Offshore Wind Energy_6

download Offshore Wind Energy_6

of 80

Transcript of Offshore Wind Energy_6

  • 8/9/2019 Offshore Wind Energy_6

    1/80

    Offshore Wind Energy

    An Analysis of NDBC Wind Databy Philip H. Kahn

    Copyright 2010 Philip H. Kahn 1

  • 8/9/2019 Offshore Wind Energy_6

    2/80

    Introduction

    This study utilizes meteorological data provided by the National DataBuoy Center to characterize the wind energy resource potential at

    several locations off the shores of the continental United States. 23

    Discus buoys and one land station are compared over 11 years.

    The wind resource is computed by extrapolating the wind speed from

    5 meters to 80 meters elevation; applying a single power curve (that of

    a G.E. 3.6sl wind turbine) to the extrapolated wind speed; and applying

    a density correction to account for the effect of temperature and

    pressure on the power density.

    Plots of monthly and hourly variation of wind speed and capacityfactor are presented. Also, change histograms of extrapolated wind

    speed and power generation are computed for individual and groups

    of buoys to demonstrate the effect of geographic dispersion on the

    hour-to-hour variability of power output.

    Copyright 2010 Philip H. Kahn 2

  • 8/9/2019 Offshore Wind Energy_6

    3/80

    National Data

    Buoy Center

    www.ndbc.noaa.gov/

    Contains meteorolog-

    ical and oceano-

    graphic data

    Reported at least

    hourly

    Good temporal

    coverage (except for

    Great Lakes due to

    winter ice)

    Wind speed measured

    at 5 meter elevation

    Also measures wave

    height (for surface

    roughness)

    Copyright 2010 Philip H. Kahn 3

    http://www.ndbc.noaa.gov/http://www.ndbc.noaa.gov/
  • 8/9/2019 Offshore Wind Energy_6

    4/80

    Copyright 2010 Philip H. Kahn 4

  • 8/9/2019 Offshore Wind Energy_6

    5/80

    Copyright 2010 Philip H. Kahn 5

  • 8/9/2019 Offshore Wind Energy_6

    6/80

    Copyright 2010 Philip H. Kahn 6

  • 8/9/2019 Offshore Wind Energy_6

    7/80

    Methodology

    For stations with multiple observations per hour,wind speed data are block averaged.

    For buoys, aerodynamic roughness length isdetermined using Charnocks relation and iteration;and used to extrapolate wind speed at hub height.

    No correction for static stability is used in the currentstudy, though per Motta, et al (2003)* use oflogarithmic profiles without stability correction willtend to underestimate wind speeds at hub height.

    For land based measurements fetch dependentroughness length are used to extrapolate wind speedto hub height.

    *M. Motta, R.J. Barthelmie and P. Volund, 2003: Stability effects on predicted wind speed profiles and power output at the Vindeby offshore wind farm,Wind Eng Journal, http://ejournal.windeng.net/archive/00000001/01/e-paper_motta.pdf

    Copyright 2010 Philip H. Kahn 7

  • 8/9/2019 Offshore Wind Energy_6

    8/80

    Methodology (cont.)

    Hub height for all power computations in this reportis 80 meters above local elevation.

    Density correction to power output is computed

    based on temperature and pressure data on buoysand the land station, yielding a significant seasonalimpact on power production.

    Power computations have no allowances for losses.

    Hence they are overestimates of actual expectedpower production, and illustrate the estimatedimpact that variation in wind speed between buoyshas on power generation.

    Copyright 2010 Philip H. Kahn 8

  • 8/9/2019 Offshore Wind Energy_6

    9/80

    GE 3.6sl Wind Turbine

    Basis for all wind

    energy computations

    in this report

    Same power curve

    used for both on-

    shore and off-shore

    computations

    Copyright 2010 Philip H. Kahn 9

  • 8/9/2019 Offshore Wind Energy_6

    10/80

    Data Availability

    Due to the variability of winds on all time scales, whencomparing meteorological data from multiple instruments, it is

    important to keep careful track of the temporal overlap of the

    individual times series. In this study, we accomplish that by

    computing the data availability percentage over each time frame

    studied (monthly, quarterly and yearly); which is the number of

    reported valid data values divided by the maximum possible data

    values for the time frame (i.e. 720 hours in April, or 8760 hours

    in 2003). The following table shows the data availability

    percentage for each station and year studied. In many of thefollowing plots, a data threshold is defined for which those cases

    where the data availability is less than the threshold are

    Copyright 2010 Philip H. Kahn 10

  • 8/9/2019 Offshore Wind Energy_6

    11/80

    Data Availability (cont.)

    eliminated. For example, plots that have a data threshold of .95include only those cases where data availability percentage

    equals or exceeds 95%. Plots with a data threshold of 0 have no

    cases eliminated and display the maximum amount of data

    analyzed.

    Copyright 2010 Philip H. Kahn 11

  • 8/9/2019 Offshore Wind Energy_6

    12/80

    Copyright 2010 Philip H. Kahn

    Data Availability Chart

    Percentages denote ratio of the number of actual data values to the number of

    possible data values. All colored boxes were analyzed.

