optic coupler

download optic coupler

of 18

Transcript of optic coupler

  • 7/30/2019 optic coupler

    1/18

    4

    IntroductiontoFibre-

    Couplers

    Theaimofthischapteristoprovideanoverviewoffibrecouplertechnology.The

    principles of how fibre couplers exchange power between the two ports are

    presented and different methods of fabrication are compared. The information

    providedinthischapterintroducestheworkonthecharacterisationoffibrecouplers

    (Chapter 9) and is relevant to the optimisation of all-fibre add-dropmultiplexers

    basedontheinscriptionofgratingsinthecouplerwaist(Chapter8).

  • 7/30/2019 optic coupler

    2/18

    4-IntroductiontoFibre-Couplers 33

    4.1 CouplerTechnology

    Fibre- and integrated-optic couplers are extremely important components in a

    number of photonics applications. They are generally four-port devices and their

    operationreliesonthedistributedcouplingbetweentwoindividualwaveguidesin

    closeproximity,whichresultsinagradualpowertransferbetweenmodessupported

    bythetwowaveguides.Thispowertransferandcross-couplingatthecoupleroutput

    ports can be viewed also, as a result of the beating between eigenmodes of the

    compositetwo-waveguidestructurealongthelengthofthecompositecouplerwaist

    [56].Themost commonuse of fibre- and integrated-optic couplers isasapower

    splitter,thisis,thefibre-opticequivalentofafreespaceopticbeam-splitter.They

    canbeusedtosplittheopticalpowerofanopticalchannel(ofcertainwavelength)

    betweentheoutputports[57].Anotherapplicationistocombineorsplitthepower

    ofdifferentchannels,correspondingtodifferentwavelengths(wavelength-division-

    multiplexing (WDM) splitters/combiners) [58]. Lately fibre- and integrated-optic

    couplers,havebeencombinedwithreflectiveBragggratingswrittenin theirwaist,

    toprovideselectiveaddinganddroppingofdifferentchannelsinWDMsystems[41,

    42].

    4.2 TheoreticalCouplerDescription

    Afibrecouplerisafour-portdeviceconsistingoftwofibresthathavebeenfused

    together, etched, or polished over a small interaction region. The mechanism

    through which light is exchanged between the two fibres is dependent upon the

    fabricationmethod.Whenthefibresareetchedorpolishedandpositionedinclose

    proximity, the otherwise insensitive and well confined core modes interact by

    exchangingpowerbetweeneachfibrecoreduetotheoverlapofthemodesinthe

    commoncladding.Thestrengthofthecouplingbetweenthetwomodesisdescribed

  • 7/30/2019 optic coupler

    3/18

    4-IntroductiontoFibre-Couplers 34

    by anoverlap integralof the fields associatedwith each ofthe individual guides.

    Fusedcouplersareobtainedbyfusingtogetherandstretchingtwoparalleluncoated

    fibres.As the fibres are stretched the core sizesdecrease until themodes (at the

    wavelength of interest) are no longer guided by the core but by the composite

    cladding-airstructure.Ifthetaperisadiabaticonlythetwolowest-ordereigenmodes

    of this structure will be excited and the power exchange is due to the beating

    betweenthesetwoeigenmodes.Intheworkpresentedhereonlyfusedfibrecouplers

    arediscussed.

    Figure 4.1 - Four-port coupler schematic showing the coupling region (LC), which is

    comprisedoftwotaperregions(LT1,LT2)andthecouplerwaist(LW).

    Consider the 2x2 coupler shown schematically inFigure 4.1. When light islaunchedintoport1,thenormalisedfieldamplitudesoftheeven(Ae)andodd(Ao)

    eigenmodesatthecouplerinput(z=0)canbeapproximatedby[56]:

    2

    )0()0()0(;

    2

    )0()0()0( 2121

    AAA

    AAA oe

    =

    += (4.1)

    whereA1(0)andA2(0)arethenormalisedamplitudesofthefieldslaunchedintothe

    twoinputports1and2,respectively.Forsingleportexcitation,A1(0)=1andA2(0)=0

    and,throughEquation(4.1),Ae(0)=Ao(0)=1/ 2 .Therefore,lightlaunchedintoone

    oftheinputportsofa2x2couplerexcitesequallythetwolowest-order(evenand

    odd) eigenmodes along the coupling region. The two eigenmodes propagate

    adiabaticallyalong theentirecouplingregionwithpropagationconstantse(z)and

    o(z)respectively.Thebeatingbetweenthesetwomodesthenprovidesthecoupling

    ofpoweralongthecoupler.

