Nutrient Transport Mycorrhizas Structure

download Nutrient Transport Mycorrhizas Structure

of 11

Transcript of Nutrient Transport Mycorrhizas Structure

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    1/11

    Plant and Soil 159: 103-113, 1994. 1993 Kluwer Academic Publishers. Printed in the Netherlands.

    Nutrient transport in mycorrhizas: structure physiology and consequen cesfor efficiency of the symbiosisS.E. SMITH l, V. GIANINAZZI-PEARSON2, R. KOIDE 3 and J.W.G. CAIRNEY ~ZDepartment of Soil Science Waite Institute The University of Adelaide Adelaide SA 5064 Australia2Station d Amelioration des Plantes INRA BV 1540 Dijon 21034 France3Department of Biology Pennsylvania State University University Park PA 16802 USAKey words: interface, mycorrhizas , nutrient acquisition, nutrient transport, nutrient use

    AbstractNutrient transport in mycorrhizas occurs across specialized interfaces which are the result ofcoordinated development of the organisms. The structural modifications give rise to large areas ofeither inter- or intra-cellular interface in which wall synthesis is frequently modified and in whichaltered distribution of membrane bound ATPases is important, particularly with respect to mechanismsthat may be involved in bidirectional transfer of nutrients. Except in orchid mycorrhizas, net movementof organic carbon from plant to fungus occurs, complemented by mineral nutrient movement in theopposite direction. The general consensus is that sustained transfer at rates that will maintain thegrowth and development of the organisms requires increases in the rates at which nutrients are lost fromthe organisms; possible mechanisms for this are discussed. The transfer processes are essential indetermining both plant and fungal productivity and an approach to calculating the efficiency of thesymbiosis in terms of the expenditure of carbon or of phosphorus) is discussed.

    Introduct ionBidirectional transfer of nutrients between plantand fungus is typical of ecto-, vesicular-a rbuscular VA) and e r icoid mycorrh iza lassociations and is the basis for the prolongedcompat ib le in te rac t ions typica l of thesesymbioses. The transfer occurs across interfaceswhich develop in different ways in the differentmycorrhizas, although the end result in terms ofthe spatial arrangement of membrane and wallcompo nent s varies only in detail . Theeffectiveness of the symbiosis with respect toplant growth and yield is influenced by themagnitude of the flux of phosphat e or othernutrients) to the plant and of carbohydrate to thefungus.

    In orchid mycorrh izas the re la t ionshipbetween the symbionts is different; nutrienttransfer is unidirectional, in favour of the plant

    and involves both carbohydrate and mineralnutr ients . Never the less , th is symbiosis isimportant in nature and may have horticulturalpotential. It will therefore be considered briefly.

    In this review we consider the structure anddevelopment of the interfaces as the sites atwhich transfer occurs, the mechanisms and ratesof transfer and the implications of this for plantproductivity.

    Plant fungus interfaces : development andstructure in relation to transportAt the cellular level interfaces in all types ofmycorrhiza are composed of the membranes ofboth partners, separated by an apoplastic region.The various types differ in whether the interfacesare inter- or intr a-cel lular or both), theirdevelopmental and structural complexity and

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    2/11

    104 Smith et alt h e d e g r e e t o w h i c h w a l l a n d m e m b r a n emodificat ions contribute to special izat ion and tol a rg e a rea s o f co n t ac t b e tw een t h e sy m b io n t s(Smith and Smith, 1990). The spectrum rangesfrom simple , in terce l lu lar , wal l -wal l contac t inec tomycorrh iza to specia l ized fungal wal l -p lan tmemb ran e s t ru c tu re i n V A my co r rh i za , b u t i nev e ry ca se t h e fu n g a l p a r tn e r rema in s i n t h eapoplast outside the plant protoplast . Interfacesalso vary ontogenetical ly and the developmentalc h a n g e s m a y b e o f i m p o r t a n c e f o r n u t r i e n ttransport (Duddridge, 1986; Gianinazzi-Pearsonet a l . , 1991; Scannerin i and Bonfante-Fasolo ,1983).