    2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

    41001 65.3% 80.8% 60.7% 99.6% 86.1% 95.9% 99.8% 55.8% 95.1% 42.4% 66.1% 97.8%

    41025 99.4% 99.2% 99.8% 79.7% 69.1% 68.3%42007 76.9% 88.4% 96.1% 76.5% 83.8% 94.1% 97.7% 99.6% 98.8% 94.1% 78.0%

    42019 99.9% 99.0% 94.5% 99.0% 90.7% 99.9% 95.2% 99.8% 52.1% 84.8% 81.1%

    42020 99.9% 78.7% 99.3% 99.0% 99.5% 99.7% 96.9% 98.2% 56.6% 98.0% 98.4%

    42035 88.1% 99.2% 99.8% 78.3% 98.8% 99.4% 99.7% 91.5% 99.2% 98.9% 98.4%

    42040 74.2% 99.0% 90.5% 94.1% 86.0% 99.7% 99.8% 99.5% 92.1% 75.3% 84.2%

    44007 99.7% 85.0% 99.6% 69.4% 99.5% 96.7% 99.6% 98.9% 99.4% 99.1% 98.3%

    44008 83.4% 76.6% 96.3% 56.4% 97.4% 89.6% 99.6% 38.6% 81.6% 98.4% 78.7%

    44009 84.6% 99.5% 99.7% 99.9% 68.9% 98.5% 83.0% 99.1% 97.3% 99.0% 91.4% 88.1%

    44011 96.8% 78.4% 96.8% 95.3% 58.1% 87.2% 95.3% 86.9% 90.9% 82.0% 96.9% 83.5%

    44013 99.3% 99.0% 99.4% 99.3% 99.7% 99.6% 99.6% 98.3% 99.6% 94.3% 98.3%44014 99.2% 99.3% 60.1% 93.1% 99.9% 88.6% 99.7% 99.8% 97.3% 83.9% 70.9%

    44017 82.2% 99.5% 84.2% 93.6% 92.0% 98.9% 33.2%

    44018 99.4% 85.7% 98.4% 79.7% 62.1% 99.1% 41.8%

    44025 94.8% 25.7% 91.0% 99.6% 99.6% 77.6% 99.8% 99.8% 97.6% 91.0% 93.2%

    44027 86.4% 81.3% 99.8% 48.7% 63.2% 61.7%

    45005 58.4% 38.0% 55.9% 58.9% 63.1% 62.3% 70.4% 60.5% 62.3% 58.9% 69.1%

    45008 55.4% 59.5% 64.5% 65.9% 61.7% 54.9% 55.7% 62.5% 59.9% 52.1% 51.5%

    45012 52.7% 55.8% 49.2% 56.0% 58.0% 47.6% 58.3%

    46041 94.7% 22.1% 40.1% 99.1% 99.7% 99.4% 64.4% 77.2% 70.1% 47.5% 46.3%

    46054 78.0% 81.1% 84.4% 35.2% 97.3% 98.2% 65.6% 97.6% 97.7% 96.6% 96.4%

    46063 99.5% 76.0% 43.3% 51.2% 96.3% 99.7% 99.6% 74.7% 80.6% 98.7% 66.8%

    JST___ 98.2% 98.8% 97.9% 97.2% 98.1% 98.3%

    >75% Data Coverage

  • 8/9/2019 Offshore Wind Energy_6

    13/80

    Overall Average Wind Speed and Capacity Factor

    The following slide contains a table showing the overall averagewind speed and capacity factor for the studied stations. The

    fourth column shows simply the average of the annual average

    wind speed for all hours with data. The fifth column shows the

    average of 12 monthly averages of wind speed for all hours with

    data. The sixth column is the same as the fifth but with a data

    threshold of 95%, meaning that months with less than 95% data

    availability are not used in the computations. The fourth and

    fifth columns are more subject to sampling errors. Similar

    definitions apply to the seventh, eighth and ninth columns, butthey are capacity factor instead of wind speed.

    Copyright 2010 Philip H. Kahn 13

  • 8/9/2019 Offshore Wind Energy_6

    14/80

    Copyright 2010 Philip H. Kahn

    Annual Mean Wind Speed and Capacity Factor For Period Studied (1998

    through 2008, subject to Data Availability)

    Station Latitude Longitude

    Avg. Wind

    Speed from

    Yrly. Avgs. (m/s)

    Avg. Wind

    Speed from

    Monthly Avgs.

    Avg. Wind

    Speed from

    Monthly Avgs.

    w/ 95% Avail.

    Avg.

    Capacity

    Factor from

    Yrly. Avgs.

    Avg. Cap.

    Fctr. from

    Monthly

    Avgs.

    Avg. Cap. Fctr.

    from Monthly

    Avgs. w/ 95%

    Avail.