  • 7/30/2019 optic coupler

    4/18

    4-IntroductiontoFibre-Couplers 35

    Even

    + + +

    Odd

    eo

    0 3/2 2

    P1

    P1

    P2

    P2

    /2

    Figure4.2-Schematicofevenandoddeigenmodebeatingandtotalpowerevolutionalong

    a2x2full-cycle(eo=2)coupler.

    Thepropagatingtotalelectricfieldatanypointalongthecouplerisdescribedby:

    +

    =+=

    z

    o

    z

    e di

    o

    di

    eoet ezAezAzEzEzE00

    )()(

    )()()()()(

    (4.2)

    During adiabatic propagation, the even and odd eigenmodes retain their

    amplitude(Ae(z)=Ae(0)andAo(z)=Ao(0))andchangeonlytheirrelativephase.This

    resultsinspatialbeatingalongthecouplerwaistandpowerredistributionbetween

    the two individual waveguides comprising the optical coupler. The peak field

    amplitudes for each individual waveguide, along the coupling region, can be

    approximatedby[56]:

  • 7/30/2019 optic coupler

    5/18

    4-IntroductiontoFibre-Couplers 36

    [ ]

    [ ]

    =

    =

    =

    +=

    +

    +

    z

    oe

    z

    oe

    di

    oe

    di

    oe

    ezizEzE

    zE

    ezzEzE

    zE

    0

    0

    )()(2

    1

    2

    )()(2

    1

    1

    )(2

    1sin

    2

    )()()(

    )(2

    1cos

    2

    )()()(

    (4.3)

    where [ ] ===z

    oe

    z

    eoeo ddzz00

    )()()()()( is the relative

    accumulatedphasedifferencebetweentheevenandoddeigenmodes. eandoare

    the propagation constants of the even and odd eigenmodes, respectively. The

    correspondingnormalisedpeakpowercarriedbytheindividualwaveguidesisgiven

    byP1(2)=|E1(2)|2,namely

    =

    =

    )(2

    1sin)(

    )(2

    1cos)(

    2

    2

    2

    1

    zzP

    zzP

    (4.4)

    Atthepointsalongthecoupler,whereiszerooramultipleof2,thetotal

    powerisconcentratedpredominantlyaroundwaveguide#1(P1=1andP2=0).Atthe

    pointsalongthecoupler,whereismultipleof,ontheotherhand,thetotalpower

    isconcentratedpredominantlyaroundwaveguide#2(P1=0andP2=1).Finally,atthe

    pointswhereismultipleof/2, thetotalpowerisequallysplit betweenthe two

    waveguides (P1=P2).The even/odd eigenmode beating and totalpower evolution

    alongafull-cyclecoupler(=2)isshownschematicallyinFigure4.2.Thecoupling

    coefficient k(z) describing thestrength of theinteraction betweentheeigenmodes

    andisgivenby:

    2

    )()()(

    zzzk oe

    = (4.5)

  • 7/30/2019 optic coupler

    6/18

    4-IntroductiontoFibre-Couplers 37

    The coupler beat length LB isdefinedastheminimum interaction length the two

    eigenmodes,initiallyinphase,musttravelinordertointerfereconstructivelyi.e.,to

    beagaininphase:

    oe

    BL

    =

    2 (4.6)

    4.3 FabricationofFusedFibreCouplers

    4.3.1 Flame-BrushTechnique

    The flame-brush technique for the fabrication of fibre couplers is based on the

    scanningofapoint-likeflamewhilepullingthefibres[59].Twofibresareclamped

    parallel to each other and the flame is scanned over a given interaction region.

    Figure4.3showstheexperimentalconfigurationofsucharigforfabricatingfibre

    tapersorcouplers.

    Figure4.3Flamebrushtechniqueexperimentalsetup

    The couplers and tapers fabricated during this work where made using a

    configurationsimilartothatofFigure4.3.Thefibresarepulledbytwocomputer

  • 7/30/2019 optic coupler

    7/18

    4-IntroductiontoFibre-Couplers 38

    controlledAerotechstages.TheflameisscannedusingathirdAerotechstage.The

    flame gas consists of a mixture of isobutene and oxygen. Both cleaning and

    alignmentofthefibresiscrucialforfabricatinguniformtapersorcouplerswithlow

    insertion losses. Air draughts or gas pressure variations can severely affect the

    quality of the devices, due tovariations in the flame temperature and consequent

    localnon-uniformitiesalongthetapers/couplers.Duringthepullingofthefibresthe

    outputpowerismonitoredandtheprocesshaltedatthedesiredfibreradius(inthe

    case of taper fabrication) or extinction ratio (in the case of coupler fabrication).