    Among endomycorrh iza l associa t ions , o rch ida n d e r i c o i d m y c o r r h i z a l f u n g i h a v e l i t t l eintercel lular growth and hyphal coils or peletonsare formed wi th in the p lan t ce l l s (Gianinazzi -P e a r s o n , 1 9 8 4 ; H a r l e y a n d S m i t h , 1 9 8 3 ) .In t race l l u l a r d ev e lo p men t a f fec t s fu n g a l w a l lstructure, metabolism and physiology, includingt he r e p r e s s i o n o f s u r f a c e a n d e x t r a c e l l u l a renzymes (Gianinazzi-Pearson et al . , 1986; Smith,1974) potentially detrimental to the plant cell.

    The morphogenesis o f VA mycorrh iza l fungiwi th in host t i ssues i s more complex (Bonfante-F a s o l o , 19 8 4 ; G i a n i n a z z i - P e a r s o n , 1 9 8 4 ) .Colonization of the outermost root cel ls involvesthe sparse formation of simple intracellular coils,w h i l e i n t h e co r t i ca l p a ren ch y ma in fec t i o n i smuch more intense. Num erous highly branchedintracellular arbuscules arise from longitudinallypro l i fer a t ing in te rce l lu lar h yphae , so tha t twos t r u c t u r a l l y d i f f e r e n t t y p e s o f i n t e r f a c e a r epresent (Gianinazzi-Pearson et al . , 1991; Smithand Dickson , 1991) which may have d i fferen tfunctions (see below ). Within the root , hyphaeare thinner compared with external hyphae and,p a r t i cu l a r l y i n a rb u scu l e s , d o n o t d ev e lo p t h em u l t i - l a y e r e d , c r y s t a l l i n e c h i t i n s t r u c t u r e( B o n f a n t e - F a s o l o a nd G r i p p i o lo , 1 9 82 ,Gianinazzi-Pearson, 1986).Host reaction to penetrat ion and proliferat iono f t h e f u n g u s a p p e a r s s i m i l a r i n d i f f e r e n te n d o m y c o r r h i z a s ( s e e f o r e x a m p l e B o n f a n t e -Fasolo , 1984; Bonfante-Fasolo and Gianinazzi -P e a r s o n , 1 9 8 2; G i a n i n a z z i - P e a r s o n , 1 9 8 4 ;Hadley, 1975; Serrigny, 1982) and i t is in thepresence of the in t race l lu lar haustor ia tha t thehost cel l shows the most specific modificat ions.

    In al l cases, the interface formed between plantce l l and fungus involves a newly formed p lan tm e m b r a n e e x t e n d i n g f r o m t h e p e r i p h e r a lp lasmamembrane around the fungal haustor iumas the lat ter grow s intra cel lularly. It has beenest imated tha t th i s can cause up to a 20-fo ldincrease in the surface area- to-volume ra t io ofthe host in VA mycorrhiza (e.g. Alexander et al . ,1 9 8 8 ) an d a l t h o u g h i n c reases h av e n o t b eenca l cu l a t ed fo r co i l ed h au s to r i a t h ey mu s t b econsiderab le . Invading hyphae of a ll types ares u r r o u n d e d b y p l a n t - d e r i v e d m a t e r i a l i n t h ea p o p l a s t ( B o n f a n t e - F a s o l o e t a l. , 1 9 91 ;De xheim er et al . , 1979). In orchids , cel l wallmaterial persists around intracellular stages, butin ericoid and VA mycorrhizas i t decreases andc a n b e r e d u c e d t o s c a t t e r e d p r o t e i n a n dp o ly sacch a r id e f i b r i l s (Bo n fan t e -Faso lo e t a l . ,1991; Dexheim er et al ., 1979). The presence ofpectins, cel lulose and glycocalyx consti tuents inthe arbuscular in terface (Gianinazzi -Pearson e tal . , 1990; Bonfante-Fasolo et al . , 1990), togetherwi th neut ra l phosphatase ac t iv i ty (Jeanmaire e ta l . , 1 9 8 5 ) i n d i ca t e s t h a t t h e p l an t p ro to p l a s tretains wall synthesizing act ivi ty. Production ofwall precursors, together with small amounts ofp ec t i n o ly t i c an d ce l l u lo ly t i c en zy mes (G arc i aRomera et al . , 1991; Pearson and Read, 1975 )suggests that the material may represent a carbonso u rce fo r t h e fu n g i ( see H ar l ey an d Smi th ,1 9 8 3 ) . C a r b o h y d r a t e t r a n s f e r i n o r c h i dm y c o r r h i z a s i s f r o m f u n g u s t o p l a n t a n ds y n t h e s i s o f p l a n t w a l l c o m p o n e n t s w i l l n otcont r ibu te to fungal nu t r i t ion in th is case , bu tmay b e o f s i g n i f i can ce in co n t ro l l i n g fu n g a linvasion.A v e ry imp o r t an t mo d i f i ca t i o n i n t e rms o fnutrient t ransport is the ATPase act ivi ty in theh o s t m e m b r a n e f o r m e d a r o u n d c o i l s o ra r b u s c u l e s ( M a r x e t a l ., 1 9 8 2 ; G i a n i n a z z i -Pearson et al. , 1991). In VA mycorrhizas, part ofthis act ivi ty is at tributable to an H-ion ATPasep r e s e n t i n t h e p e r i a r b u s c u l a r m e m b r a n e , b u tcy to ch emica l l y u n d e t ec t ab l e a lo n g o th e r p l an tm e m b r a n e s a d j a c e n t t o h y p h a e ( i n t e r c e l l u l a rhyphae in the cortex , hyphal co i l s e tc . ) o r theplant plasmamembranes adjacent to the walls ofe i ther in fec ted or un infec ted parenchyma ce l l s( G i a n i n a z z i - P e a r s o n e t a l. , 1 9 9 1 ). T h edistribution of act ivi ty around l iving arbuscules