    41001 3442'13" N 7244'2" W 8.93 9.09 9.12 45.1% 46.3% 46.7%

    41025 350'22" N 7524'7" W 9.13 9.33 9.34 46.6% 48.1% 48.2%

    42007 305'25" N 8846'7" W 6.80 6.79 6.75 27.6% 27.5% 27.2%

    42019 2754'47" N 9521'36" W 7.86 7.87 7.93 36.1% 36.2% 36.7%

    42020 2657'59" N 9641'42" W 8.07 8.07 8.06 37.5% 37.5% 37.5%

    42035 2913'54" N 9424'46" W 7.08 7.07 7.08 29.3% 29.3% 29.4%

    42040 2912'19" N 8812'19" W 7.20 7.19 7.24 31.2% 31.2% 31.5%

    44007 4331'53" N 708'39" W 6.92 6.95 6.93 30.7% 31.0% 30.8%

    44008 4030'9" N 6914'48" W 8.18 8.29 8.31 39.1% 40.0% 40.1%

    44009 3827'49" N 7442'7" W 8.11 8.12 8.07 38.9% 38.9% 38.5%

    44011 416'41" N 6634'47" W 8.17 8.30 8.29 38.7% 39.7% 39.8%

    44013 4221'14" N 7041'29" W 7.41 7.43 7.43 33.4% 33.6% 33.6%44014 3636'40" N 7450'11" W 7.72 7.83 7.86 35.6% 36.6% 36.8%

    44017 4041'27" N 722'47" W 8.72 8.61 8.65 43.6% 42.4% 43.0%

    44018 4115'31" N 6917'40" W 8.21 8.40 8.37 39.0% 40.8% 40.5%

    44025 4015'1" N 739'59" W 8.58 8.41 8.39 42.4% 41.1% 41.0%

    44027 4416'21" N 6718'51" W 8.15 8.36 8.37 38.8% 40.7% 40.8%

    45005 4140'36" N 8223'54" W 6.80 7.12 6.85 28.2% 30.9% 28.7%

    45008 4417'0" N 8224'59" W 7.22 7.75 7.37 32.0% 36.4% 33.1%

    45012 4337'9" N 7724'18" W 6.95 7.53 7.09 29.1% 33.3% 30.0%

    46041 4721'10" N 12443'50" W 6.91 6.99 7.10 29.6% 30.5% 31.3%

    46054 3416'28" N 12027'34" W 9.82 9.92 9.91 53.7% 54.4% 54.1%

    46063 3416'21" N 12041'55" W 8.84 8.92 9.03 48.2% 49.1% 49.9%JST 4019'6"N 7849'48"W 6.33 6.33 6.32 25.8% 25.8% 25.8%

    14

  • 8/9/2019 Offshore Wind Energy_6

    15/80

    Capacity Factor Comparisons

    Twelve of the NBDC buoys are located off the east coast(41001, 41025, 44007, 44008, 44009, 44011, 44013, 44014,44017, 44018, 44025 and 44027).

    For the purposes of comparison, they have been grouped intothree groups:

    Very Near to Shore (VNS). The VNS group is comprised of two buoys,44013 and 44007, and has an average annual capacity factor of 32.2% andan average distance to shore of 9 kilometers.

    Near to Shore (NS). The NS group is comprised of seven buoys, 41025,44009, 44014, 44017, 44018, 44025, and 44027, and has an average

    annual capacity factor of 41.3%, and an average distance to shore of 43kilometers.

    Far from Shore (FS). The FS group is comprised of three buoys, 41001,44008 and 44011, and has an average annual capacity factor of 42.2%,and an average distance to shore of 217 kilometers.

    Copyright 2010 Philip H. Kahn 15

  • 8/9/2019 Offshore Wind Energy_6

    16/80

    Capacity Factor Comparisons (cont.)

    Conclusions:The Near Shore buoys have a wind resource that is apparently

    attenuated.

    There are numerous locations with estimated capacity factor in

    the high 30%s and/or above 40%. The east coast buoys with the strongest wind resource are the

    two off of North Carolina (41001 and 41025).

    Nationally, the best wind resource measured by the Discus

    buoys of the NDBC is off the California coast near Santa Barbara(buoys 46054 and 46063). This wind resource is particularly

    strong in the summer when local demand peaks.

    Copyright 2010 Philip H. Kahn 16

  • 8/9/2019 Offshore Wind Energy_6

    17/80

    Weibull Fits

    The following two slides show probability density of wind speedfor station 44009 (off of Delaware) for the entire year of 2007.

    The first of the two slides is of the measured wind speed at 5

    meters elevation, and the second slide is of the wind speed

    extrapolated to 80 meters elevation. The plots show that the

    Weibull distribution fits quite well both to the measured and

    extrapolated wind speeds.

    Copyright 2010 Philip H. Kahn 17

  • 8/9/2019 Offshore Wind Energy_6

    18/80

    Histogram of Measured Wind Speed for C:\Buoy_Wind_Data_Analysis\44009\44009_2007\HMD_44009_2007_8718hours_twr

    Shape = 1.964 Scale = 7.173

    Wind Speed (meters/sec.)

    Density

    0 5 10 15

    0.0

    0

    0.0

    2

    0.0

    4

    0.0

    6

    0.0

    8

    0.1

    0

    0.1

    2

    Weibull Fit to Measured Wind Speed 44009 2007

    Copyright 2010 Philip H. Kahn 18

  • 8/9/2019 Offshore Wind Energy_6

    19/80

    Histogram of Transformed Wind Speed for C:\Buoy_Wind_Data_Analysis\44009\44009_2007\HMD_44009_2007_8718hours_twr

    Shape = 1.876 Scale = 9.067

    Wind Speed (meters/sec.)

    Density

    0 5 10 15 20 25

    0.0

    0

    0.0

    2

    0.0

    4

    0.0

    6

    0.0

    8

    0.1

    0

    Weibull Fit to Hub Height Wind Speed 44009 2007

    Copyright 2010 Philip H. Kahn 19

  • 8/9/2019 Offshore Wind Energy_6

    20/80

    Wind Rose Plots

    The following two slides show wind rose plots of wind speedduring 2006 for four buoys. The first slide compares 44007 and

    44027 (both near the coast of Maine); while the second slide

    compares 44008 and 44018 (which are much further offshore).

    The first slide shows significant terrain effects on the winds at

    44007, which is the closest to shore of all of the buoys studied.

    The wind speed at 44007 is lower than it is at the nearby buoy

    44027, which is further offshore than 44007. The wind roses for

    44008 and 40018 are much more similar due to their location far

    from shore. This indicates that the low wind speed and capacityfactor for 44007 is more likely due to its proximity to shore

    rather than due to instrument error.

    Copyright 2010 Philip H. Kahn 20

  • 8/9/2019 Offshore Wind Energy_6

    21/80

    Copyright 2010 Philip H. Kahn 21

  • 8/9/2019 Offshore Wind Energy_6

    22/80

    Copyright 2010 Philip H. Kahn 22

  • 8/9/2019 Offshore Wind Energy_6

    23/80

    Monthly Wind Speed for One Year

    The following plot shows the monthly average wind speedextrapolated to 80 meter hub height determined from wind

    speed measured by buoy 44009 located off the coast of

    Delaware for the year 2007. The plot shows the characteristic

    summer lull in wind speeds with the maximum wind energy in

    the last two and first two months of the year, that is typical of

    buoys located of the east coast of the U.S.