    Figure4.4showsthepoweratboththeoutputports(Port3andPort4)duringthe

    pulling process for a half-cycle coupler fabricated using this technique. Couplerelongation of46mm represents the point atwhich coupling of light between the

    waveguides starts to occur, corresponding to the monomode regime [60]. As

    illustrated,thepoweratport3dropsto0Vwhilethepower inport4 increases to

    around 7V. The pulling process was halted when Port 3 reached its minimum,

    producingthiswayahalf-cyclecoupler.

    0

    2

    4

    6

    8

    46 51 56 61 66 71CouplerElongation(mm)

    Coupledpower(a.u.)

    Port4

    Port3

    50%

    splitter

    100%coupler

    Figure4.4Powerevolution ofa coupler fabricatedusing the flame-brushtechnique at

    =1.55mduringpullingprocess.

    The spectral characteristics of the fabricated couplers are determined by

    launchingawhitelightsourceintooneoftheportsofthecouplerwhilstmeasuring

  • 7/30/2019 optic coupler

    8/18

  • 7/30/2019 optic coupler

    9/18

    4-IntroductiontoFibre-Couplers 40

    4.3.2CO2Laser

    RecentlyDimmicket.al.[61]reportedthedevelopmentofafused-fibrecouplerand

    fibre taper rig that uses a scanning, focused,CO2 laser beam as the heat source,

    insteadofthegasburner.Thesetupissimilartothatoftheflame-brushtechnique,

    withtwopullingstagesthatstretchthefibreatadesiredspeedwhilsttheCO 2laser

    radiationisscannedacrossthefibresbyarotatingmirror.Thebeamisfocusedusing

    aZnSelenswitha30mmfocallengthgivingaspotsizeof820m.Anexperimental

    setupusedtofabricatefibre-couplersusingaCO 2laserisillustratedinFigure4.6.

    Figure 4.6 Experimental setup of the fabrication of fibre tapers/couplers using the

    radiationofafocusedCO2laser.

    Thissetupprovidesabettercontroloftheshapeofthetaper/couplertaperedregion

    duetothesmallerhotspotproducedbythefocusedCO2laserwhencomparedtothe

    flame-brush technique. It also allows greater control in producing non-uniform

    tapersorcouplersduetothepossibilityofrapidpositioningofthelaserspotandfast

    switchingofthelaserbeampowerwithashutter.

    However,themaindisadvantageofthistechniqueisthatthetemperatureofthe

    heatsourcevariesduringthepullingofthefibre.Heatingofopticalfibresusinga

    lasersourcedependsonmanyparameterssuchas;theabsorptioncoefficient(which

    varies with temperature and wavelength), the laser power, the fibre-cooling rate

  • 7/30/2019 optic coupler

    10/18

    4-IntroductiontoFibre-Couplers 41

    (which dependson the fibre radius and temperature), and the laser spot size.To

    overcome this problem the laserpowerhas to be adjusted constantly in order to

    maintainaconstanttemperatureduringthefibrepulling.Incontrast,whenheating

    withaflameburner,thepresenceornotofthefibrehaslittleornoeffectonthe

    temperatureoftheheatsourceduetothemechanismofheatgeneration.

    4.3.3HeatingOven

    Anothertechniqueusedinindustryforfabricatingfibrecouplersandtapersrelieson

    heatingthewholeuniformsectionusinganovenorresistiveelectricalheaterwhilepullingthefibres.Duetothelongheatzonethistechniquehasnocontroloverthe

    shape of the tapered region although the sensitivity to environmental factors is

    reduced. The quality of the tapers/couplers is essentially dependent on the oven

    design,andthetemperatureuniformityalongthelengthofwaistregion.

    4.3.4 ShapeoftheTaperedRegion

    Accuratecontrolofthetaperedregionshapeofbothfibrecouplersandfibretapers

    canbecrucialfortheperformanceofdevicesusingthesecomponents.Forexample,

    inchapter5anAOtunablefilterisdiscussed,whichreliesontheaccuratecontrolof

    thefibre-tapershapeandlength.Birkset al.[62],usingtheflame-brushtechnique,

    producedalonguniformtaperwaist(90mm)withshorttransitionregions(35mm)

    and very small waist diameters (~2m), for generating a supercontinuum light

    spectrum. Also in fibre couplers, the accurate control of the tapered region is

    extremelyimportantforthefabricationofnon-uniformcouplersthatcanbeusedas

    an add-dropmultiplexer when a grating is inscribed in thewaist (chapter 8). In

    general, the transition region for both fibre couplers and tapers should obey the

    adiabaticcriterion[63],inordertominimiseinsertionlosses.