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    3/11

    suggests that the infected root cells haveincreased ability to absorb nutrients, via thesymbiotic fungus, which in non-mycorrhizalroots is restricted to the outer cell layers.

    With respect to the VA mycorrhizal fungus,H-ion ATPase activity is observed on theplasmamembrane of intercellular hyphae and incoils, but is variable on the arbuscule branches(Gianinazzi-Pearson et al., 1991).

    In ectomycorrhizal associat ions, fungalcolonization of host root tissues is entirelyextracellular. A pseudoparenchymatous sheathenvelops the absorbing rootlets and is continuouswith intercel lular hyphae growing betweenepidermal and cortical cells (Hartig net) and theextra-radical network of mycelium. Host/funguscontact results in changes in hyphal morphology.In the Hartig net region hyphae branch profuselyand septa formation becomes irregular orincomplete to give a characteristic labyrinthinesystem (see Harley and Smith, 1983). Surfacefibrils and acid phosphatase activity, present inthe mantle, disappear as hyphae become tightlypressed against host cell walls (Dexheimer et al.,1986; Duddridge, 1986; Lei et al., 1990).Adjacent fungal and host walls becomeindistinguishable from each other, forming ahomogeneous interfacial matrix (Duddridge,1986; Duddridge and Read, 1984; Scannerini andBonfan te-Fasolo, 1983). Structural changes inthe host tissues are small, but in some caseswall ingrowths appear to be induced byfungal infect ion (Ashford and Allaway,1982). These resemble those of transfer cells,increasing the area available for transportbetween the symbionts. ATPase activity isassociated with the plasmamembranes of bothsymbionts when these are active and closelyassociated in the Hartig net region, but itdisappears as plant cells senesce (Lei andDexheimer, 1988).

    Ultrastructural information for all types ofmycorrhiza indicates that deposition of wallmaterial in the interface is reduced with possibleconsequences in terms of the permeability of theapoplast. However, extracellular material is alsodeposited around hyphae of endomycorrhizas atpoints of entry to host cells (Scannerini andBonfante-Fasolo, 1983) and accumulates inintercellular spaces of the fungal sheath in

    Nutrient transport in mycorrhizas 105ectomycorrhizas of ucalyptus and Pisonia(Ashford et al., 1988, 1989). Such material isimpermeable to fluorescent tracer dyes and, ifalso impermeable to solutes, would restrict thepassage of nutrients to the cortex except via thefungal symplast, prevent loss of solutes from theapoplast to the soil and, along with theexodermis (hypodermis), may permit control ofthe apoplastic nutrient concentrations (Ashford etal., 1989; Smith et al., 1989; Smith and Smith,1990).

