Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp....

21
Tullio Rossi Jonathan Jones Anna James Jan Taucher Shalin Seebah Graduate Students, past and present, working on OA in my lab: Julia Sweet Ocean Acidification, Warming and the Biological Carbon Pump Uta Passow MSI, UC Santa Barbara Caitlin Fairfield Collaborators: Mark Brzezinski, Craig Carlson, Ed Laws Lab Assistants: S2-9895 11:40 Th. 26Mar Diam. 6-7

Transcript of Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp....

Page 1: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Tullio Rossi Jonathan Jones Anna James Jan Taucher Shalin Seebah Graduate Students, past and present, working on OA in my lab:

Julia Sweet

Ocean Acidification, Warming and the Biological Carbon Pump

Uta Passow MSI, UC Santa Barbara

Caitlin Fairfield

Collaborators: Mark Brzezinski, Craig Carlson, Ed Laws

Lab Assistants:

S2-9895 11:40 Th. 26Mar Diam. 6-7

Page 2: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

pCO2

today

370

Year 2100

~750 µatm

irradiance

pH ~8.1 ~7.8

mixing

Some direct and indirect changed to the abiotic environment of the surface ocean:

- ocean acidification

- light climate - nutrient availability & stoichiometry

nutrient input

Global Change

- temperature

- stratification/ turbulence

Adapted Rost et al. 2008

- trace element availability - exoenzyme activity - saturation state of CaCO3

Introduction

- allochthonous inputs (N, Fe)

- deoxygenation, OMZ

- sea level rise

Page 3: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

CO2

DIC POM

Allochthonous nutrient input

Surface layer Export flux

DIC nutrients

100 yrs. to surface

10 yrs. to surface

Carbon Sequestration by the Biological Pump

DIC & Nutrients

1000 yrs. to surface

~ 100 m

~ 1000 m

Euphotic zone M

esopelagic zone D

eep Ocean

& DOM

Vertical migration

Physical transport

Introduction

Passow & Carlson 2012

Sequestration flux

Gravitational settling

Page 4: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Species/ Population

Community

Ecosystem

Global Biochemical Cycle

Physiological Response

1 2 3 multiple

What we want to know (BCP) What we can

measure well

Models

The Problem: An Analysis of Relevant Scales Introduction

Page 5: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Adapted Arrigo 2007

Ambient Temp., pCO2

Future Temp., pCO2

Introduction Hypothesis on TEP, aggregation and carbon flux

TEP = Transparent Exopolymer Particles: Sticky exopolysaccharides that form the matrix of most sinking marine snow

Page 6: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

TEP in ug Xeq. L-1

Rossi et al. in prep.

Skeletonema costatum

3000

3500

4000

4500

present future

POC in ug L-1

1000120014001600180020002200240026002800

present future

POC & TEP production as a function of pCO2 (exp. 1)

Note: Population level: Higher pCO2 • has no impact on POC • leads to increased TEP

Batch growth till nutrient limitation

Carbon Fixation

Page 7: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Carbon Fixation

Taucher et al. L&O 2015

POC

TEP

Temp. effect

Temp. & pCO2 effect

POC & TEP production as a function of pCO2 & temperature (exp. 3)

T. weissflogii: (CCMP 1336)

Note: Population level: Higher pCO2 • no impact on POC • increased TEP Higher temperature • increased POC • Increased TEP

Batch growth after N-limitation

Page 8: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

POC

TEP

Temp. & pCO2 effect

Dactyliosolen fragilissimus pCO2 effect

Note: Population level: Higher pCO2 • increased POC !!! • increased TEP

Higher temperature • unchanged POC !!! • decreased TEP !!!

Batch growth after N-limitation

POC & TEP production as a function of pCO2 & temperature (exp. 3) C

arbon Fixation

Taucher et al. L&O 2015

Page 9: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

0

500

1000

1500

Amb Fut 1 Fut 2 Amb Fut 1 Fut 2

TEP

µg G

Xeq

L-1

15⁰C

20⁰C

Aggregation

Seebah et al. PLOS ONE 2014

T. weissflogii: (CCMP1336)

TEP Production as a function of pCO2 & temperature (exp. 6)

Note: Population level: Higher pCO2:

• No consistent effect on TEP!!!

Higher temperature: • increased TEP

Page 10: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Why is there no consistent response pattern of POC and TEP to increased temperature and pCO2?