  • 7/30/2019 optic coupler

    11/18

    4-IntroductiontoFibre-Couplers 42

    The shape of fibre tapers/couplers produced by using scanning point-like

    heatingsourceshasbeenextensivelystudiedbyBirkselal.[64].Assumingthatthe

    localisedheatingofthefibremakestheglasssoftenoughtobestretchedwhilstnot

    being so soft that it falls under its own weight, the shape of the tapers can be

    calculated without having to recur to fluid mechanics beyond the principle of

    conservation of mass. A tapered fibre, at any given time (or elongation) of the

    pullingprocess,canbecharacterisedby theparametersshowninfigure4.7a).rois

    theinitialfibreradiuscorrespondingtoatransitionlength,z0,andr(z)theradiusof

    thetapertransitionatagivenpositionz.Thelengthoftheuniformtaperwaistl w(t)

    isequaltothelengthofthehot-zoneL(t)atthattime.Thesizeofthehot-zoneL(t)mayvarywithtimebutissubjecttotheconstraintsL0anddL/dx1.Thissecond

    constraint ensures that the hot-zonedoes not overtake the pulled transitions. The

    time change is proportional to the extension or elongation of the taper i.e., the

    pullingspeed isconstant.Figure4.7b)showstheequivalentuntaperedfibrewhere

    theinitialhotspotlength(att=0)isL0andxisthetotalpullingextensionatagiven

    time.Comparingthetaperedwiththeuntaperedfibreitmaybeobservedthatpoints

    AandB areelongatedbyx. In theparticularcasewherethehot-zone isconstant

    duringthepulling,thewaistlengthisconstantlw(x)=L0andthetapertransitionis

    equaltohalfoftheextensionz=x/2.

    Figure4.7-Schematic representationof afibretaperstructure.a)Ata timet during the

    pulling.b)Initialfibrebeforepulling.

  • 7/30/2019 optic coupler

    12/18

    4-IntroductiontoFibre-Couplers 43

    From the conservation ofmass principle, the following expression can easily be

    derived:

    L

    r

    dx

    dr ww

    2= (4.7)

    Secondly, the extension x can be related to the taper transition length z by

    comparingtheinitiallengthABatt=0,withthetotaltaperlengthABatanygiven

    time:

    02 LxLz +=+ (4.8)

    The particular case where the hot-zone remains constant during the fibre

    extensionhasbeenanalysedby[64-66].InthiscaseL(z)=L0andz=x/2.Integrating

    (4.7)givesthewaistshapeforatotalfibreextensionx.

    ( )00 20

    )'(

    '2/1

    0)(LxxL

    dx

    wererxr

    x

    =

    = (4.9)

    Thetaperprofileis calculatedbysubstituting x=2z in(4.9), resultinginthewell-

    knownexponentialdecayprofile.Allthetaperandcouplerdevicesdiscussedinthis

    thesiswerefabricatedusingaconstanthot-zone,thusexpression(4.9)issufficientto

    describe the profiles of the tapered regions. Further examples of interest are

    discussedin[64]whereequation(4.7)isdemonstratedaswell.

    Inordertominimizelossesbetweenthefundamentalandthenearestcladding

    modes,thetaperangle|dr/dz|hastoobeytheadiabaticcriterion[63].

    ( ) ( )( )

    2

    21 zzr

    dz

    dr (4.10)

  • 7/30/2019 optic coupler

    13/18

    4-IntroductiontoFibre-Couplers 44

    Where 1(z) and 2(z) are respectively the local propagation constants of the

    fundamentalmode and the closest claddingmodes, and r is the localcore radius.

    Experimentally it was observed that intrinsic loss of the fabricated couplers and

    tapers using the flame-brush technique were very low and justify the use of the

    aboveparametersdescribingsmoothadiabatictransitions.

    4.3.5 Effect of the tapered transition on the coupler power

    evolution

    Thelong transitionregionsincouplersfabricatedusing theflame-brush technique

    withconstanthotzone,playaroleinthewaythepowerevolvesalongthecoupler.