    Copyright 2010 Philip H. Kahn 23

  • 8/9/2019 Offshore Wind Energy_6

    24/80

    44009 2007 Hub Height Wind Speed

    Copyright 2010 Philip H. Kahn 24

    0

    2

    4

    6

    8

    10

    12

    1 2 3 4 5 6 7 8 9 10 11 12

    WindSp

    eed(Met/Sec)

    Month

    Full Year

  • 8/9/2019 Offshore Wind Energy_6

    25/80

    Hourly Wind Speed for Full Year and 4 Seasons

    The following five plots show hourly average wind speedextrapolated to 80 meter hub height determined from wind

    speed measured by buoy 44009 for the year 2007. The first plot

    shows the hourly variation of wind speed for the entire year;

    while the subsequent four plots show the hourly variation for

    Winter (December, January and February), Spring (March, April

    and May), Summer (June, July and August) and Fall (September,

    October and November). The time of day is UTZ (Greenwich

    Standard Time).

    Copyright 2010 Philip H. Kahn 25

  • 8/9/2019 Offshore Wind Energy_6

    26/80

    44009 2007 Hub Height Wind Speed

    Copyright 2010 Philip H. Kahn 26

    0

    2

    4

    6

    8

    10

    12

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 1 5 16 1 7 1 8 19 2 0 2 1 2 2 23 2 4

    WindSpeed(Met/Sec)

    Hour

    Full Year

  • 8/9/2019 Offshore Wind Energy_6

    27/80

    44009 2007 Hub Height Wind Speed

    Copyright 2010 Philip H. Kahn 27

    0

    2

    4

    6

    8

    10

    12

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 1 5 16 1 7 1 8 19 2 0 2 1 2 2 23 2 4

    WindSpeed(Met/Sec)

    Hour

    Winter

  • 8/9/2019 Offshore Wind Energy_6

    28/80

    44009 2007 Hub Height Wind Speed

    Copyright 2010 Philip H. Kahn 28

    0

    2

    4

    6

    8

    10

    12

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 1 5 16 1 7 1 8 19 2 0 2 1 2 2 23 2 4

    WindSpeed(Met/Sec)

    Hour

    Spring

  • 8/9/2019 Offshore Wind Energy_6

    29/80

    44009 2007 Hub Height Wind Speed

    Copyright 2010 Philip H. Kahn 29

    0

    2

    4

    6

    8

    10

    12

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 1 5 16 1 7 1 8 19 2 0 2 1 2 2 23 2 4

    WindSpeed(Met/Sec)

    Hour

    Summer

  • 8/9/2019 Offshore Wind Energy_6

    30/80

    44009 2007 Hub Height Wind Speed

    Copyright 2010 Philip H. Kahn 30

    0

    2

    4

    6

    8

    10

    12

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 1 5 16 1 7 1 8 19 2 0 2 1 2 2 23 2 4

    WindSpeed(Met/Sec)

    Hour

    Fall

  • 8/9/2019 Offshore Wind Energy_6

    31/80

    All Stations Monthly

    The next slide shows for each station the wind speed averagedover each month of all the years studied. The following slide

    shows for each station the wind speed averaged over each

    month plotted individually, indicating the scatter of the

    individual months. The succeeding two plots are similar but

    show the capacity factor instead of the wind speed. These plots

    give a good idea of the annual and inter-annual variability of the

    wind speed and capacity factor as measured by the 23 NDBC

    data buoys.

    Copyright 2010 Philip H. Kahn 31

  • 8/9/2019 Offshore Wind Energy_6

    32/80

    Monthly Average Hub Height Wind Speed For All Years

    Copyright 2010 Philip H. Kahn

    Overall Average Per Month Data Threshold = 0 %

    Month

    WindSpeed

    (met/sec)

    5

    10

    15

    2 4 6 8 10 12

    41001 41025

    2 4 6 8 10 12

    42007 42019

    2 4 6 8 10 12

    5

    10

    1542020

    5

    10

    15

    42035 42040 44007 44008

    5

    10

    15

    44009

    5

    10

    1544011 44013 44014 44017

    5

    10

    1544018

    5

    10

    1544025 44027 45005 45008

    5

    10

    1545012

    5

    10

    1546041

    2 4 6 8 10 12

    46054 46063

    2 4 6 8 10 12

    5

    10

    15JST__

    32

  • 8/9/2019 Offshore Wind Energy_6

    33/80

    Monthly Average Hub Height Wind Speed For Individual Years

    Copyright 2010 Philip H. Kahn

    Monthly Averages Data Threshold = 0 %

    Month

    WindSpeed

    (met/sec)

    5

    10

    15

    2 4 6 8 10 12

    41001 41025

    2 4 6 8 10 12

    42007 42019

    2 4 6 8 10 12

    5

    10

    1542020

    5

    10

    15

    42035 42040 44007 44008

    5

    10

    15

    44009

    5

    10

    1544011 44013 44014 44017

    5

    10

    1544018

    5

    10

    1544025 44027 45005 45008

    5

    10

    1545012

    5

    10

    1546041

    2 4 6 8 10 12

    46054 46063

    2 4 6 8 10 12

    5

    10

    15JST__

    33

  • 8/9/2019 Offshore Wind Energy_6

    34/80

    Monthly Average Capacity Factor For All Years

    Copyright 2010 Philip H. Kahn

    Overall Average Per Month Data Threshold = 0 %

    Month

    CapacityF

    actor(%)