    ompounds transferred and mechanisms oftransferEvidence (or lack of it) for the nature of thecompounds transferred between the symbiontshas been reviewed previously (Harley and Smith,1983; Martin et al., 1987; Smith and Smith,1990). Sugars are importan t in carboh ydratetransfer, with hydrolysis of sucrose (or trehalosein orchid mycorrhizas), together with synthesisof characteristic non-recyclab le carbohydrates(e.g. mannitol in ectomycorrhizas), as importantsteps in polarizing transport in favour of onesymbion t (see Smith et al., 1969). Hydrolysi scould potentially occur at the host surface, in theapoplast and/or at the fungal wall, but onlyimmunocytochemical methods will confirm theprecise location. Other potential sources ofcarbon include wall precursors, which might alsorequire hydrolysis (see above), and organicanions or organic N compounds, but evidence fortheir involvement is lacking.

    The soil-derived nutrients which aretransferred from fungus to plant vary inimportance in the different types of association.Ecto- and ericoid mycorrhizas have a majorinfluence on nitrogen (N) and a lesser effect onphosphorus (P) nutrition. In VA mycorrhiza sthis situation is reversed. N transfer from fungusto plant has been demonstrated in ecto- andericoid mycorrhizas and is also likely in VAassocia tions. Organic N (as amino acids oramides), rather than inorganic NH4+, is probablyinvolved (see Martin et al., 1987). Such transferwill result in movement of organic carbonagainst the general flow of carbohydrate and willaffect the net flux of reduced carbon, providing a

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    4/11

    106 Smith et alpossible route for carbon movement duringinter-plant transfer (see Smith and Smith, 1990).

    Transfer of P from fungus to plant is welldocumented in ecto-, VA, ericoid, monotropoidand orchid mycorrhizas. In ectomycor rhizasthere is evidence that inorganic orthophosphate isthe major form in which phosphorus istransferred (Harley and Loughman, 1963) butdirect evidence for endomycorrhizas is lacking,largely because of technical difficulties. Giventhat the pH of the interracial apoplast is probablyacid due to the polarized activity of H-ionATP ases , HzPO 4- are li kel y to be thepredominan t ionic species involved. Othernutrients (S, Zn, Cu, Ca and Na) have beenshown by experiments with radio-tracers to betransferred between symbionts in various typesof mycorrhizas and it is likely that these crossthe interface as free ions in solution.Transfer of nutrients must be bidirectional inthe symbiosis as a whole. Carbohydra temovement from plant to fungus and mineralnutrient movement from fungus to plant certainlyoccurs at the whole plant level. However,whether this transfer occurs bidirectionally a t t h es a m e i n t e r f a c e (as has been generally assumed)is open to question (see Smith and Smith, 1990).At a single interface, transfer between symbiontsin either direction depends on export through themembrane of one, movement through theinterracial apoplast and import by the other.Distribution of ATPase activity has given somenew insights with respect to the processesinvolved, but we still have very limitedinformation on the magnitude of the fluxes ofnutrients in either direction or on the conditionsthat may affect these fluxes.Assuming that bidirectional nutrient transferoccurs at a single interface, both symbionts mustpossess functional plasmamembranes capable ofuptake of nutri ents from the apoplast. Inectomycorrhizas the coexistence of ATPaseactivity on plant and fungal plasmamembranes atthe Hartig net interface suggests that the twosystems work cooperatively in bidirectionalnutrient exchange. This is the scenario that hasbeen assumed for all types of mycorrhiza, but wecannot entirely discount the possibility that twospatially separate interfaces such as arbusculeand intercellular hypha in VA mycorrhizas (see

    diagram in Smith and Smith, 1990) may beinvolved and this is explored below using P as anexample.Models of P transfer across a single interface