    For a full-cycle coupler with a constant hot zone of L0=30mm fabricated with

    standardtelecommunicationssinglemodefibre, the evolutionof the powerat the

    outputportsis illustratedinFigure4.8.Light fromaDFB-LDatawavelengthof

    1.55mislaunchedinport1andmonitoredatport3andport4duringthepulling

    process.Thepowerevolutionisonlyplottedfromanextensionofx=47mm(from

    x=0tox=47therewasnocoupling)inordertoemphasisethecouplingprocess.

    0

    1

    2

    3

    4

    5

    47 52 57 62 67 72 77

    CouplerElongation(mm)

    Measuredoutput(V)

    Port4

    Port3

    50%

    splitter

    coupler2coupler

    x1

    x

    x3x2x0 xm xN

    ........

    ........ ........

    Figure4.8Measuredpowerevolutionofa30mmlongfull-cyclecouplerata=1.55m

    duringthepullingprocess.

  • 7/30/2019 optic coupler

    14/18

    4-IntroductiontoFibre-Couplers 45

    Light starts tobecoupled between the two fibres for a coupler extension around

    x=51mm,thehalf-cyclepointisreachedataroundx=73.5mmwhenallthelightisin

    Port4andthepullingprocesswashaltedafteronefull-cycle,i.e.,whenalllightwas

    coupledbacktoPort3.UsingtheinformationplottedinFigure4.8andthefactthat

    dL/dx=0 (constant hot-zone pulling), an iterative method to extract the coupling

    strengthprofileduetothetaperedtransitionregioncanbedeveloped.Afteragiven

    extension,x,wherecouplingstarts tooccur,all the interactionisdueto thewaist

    section with length L0. The coupling coefficient, k(x), can be evaluated for that

    extension(orequivalentlyforthatwaistradius)assumingthatthehot-zonesectionisuniform and constant during the fabricationprocess,by solving equation(4.4) in

    ordertodetermine(x)=(x)L0=2k(x)L0.Nowthephasedisplacementbetweenthe

    evenandoddeigenmodescorrespondingtothecoupledpowerP1(x0)atextensionx0

    isgivenby:

    [ ] 0011

    0 )(cos)( LxPx= (4.11)

    andthevalueof(x1)atthenextextensionx1=x0+xcanbecalculatediteratively

    using;

    [ ] 010111

    1 )()(cos)( LxxLxPx = , (4.12)

    finallyatthemthsection,xm=x0+mx,ityields;

    [ ]

    =

    =1

    00

    01

    1 )()(cos)(m

    n

    nmm xL

    xLxPx (4.13)

    Thereaderisremindedthatz=x/2andtherefore,(z)=(x)/2.Usingthisgeneral

    recursive expression and the couplerpower evolution Port 3 (blue line inFigure

    4.8),thecouplingstrength(solidline)wascalculatedandplottedinFigure4.9thisis

  • 7/30/2019 optic coupler

    15/18

    4-IntroductiontoFibre-Couplers 46

    comparedtotheidealcoupler(dashedline)withoutataperedtransitionregion.The

    originofthegraphinFigure4.9correspondstoacouplerextensionofx=47mmand

    thereforeatransitionlengthofz=23.5mm.Atthispositionthenormalisedcoupler

    radiuscanbecalculatedusing(4.9)yieldingr(z=23.5)/r0=exp(-z/L0)0.457.

    Theidealcouplerhasahighercouplingstrengthalongtheuniformwaistthan

    the fabricated coupler; although the total coupler phase displacement (L)

    correspondingtotheintegrationof thecouplingstrengthalongthewholelength,is

    thesameinbothcouplersat=1.55m.By comparing thepowercoupling inthe

    transition regions with that in the uniform region of the fabricated coupler, it is

    realisedthat22.1%ofthetotalphasedisplacementalongthecouplerisduetothe

    tapered transition regions and 77.9% due to the uniform waist. Therefore, when

    optimising add-drop multiplexers based on full-cycle couplers with gratings

    inscribedinthewaist,byplacingthembetweentheexactpointsalongthecoupler

    wherethepowerisequallysplitbetweenthefibres,thecouplertransitionregionhas

    to be taken into account. However, the non-destructive coupler characterisation

    methodpresentedinChapter9overcomesthisproblem.