    20

    40

    60

    2 4 6 8 10 12

    41001 41025

    2 4 6 8 10 12

    42007 42019

    2 4 6 8 10 12

    20

    40

    60

    42020

    20

    40

    60

    42035 42040 44007 44008

    20

    40

    60

    44009

    20

    40

    60

    44011 44013 44014 44017

    20

    40

    60

    44018

    20

    40

    60

    44025 44027 45005 45008

    20

    40

    60

    45012

    20

    40

    60

    46041

    2 4 6 8 10 12

    46054 46063

    2 4 6 8 10 12

    20

    40

    60

    JST__

    34

  • 8/9/2019 Offshore Wind Energy_6

    35/80

    Monthly Average Capacity Factor For Individual Years

    Copyright 2010 Philip H. Kahn

    Monthly Averages Data Threshold = 0 %

    Month

    CapacityF

    actor(%)

    20

    40

    60

    2 4 6 8 10 12

    41001 41025

    2 4 6 8 10 12

    42007 42019

    2 4 6 8 10 12

    20

    40

    60

    42020

    20

    40

    60

    42035 42040 44007 44008

    20

    40

    60

    44009

    20

    40

    60

    44011 44013 44014 44017

    20

    40

    60

    44018

    20

    40

    60

    44025 44027 45005 45008

    20

    40

    60

    45012

    20

    40

    60

    46041

    2 4 6 8 10 12

    46054 46063

    2 4 6 8 10 12

    20

    40

    60

    JST__

    35

  • 8/9/2019 Offshore Wind Energy_6

    36/80

    All Stations Hourly (Full Year, Winter & Summer)

    The next three slides show hourly variation of wind speed foreach station averaged over the full year for the first plot; over

    the winter for the second plot; and over the summer for the

    third plot. Each circle plotted represents the average wind speed

    for a particular hour in each day of the averaging period. In the

    case of the full year plot each circle represents the average of

    hourly 365 values; while for the seasonal plots each circle

    represents the average of up to 91 hourly values. The following

    3 slides are the same but with capacity factor plotted rather than

    wind speed. Cases that show a line of circles away from themain body of data points result from averaging periods that are

    missing a large percentage of data values.

    Copyright 2010 Philip H. Kahn 36

  • 8/9/2019 Offshore Wind Energy_6

    37/80

    Full Year Hourly Average Hub Height Wind Speed For Individual Years

    Copyright 2010 Philip H. Kahn

    Full Year Data Threshold = 0

    Hour

    WindSpeed

    (met/sec)

    5

    10

    15

    0 5 10 15 20 25

    41001 41025

    0 5 10 15 20 25

    42007 42019

    0 5 10 15 20 25

    5

    10

    1542020

    5

    10

    15

    42035 42040 44007 44008

    5

    10

    15

    44009

    5

    10

    1544011 44013 44014 44017

    5

    10

    1544018

    5

    10

    1544025 44027 45005 45008

    5

    10

    1545012

    5

    10

    1546041

    0 5 10 15 20 25

    46054 46063

    0 5 10 15 20 25

    5

    10

    15JST__

    37

  • 8/9/2019 Offshore Wind Energy_6

    38/80

    Winter Hourly Average Hub Height Wind Speed For Individual Years

    Copyright 2010 Philip H. Kahn

    Winter Data Threshold = 0

    Hour

    WindSpeed

    (met/sec)

    5

    10

    15

    0 5 10 15 20 25

    41001 41025

    0 5 10 15 20 25

    42007 42019

    0 5 10 15 20 25

    5

    10

    1542020

    5

    10

    15

    42035 42040 44007 44008

    5

    10

    15

    44009

    5

    10

    1544011 44013 44014 44017

    5

    10

    1544018

    5

    10

    1544025 44027 45005 45008

    5

    10

    1545012

    5

    10

    1546041

    0 5 10 15 20 25

    46054 46063

    0 5 10 15 20 25

    5

    10

    15JST__

    38

  • 8/9/2019 Offshore Wind Energy_6

    39/80

    Summer Hourly Average Hub Height Wind Speed For Individual Years

    Copyright 2010 Philip H. Kahn

    Summer Data Threshold = 0

    Hour

    WindSpeed

    (met/sec)

    5

    10

    15

    0 5 10 15 20 25

    41001 41025

    0 5 10 15 20 25

    42007 42019

    0 5 10 15 20 25

    5

    10

    1542020

    5

    10

    15

    42035 42040 44007 44008

    5

    10

    15

    44009

    5

    10

    1544011 44013 44014 44017

    5

    10

    1544018

    5

    10

    1544025 44027 45005 45008

    5

    10

    1545012

    5

    10

    1546041

    0 5 10 15 20 25

    46054 46063

    0 5 10 15 20 25

    5

    10

    15JST__

    39

  • 8/9/2019 Offshore Wind Energy_6

    40/80

    Full Year Hourly Average Capacity Factor For Individual Years

    Copyright 2010 Philip H. Kahn

    Full Year Data Threshold = 0

    Hour

    CapacityF

    actor(%)

    20

    40

    60

    0 5 10 15 20 25

    41001 41025

    0 5 10 15 20 25

    42007 42019

    0 5 10 15 20 25

    20

    40

    60

    42020

    20

    40

    60

    42035 42040 44007 44008

    20

    40

    60

    44009

    20

    40

    60

    44011 44013 44014 44017

    20

    40

    60

    44018

    20

    40

    60

    44025 44027 45005 45008

    20

    40

    60

    45012

    20

    40

    60

    46041

    0 5 10 15 20 25

    46054 46063

    0 5 10 15 20 25

    20

    40

    60

    JST__

    40

  • 8/9/2019 Offshore Wind Energy_6

    41/80

    Winter Hourly Average Capacity Factor For Individual Years

    Copyright 2010 Philip H. Kahn

    Winter Data Threshold = 0

    Hour

    CapacityF

    actor(%)