    generally invoke passive efflux of Pi from thefungus and active absorption across the plantplasmamembrane (Smith and Smith, 1986, 1989,1990; Woolhouse, 1975). Net loss of Pi fromfree living fungi is normally regarded as slight,with membrane transport processes favouringabsorption (Beever and Burns, 1980), so thatconditions promoting efflux are likely to beimportant at the fungus/root interface. Perhapsthe simplest mechanism for this is where loss ofPi across the fungal plasmamembrane to theinterfacial apoplast is unmodified, butreabsorption from the apoplast by the fungus isreduced. This would result in an increase in neteffiux from the fungus. There is good evidencethat intracellular Pi concentrations in both fungi(Beever and Burns, 1980; Clipson et al., 1987)and plants (Clarkson and Scattergood, 1982; Lee,1982) affec t P~ transpo rt. High intr acel lula rconcentrations result in reduced P uptake relativeto mycelium with a lower Pi status in ecto-(Cairney and Smith, 1992a), ericoid (Straker andMitchell, 1987) and VA (Thomson et al., 1990)mycorrhizal fungi. High P concentrations inhyphae at the interface (Clarkson, 1985) and alow interfacial Pi concentration would, alongwith reduced reabsorption, maximize loss fromthe fungus. Lower Pi status of the root relative tothe fungus (maintained by metabolism and/ortranslocation within the plant) and theconcomitant increase in Pi transporting activity atthe plant plasmamembrane, would permit netmovement of P~ into the plant. Pi transfer to hosttissue in excised beech ectomycorrhizas wasaround 10-20 of Pi absorbed by the sheathhyphae (Harley and Brierley, 1955; see Strullu etal., 1986) and in mycelium of P i s o l i t h u st i n c t o r i u s net efflux of i o v e r an 8 h period wasalso about 10 of P~ abso rbed du ring thepreceding 16 h (Cairney and Smith, 1992b;unpublished results). This implies that effluxacross the unmodified fungal membrane might besufficient to account for transfer in theectomycorrh iza. Prelimin ary estimates in therange 1.4-4.6 10 8 mol.m-2.s 1 can be calculatedfrom data for efflux from P t i n c t o r i u s (see

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    5/11

    Nutrient transport in mycorrhizas 107Cairney and Smith, 1993) which suggestrelatively high efflux from the cultured fungalmycelium. These data require confirmation butit is certainly an approach that merits furtherinvestigation.As with the fungus, membrane transportprocesses in roots normally promote netabsorption from the apoplast rather than efflux(see Patrick, 1989). While coupled sugar-phosphate transporters have been proposed forroot cortical cell membranes at the interface(Schwab et ai., 1991; Woolhouse, 1975), thereremains no evidence for their existence. Indeedthe lack of demonstrable stoichiometry betweensugar and P transfer and the need for transfer ofother nutrients and regulation of pH and chargebalance across the interface suggests independenttransfer of the two (see Smith and Smith, 1990).Furthermore, the general assumption thatbidirectional nutrient transfer occurs at the sameinterface in all mycorrhizas is now beingquestioned. It is conceivable, however, that lossof carbohydrate from the root, like loss ofphosphate from the fungus could be explainedsimply in terms of decreased rates ofreabsorption into the plant cells. This might bebrought about by a reduction in activity of theplant hexose/proton cotransporter, resulting fromfungal infect ion. Hydrolysis of sucrose tohexoses by invertase in the apoplast (Patrick,1989) would allow a net sugar transport to thefungus. This would be supported by rapidconversion of hexoses to fungal metabolites(trehalose and mannitol in ectomycorrhizas)which, not being readily utilized by the plant,would maintain the flux of carbohydrate infavour of the fungus (Smith et al., 1969). Thefact that individual ecto- (Bevege et al., 1975;Cairney et al., 1989) and VA (Bevege et al.,1975) mycorrhizal roots act as greater sinks forphotosy nthet ica l l y-f ixed carbon than non-mycorrhizal roots strongly suggests greaterconcentration at the interface and the probabilityof increased loss from the root cells.

    It is important to gain more evidence on theoverall fluxes of nutrients (whether plant- orfungus-derived) across the interface as a wholein order to judge whether norm al efflux,associated with reduced reabsorption, would besufficient to account for the flux across the

    interface. There is evidence that this may not beso in VA mycorrhizas, where overall fluxes areof similar order to measured rates of P uptake byplant cells (Cox and Tinker, 1976; Morris,Dickson and Smith, unpublished results), makingit likely that some condition enhancing effluxmust exist at the interface.

