strain limit

    CSZE

    1000 Year

    Select 1st yielding Hinge

  • Step 7 (cont.)Obtain solution step to determine the corresponding deflection

    Step 10 - 11

  • Step 7 (cont.)Obtain the deflection at the strain limit

    ~ 12 in

  • Step 8Determine member ductility index

  • Step 8 (cont.)Determine member ductility index

    Only for 1000-year return period EQ