    20

    40

    60

    0 5 10 15 20 25

    41001 41025

    0 5 10 15 20 25

    42007 42019

    0 5 10 15 20 25

    20

    40

    60

    42020

    20

    40

    60

    42035 42040 44007 44008

    20

    40

    60

    44009

    20

    40

    60

    44011 44013 44014 44017

    20

    40

    60

    44018

    20

    40

    60

    44025 44027 45005 45008

    20

    40

    60

    45012

    20

    40

    60

    46041

    0 5 10 15 20 25

    46054 46063

    0 5 10 15 20 25

    20

    40

    60

    JST__

    41

  • 8/9/2019 Offshore Wind Energy_6

    42/80

    Summer Hourly Average Capacity Factor For Individual Years

    Copyright 2010 Philip H. Kahn

    Summer Data Threshold = 0

    Hour

    CapacityF

    actor(%)

    20

    40

    60

    0 5 10 15 20 25

    41001 41025

    0 5 10 15 20 25

    42007 42019

    0 5 10 15 20 25

    20

    40

    60

    42020

    20

    40

    60

    42035 42040 44007 44008

    20

    40

    60

    44009

    20

    40

    60

    44011 44013 44014 44017

    20

    40

    60

    44018

    20

    40

    60

    44025 44027 45005 45008

    20

    40

    60

    45012

    20

    40

    60

    46041

    0 5 10 15 20 25

    46054 46063

    0 5 10 15 20 25

    20

    40

    60

    JST__

    42

  • 8/9/2019 Offshore Wind Energy_6

    43/80

    Single Year Station Comparisons

    The following two slides show the power estimated poweroutput from a GE 3.6sl turbine with 80 meter hub height for

    buoy 44009 and the Johnstown, PA ASOS station located at the

    local airport. The first of the two plots shows the monthly

    variation of power output for 2007 and the second plot shows

    the hourly variation of power output for the full year of 2007.

    The next two slides show monthly variation of power output for

    2007 for: buoy 44009 and 41025 (located off Cape Hatteras,

    NC); and buoy 44009 and 44017 (located off the south shore of

    Long Island NY).

    Copyright 2010 Philip H. Kahn 43

  • 8/9/2019 Offshore Wind Energy_6

    44/80

    2007 Monthly Power Output (44009 light gray, JST dark gray)

    Copyright 2010 Philip H. Kahn 44

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12

    Pow

    er(kW)

    Month

    44009 vs JST

  • 8/9/2019 Offshore Wind Energy_6

    45/80

    2007 Hourly Power Output (44009 light gray, JST dark gray)

    Copyright 2010 Philip H. Kahn 45

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

    Pow

    er(kW)

    Hour

    Full Year

  • 8/9/2019 Offshore Wind Energy_6

    46/80

    Copyright 2010 Philip H. Kahn

    2007 Monthly Power Output (44009 light gray, 41025 dark gray)

    46

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12

    Pow

    er(kW)

    Month

    41025 vs 44009

  • 8/9/2019 Offshore Wind Energy_6

    47/80

    Copyright 2010 Philip H. Kahn

    2007 Monthly Power Output (44009 light gray, 44017 dark gray)

    47

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12

    Pow

    er(kW)

    Month

    44009 vs 44017

  • 8/9/2019 Offshore Wind Energy_6

    48/80

    Multiple Year Station Comparisons

    The following four slides each show six box-and-whisker plots ofdifferent station pairs, where the percentage difference in wind

    speed is plotted by month of the year. For each month, the

    mean is depicted with a heavy horizontal line through the box,

    which contains the second and third quartiles of the monthly

    difference values. The whiskers extend to the extreme of the

    monthly values of wind speed difference percentage. The next

    four slides are similar but with difference of capacity factor

    plotted instead of percentage difference in wind speed. These

    slides demonstrate the variation of wind resource among manyof the buoys.

    Copyright 2010 Philip H. Kahn 48

  • 8/9/2019 Offshore Wind Energy_6

    49/80

    Copyright 2010 Philip H. Kahn

    Monthly Wind Speed Differences For Selected Pairs of Stations

    49

  • 8/9/2019 Offshore Wind Energy_6

    50/80

    Copyright 2010 Philip H. Kahn

    Monthly Wind Speed Differences For Selected Pairs of Stations

    50

  • 8/9/2019 Offshore Wind Energy_6

    51/80

    Copyright 2010 Philip H. Kahn

    Monthly Wind Speed Differences For Selected Pairs of Stations

    51

  • 8/9/2019 Offshore Wind Energy_6

    52/80

    Copyright 2010 Philip H. Kahn

    Monthly Wind Speed Differences For Selected Pairs of Stations

    52

  • 8/9/2019 Offshore Wind Energy_6

    53/80

    Copyright 2010 Philip H. Kahn

    Monthly Capacity Factor Differences For Selected Pairs of Stations

    53

  • 8/9/2019 Offshore Wind Energy_6

    54/80

    Copyright 2010 Philip H. Kahn

    Monthly Capacity Factor Differences For Selected Pairs of Stations

    54

  • 8/9/2019 Offshore Wind Energy_6

    55/80

    Copyright 2010 Philip H. Kahn

    Monthly Capacity Factor Differences For Selected Pairs of Stations

    55

  • 8/9/2019 Offshore Wind Energy_6

    56/80

    Copyright 2010 Philip H. Kahn

    Monthly Capacity Factor Differences For Selected Pairs of Stations

    56

  • 8/9/2019 Offshore Wind Energy_6

    57/80

    Multiple Year Station Comparisons: Discussion

    The wind resource at JST__ is generally less than that of virtually all of thebuoys. This site is at a relatively high elevation (over 2000 feet above sealevel), however it is located at an airport and does not benefit fromtopographical speed-up as do typically developed land-based wind energyproduction sites in the eastern part of the U.S. (See upper left plot of Slide49.)