    0

    0.5

    1

    1.5

    0 7.5 15 22.5 30 37.5 45 52.5 60

    CouplerPosition(mm)

    k(z)(x104

    m-1)

    Idealcoupler

    Realcoupler

    Figure4.9Comparisonofthecouplingstrengthsofanideal(dashedline)andfabricated

    (solidline)30mmlongfull-cyclecoupler.

  • 7/30/2019 optic coupler

    16/18

    4-IntroductiontoFibre-Couplers 47

    The effect of the tapered transition region on the powerevolution along the

    couplerlength is illustrateddirectly inFigure 4.10.Boththe output couplerports

    (Port3 andPort4)areshown.Thedashedlinerefers totheidealcouplerandthe

    solidlinetothefabricatedcoupler.Itisobservedthatthefabricatedcouplerislonger

    and the coupling smoother corresponding to the transition regions. The coupler

    positionswherethe power isequallydistributed inboth thewaveguides (50-50%

    points) are shifted towards the tapered regions. Identification of these coupler

    positionsiscriticalfortheoptimisationofadd-dropmultiplexersbasedongratings

    inscribedinthecouplerwaistandwillbediscussedinChapter8.

    The accuracyof expression (4.13), in determining the coupling strength andhencethe50-50%pointsofthecoupler,dependsontheuniformityofthehot-zone

    lengthandtheadiabaticevolutionofthetaperedtransitionregionduringthepulling

    process.Inordertocharacterisethecoupleranddetermineits50-50%pointsanovel

    non-destructivecharacterisationtechniqueforfibrecouplerswasdevelopedandis

    discussedinChapter9.

    0

    0.5

    1

    0 7.5 15 22.5 30 37.5 45 52.5 60

    CouplerPosition(mm)

    NormalisedPower

    P1(z)

    P2(z)

    Figure 4.10 Power evolution along the length of an ideal uniform (dashed line) and

    fabricated(solidline)30mmlongfull-cyclecoupler.

  • 7/30/2019 optic coupler

    17/18

    4-IntroductiontoFibre-Couplers 48

    4.3.6Couplercrosssection

    When fabricating couplers using the flame-brush technique, the degree of fusion

    beforepullingthefibresdefinesthecrosssectionalshapeofthecoupler.Thehigher

    the degree of fusion the closer the crosssection of the fabricated coupler is toa

    cylinder.Inthecaseofveryweakfusion,thecouplerhasacharacteristicdumbbell

    shapeandforintermediatedegreesoffusion,thecross-sectionhasapproximatelyan

    elliptical shapewith varying eccentricity [67]. The theoretical description of the

    couplerintermsofthecouplereigenmodes,alsoknownassupermodes,isrelatedto

    thecouplercross-section,differentapproximationsforcalculatingthesemodeshave

    beenaddressedintheliterature.InBureset.al.[68]thefibreswerenotfusedandthe

    coreswereneglected;[69]approximatedthecouplercrosssectionusingdifferenta

    rectangular cross section, and [70, 71] gives analytical expressions for the two

    lowestordermodes,LP01andLP11,fordifferentcouplercross-sections(rectangular,

    elliptical,circular)alsoneglectingthefibrecores.

    Furtherwork,[67,72]usedaFieldCorrectionMethodtoaccuratelycalculate

    the coupler eigenmodes,while [73-75] use the rigorous surface integral equation

    methoddeterminethecouplercharacteristics.

    4.4 Summary

    FibrecouplersareimportantcomponentsusedinWDMsystemstorouteandsplit

    signals,monitorthenetwork,orcombinesignalandpumpwavelengthsforfeeding

    optical amplifiers. Recently add-drop multiplexer configurations relying on the

    inscriptionofBragggratingsinthecouplerwaisthavebeeninvestigated[41,42].In

    order to optimise these devices accurate control of the fabrication and suitable

    methods of characterisation for the couplers are required. In chapter 9 a non-

    destructivemethodforcharacterisingfibre-couplersisdescribed.

    In conclusion this chapter gave an introduction to coupler technologies and

    describedhow light is transferredbetween the twowaveguides along the coupler

    length. A review of fibre-coupler fabrication technologies, their advantages and

  • 7/30/2019 optic coupler

    18/18

    4-IntroductiontoFibre-Couplers 49

    drawbacksforeachwasdiscussed.Finallytheinfluenceofthefibrecouplerstapered

    transitionregiononthepowerevolutionalongthecouplerlengthwasdescribed.It

    willbeshown(inchapter8)thatinordertooptimiseanadd-dropmultiplexer; the

    influenceofthetransitionregionhastobetakenintoaccount.