T. weissflogii: Dactyliosolen fragilissimus Skeletonema costatum

Three coastal diatoms, all bloom forming

Page 11: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

1. Keeping Perspective

Single abiotic stressor experiments: A fixed change in stressor may result in three different answers

Perf

orm

ance

, e.g

. gro

wth

Environmental parameter, e.g. temperature, irradiance, pCO2

Optimum

Optimum

Lethal limit

Inhibition threshold

Growth range

Performance (Optimum, Response) Curves

Carbon Fixation

Page 12: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

0

100

200

300

400

500

15C Amb 20C Amb 15C Fut 20C Fut

POC

per

cel

l

050

100150200250300350400450

15C Amb 20C Amb 15C Fut 20C Fut

TEP

per c

ell

2. Interactive effects of multiple stressors (exp. 2)

CO2: P < 0.001 Temp: P < 0.001 CO2*Temp: P < 0.001

CO2: P < 0.001 Temp: P < 0.001 CO2*Temp: P < 0.001

pCO2 & Temperature

0

50

100

150

200

250

300

Amb HL Amb LL Fut HL Fut LL

POC

per

cel

l

-500

50100150200250300350

Amb HL Amb LL Fut HL Fut LL

TEP

per c

ell

CO2: P < 0.05 (only POC) Light: P < 0.001 CO2*Light: P < 0.001

CO2: NS Light: P < 0.001 CO2* Light: NS

Passow & Laws subm.

T. Weissflogii (CCMP 1053) pCO2 & light C

arbon Fixation

Page 13: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Carbon Fixation

Page 14: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Future Temp., pCO2

Hypothesis on POC and TEP production C

arbon Fixation

Page 15: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Sin

king

vel

ocity

m/d

Tota

l Agg

rega

te A

rea

mm

2 Sinking Velocity

Aggregation

TEP in ug Xeq. L-1

1000

1500

2000

2500

3000

present future

Aggregation & sinking velocity as a function of pCO2 (& TEP)(exp. 1)

Skeletonema costatum

Rossi et al. in prep.

0100200300400500600700800900

present future 0

10

20

30

40

50

60

70

80

90

present future

Page 16: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

0

1

2

3

4

Amb Fut 1 Fut 2 Amb Fut 1 Fut 2Tota

l Agg

rega

te V

olum

e cm

3

0

500

1000

1500

Amb Fut 1 Fut 2 Amb Fut 1 Fut 2

TEP

µg G

Xeq

L-1

15⁰C

20⁰C

20⁰C

15⁰C Aggregation

Seebah et al. PLOS ONE 2014

T. weissflogii:

Aggregation as a function of pCO2 & temperature (and TEP)(exp. 6)

Aggregation: Higher pCO2:

• decreased aggregation (independent of TEP)

Higher temperature: • decreased aggregation

(increased TEP)

Page 17: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

0

50

100

0 5 10 15

Equivalent Spherical Diameter (ESD) mm

Sin

king

vel

ocity

m d

-1

Sinking velocity as a function of pCO2 & temperature (exp. 6)

20⁰C; more TEP

15⁰C

Seebah et al. PLOS ONE 2014

Sinking Velocity

No pCO2 effect

Page 18: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Aggregation

Future Temp., pCO2

Sinking Velocity Hypothesis on aggregation and sinking velocity

Page 19: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

CO2

DIC POM

Surface layer

Carbon Sequestration by the Biological Pump

~ 100 m

~ 1000 m

Euphotic zone M

esopelagic zone D

eep Ocean

& TEP (DOM)

Conclusions

Allochthonous nutrient input

DIC & Nutrients

↑ pCO2 & ↑temperature

Page 20: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Summary & Conclusions Carbon Fixation

• No a priori predictions with regards to carbon partitioning (between TEP and POC and DOC) as a function of increased temperature or pCO2 currently possible. The response is a

• function of stressor in relation to response curve of that species

• function of species physiology • function of interactive effects of multiple environmental

stressors

Conclusions Aggregation & Sinking • Aggregation rate decreased at high pCO2 or high temperature • Sinking velocity decreased at high temperature (more TEP),

but no pCO2 effect per se (or maybe a high TEP effect).

BCP • Diatom aggregation section of the Biological Carbon Pump

would suggest a weakening of carbon flux under high pCO2 and high temperature conditions

Page 21: Ocean Acidification, Warming and the Biological Carbon Pump · L&O 2015 POC (CCMP 1336) TEP . Temp. effect . Temp. & pCO. 2. effect . POC & TEP production as a function of . p. CO.

Gotschalk