    The summer winds at 44009 are equal or greater than those at 44017 and44025, though the winter winds at the latter two stations off the southerncoast of Long Island are stronger than those off of Delaware, indicatingthat those sites are comparable to the Delaware one. (See upper middleand upper right plot of Slide 49.)

    The winds at 44013 (just east of Boston Harbor) are unexpectedly light.

    This is presumably due to sheltering of the winds by the city and by CapeCod. (See the lower left plot of Slide 49.)

    The wind resource at stations 44014 and 44018 are roughly comparable to

    Copyright 2010 Philip H. Kahn 57

  • 8/9/2019 Offshore Wind Energy_6

    58/80

    Multiple Year Station Comparisons: Discussion (cont.)

    that of 44009. (See lower middle and lower right plots of Slide 49.)

    The wind resource at 44007 (off the coast of Southern Maine) appears tobe significantly weaker than that of 44009. (See upper left plot of Slide50.) This is consistent with the discussion of the wind rose computed for44007 (Slides 20, 21 and 22).

    Station 41025 (off of Cape Hatteras, NC) has significantly better wind

    resource than 44009 and the other buoys further north. (See the upperright plot of Slide 50.) This is corroborated with the summary annualaverages shown in Slide 14.

    Station 42020 off the southern coast of Texas has better winds in themonths of May, June and July relative to 44009, while in the other months44009 fares better than 42020. (See lower left plot of Slide 50.) Overall,the two stations are quite close in annual wind resource (per Slide 14).

    Station 45005 (located in Lake Erie) only reports in the warmer months ofthe year due to lake ice. During the months that 45005 reports data, itswind resource lags that of 44009. (See the lower middle plot of Slide 50.)

    Copyright 2010 Philip H. Kahn 58

  • 8/9/2019 Offshore Wind Energy_6

    59/80

    Multiple Year Station Comparisons: Discussion (cont.)

    Station 46054 (off of Santa Barbara, CA) has the strongest wind resourceof all of the buoys studied. It has especially strong winds in the summermonths due to pronounced sea breeze circulation driven by the largeocean to land temperature difference occurring in southern California.(See the lower right plot of Slide 50, Slide 33 and Slide 14).

    Strong summer sea breeze is evident in the comparison between stations

    44008 and 44018. 44008 is located further offshore than 44018 and duesouth of it. (See the upper left plot of Slide 52.) This is corroborated bythe comparison between 44011 and 44018, which both are relatively faroffshore. (See the upper right plot of Slide 52.)

    The southern Texas coast (station 42020) appears to have significantlybetter wind resource than the northeastern Texas coast (station 42035).

    (See the lower right plot of Slide 52.)

    Copyright 2010 Philip H. Kahn 59

  • 8/9/2019 Offshore Wind Energy_6

    60/80

    Effects of Geographic Dispersion

    To see the effect geographic dispersion on power output, hour to hour

    changes in power output were compared between individual and groupsof buoys.

    Histograms of changes in wind speed and power were computed for 1, 2,3, 4, 8 and 12 hour differences for individual buoys and for groups of 3buoys and 7 buoys.

    Slides 62 through 67 show the wind speed change histograms for 1, 2, 3, 4,8 and 12 hour changes for buoy 44018 for 2008, while Slides 68 through73 show the same for power.

    Power change histograms were compared between a single buoy and theaverage of three buoys (relatively close together), and between a singlebuoy and the average of seven buoys (more widely dispersed).

    In Slides 74 and 75, the power change histograms for a single station(44008) are overlaid by the histograms for the average of three relativelyclose by buoys (44008, 44018 and 44025) located near Long Island andCap Cod.

    Copyright 2010 Philip H. Kahn 60

  • 8/9/2019 Offshore Wind Energy_6

    61/80

    Effects of Geographic Dispersion (cont.)

    In Slides 76 and 77, the power change histograms for a single buoy(44018) were overlaid by the power change histograms for the average ofseven buoys that were dispersed from North Carolina to Maine (41025,44007, 44008, 44013, 44014, 44018 & 44025).

    In Slides 78 and 79, the power change histograms for the close-by group ofthree buoys (44008, 44018 & 44025) is overlaid by the power change

    histograms for the average of the seven widely dispersed buoys (41025,44007, 44008, 44013, 44014, 44018 & 44025).

    Slides 76 and 77 clearly illustrate the smoothing effect on the hour-to-hour change of the power output from dispersed wind farms compared toa single wind farm.

    Note that the central spikes in the power change histograms result fromthe cut-in and cut-off speeds of the wind turbine power curve used for thecomputations

    Copyright 2010 Philip H. Kahn 61

  • 8/9/2019 Offshore Wind Energy_6

    62/80

    1 Hour Wind Speed Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 62

    HMD_44018_2008_8731hours Wind Speed

    1 Hour Change (met/sec)

    Density

    -30 -20 -10 0 10 20 30

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.1

    0.2

    0.3

    0.4

    0.5

    -30 -20 -10 0 10 20 30

  • 8/9/2019 Offshore Wind Energy_6

    63/80

    2 Hour Wind Speed Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 63

    HMD_44018_2008_8731hours Wind Speed

    2 Hour Change (met/sec)

    Density

    -30 -20 -10 0 10 20 30

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.1

    0.2

    0.3

    0.4

    0.5

    -30 -20 -10 0 10 20 30

  • 8/9/2019 Offshore Wind Energy_6

    64/80

    3 Hour Wind Speed Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 64

    HMD_44018_2008_8731hours Wind Speed

    3 Hour Change (met/sec)

    Density

    -30 -20 -10 0 10 20 30

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.1

    0.2

    0.3

    0.4

    0.5

    -30 -20 -10 0 10 20 30

  • 8/9/2019 Offshore Wind Energy_6

    65/80

    4 Hour Wind Speed Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 65

    HMD_44018_2008_8731hours Wind Speed

    4 Hour Change (met/sec)

    Density

    -30 -20 -10 0 10 20 30

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.1

    0.2

    0.3

    0.4

    0.5

    -30 -20 -10 0 10 20 30

  • 8/9/2019 Offshore Wind Energy_6

    66/80

    8 Hour Wind Speed Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 66

    HMD_44018_2008_8731hours Wind Speed

    8 Hour Change (met/sec)

    Density

    -30 -20 -10 0 10 20 30

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.1

    0.2

    0.3

    0.4

    0.5

    -30 -20 -10 0 10 20 30

  • 8/9/2019 Offshore Wind Energy_6

    67/80

    12 Hour Wind Speed Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 67

    HMD_44018_2008_8731hours Wind Speed

    12 Hour Change (met/sec)

    Density

    -30 -20 -10 0 10 20 30

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.1

    0.2

    0.3

    0.4

    0.5

    -30 -20 -10 0 10 20 30

  • 8/9/2019 Offshore Wind Energy_6

    68/80

    1 Hour Power Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 68

    HMD_44018_2008_8731hours Power

    1 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0

    .000

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    69/80

    2 Hour Power Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 69

    HMD_44018_2008_8731hours Power

    2 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0

    .000

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    70/80

    3 Hour Power Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 70

    HMD_44018_2008_8731hours Power

    3 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0

    .000

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    71/80

    4 Hour Power Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 71

    HMD_44018_2008_8731hours Power

    4 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0

    .000

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    72/80

    8 Hour Power Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 72

    HMD_44018_2008_8731hours Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0

    .000

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    73/80

    12 Hour Power Change Histogram for Buoy 44018 in 2008

    Copyright 2010 Philip H. Kahn 73

    HMD_44018_2008_8731hours Power

    12 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0

    .000

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    74/80

    2008 Power Change Histograms for 1, 2, 3, 4, 8 & 12 hour changes at Buoy 44008 (in red)

    overlaid by Average of 44008, 44018 & 44025

    Copyright 2010 Philip H. Kahn 74

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    1 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    2 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    3 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    4 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.

    001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.

    001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.

    001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    12 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.

    001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    75/80

    2008 Power Change Histograms for 1, 2, 3, 4, 8 & 12 hour changes at Buoy 44008 (in red)

    overlaid by Average of 44008, 44018 & 44025 (expanded scale)

    Copyright 2010 Philip H. Kahn 75

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    1 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    2 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    3 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44008_2008 AVG_44008_44018_44025_2008 Power

    12 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    76/80

    2008 Power Change Histograms for 1, 2, 3, 4, 8 & 12 hour changes at Buoy 44018 (in red)

    overlaid by Average of 41025, 44007, 44008, 44013, 44014, 44018 & 44025

    Copyright 2010 Philip H. Kahn 76

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    1 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    2 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    3 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    4 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.00

    1

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    12 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    77/80

    2008 Power Change Histograms for 1, 2, 3, 4, 8 & 12 hour changes at Buoy 44018 (in red)

    overlaid by Average of 41025, 44007, 44008, 44013, 44014, 44018 & 44025 (expanded

    scale)

    Copyright 2010 Philip H. Kahn 77

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    1 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    2 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2

    e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    3 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    4 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    HMD_44018_2008_8731hours AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    12 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    78/80

    2008 Power Change Histograms for 1, 2, 3, 4, 8 & 12 hour changes of the Average of 44008,

    44018 & 44025 (in red) overlaid by Average of 41025, 44007, 44008, 44013, 44014, 44018

    & 44025

    Copyright 2010 Philip H. Kahn 78

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    1 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    2 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    3 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    4 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.001

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    12 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0.0

    00

    0.0

    01

    0.0

    02

    0.0

    03

    0.0

    04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    79/80

    2008 Power Change Histograms for 1, 2, 3, 4, 8 & 12 hour changes of the Average of 44008,

    44018 & 44025 (in red) overlaid by Average of 41025, 44007, 44008, 44013, 44014, 44018

    & 44025 (expanded scale)

    Copyright 2010 Philip H. Kahn 79

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    1 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    2 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    3 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    4 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    8 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

    AVG_44008_44018_44025_2008 AVG_41025_44007_44008_44013_44014_44018_44025_2008 Power

    12 Hour Change (kW)

    Density

    -4000 -2000 0 2000 4000

    0e+00

    2e-04

    4e-04

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

  • 8/9/2019 Offshore Wind Energy_6

    80/80

    Final Word

    The National Data Buoy Center of the National Oceanographicand Atmospheric Administration offers a dataset that yieldsuseful information about the wind resource around our nationsshores. Though the platform was not expressly designed toinventory wind resources, the fact that so many of the same typeof buoy package have been deployed with similar anemometersat the same measuring height means that useful comparisonsbetween sites can be performed. Slides 31, 35, 36 and 37demonstrate that the dataset hangs together quite well.Considering that the buoys endure the harsh environment of the

    ocean, it is remarkable that the instruments maintain calibrationover time as well as they apparently do.