    Efflux could be promoted in a number ofways, including reversal of H-ion co-transportersfor phosphate and sugar, increases in frequencyor rates of operation of transmembrane carriersor by opening of channels (Patrick, 1989; Smithand Smith, 1986, 1989, 1990; Tester et al.,1992). Perhaps the most direct mechanismwould involve localized accumulation ofpa rt ic ul ar ions (e.g. H , K +, Ca 2+) in theinterracial apoplast, which could certainly occur,possibly as a result of the presence of apoplasticbarriers (see above). High extr acell ularconcentrat ions of monovalent cat ions, inpart icul ar K +, have rece ntly been shown tostimulate efflux of P from mycelium of theectomycorrhizal fungus P i s o l i t h u s t i n c t o r i u s(Cairney and Smith, 1992b; unpublished results).Efflux was stimulated at concentrations of 10-20mM, known to cause depolarization oftransmembrane electric potentials in fungalhyphae (Slayman, 1965) and algal cells (Keiferand Lucas, 1982). This could stimulate openingof a number of ion channel s (Tester , 1990),raising the possibility that the monovalentcation-induced efflux of P from P t i nc to r iu s maybe mediated by opening of a channel. Work ofthis nature is still at an early stage. We do notknow how general the effect is and it must bestressed that the involvement of ion channels insuch cat ion-induced efflux is speculat ive.Release of phytohormones at the interface mightalso influence nutrient transport (see Schwab etal., 1991; Smith and Smith, 1990). Auxin (forexample) can increase ATPase activity in planttissue and may have a role in the mycorrhizalsituation (see Gianinazzi-Pearson et al., 1991)and the cytokinin N6-2-isopentyl-adenosine(2iPA) has been shown to influence bothabsorption and loss of ions from mycelium of theec tomycorrhiza l fungus S u i l l u s v a r i e g a t u s(Pohleven, 1989). Alterna tively , changes inosmotic potential in the apoplast or increasedcytoplasmic sugar concentrations in infected

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    6/11

    108 S m i t h e t a lhost cel ls may influence transmembranetransport either directly, by influencing ATPaseactivi ty Wyse et al., 1986), or indi rect lyvia stretching of the plasmamembrane.Stretch-activated channels specific for bothcations and anions are known to exist on higherplant plasmamemb ranes Cosgrove andHedrich, 1991; Hedrich and Scroeder, 1989) andcould be potentially important in controllingfluxes from both symbionts at the mycorrhizalinterface.While nutrient exchange is general lyinterpreted as occurring simultaneously in bothdirections across a single interface, it istheoretically possible that exchange occursacross interfaces which are separated temporallyor spatially. Temporal separation would involvenet movement of nutrients in different directionsat different developmental stages. In VAmycorrhizas for example, absorption of sugarinto young arbuscules and loss of nutrients suchas P from older arbuscules cannot totally be ruledout at present, although it seems unlikely Smithand Smith, 1990). In ectomycorrh izas, whereturnover of the exchange interface is much lessrapid, it becomes even more difficult to envisage.Functional ectomycorrhizas persist for months,during which time they act as sinks for currentphotosynthate and effect P transfer to the plantCairney and Alexander, 1992a, b; Downes et al.,1992). This, together with the distr ibution of

    ATPase activi ty on the membranes see above),strongly implies simultaneous transfer in activeectomycorrhizas.Separation of the components of bidirectionalnutrient transfer in space seems more likely thanseparation in time. Based on differences in H-ion ATPase distribution between arbuscules andintercellular hyphae, Gianinazzi-Pearson et al.1991) have proposed that spatial separationmight occur in VA mycorrh izas. The resultwould be net loss of nutrients such as P fromarbuscule branches associated with uptake by theplant via the highly energized periarbuscularmembrane. Carbohydrat e transfer would occur

    via loss from cortical cells to intercellular spacesand uptake by intercellular hyphae, which haveconsistent H-ion ATPase activity. As stressed bythe authors this interpretation is speculative, butit challenges the generally held view of a single

    transport interface in these mycorrhiz as. Weclearly need more information on ATPasedistribution using immunological as well ascytochemical techniques), apoplastic pH andsolute concentrations as well as data for fluxes ofdifferent nutrients across the interface.

    he imp ortance o f nutr ient transfer to plantproduct iv i tyFrom an agricultural or ecological standpoint,and therefore in the context of this symposium,the interest in nutrient transfer betweenmycorrhizal symbionts is based on the potentialeffects of infection on plant yield, survival orspecies composit ion of plant communit ies.When plant growth and reproduction are limitedby the rate of nutrient acquisition and whenmycorrhiza l infection increases this by uptakeand transfer processes), it is clear that infectionis of importance and that the net result ofbidirectional transfer is a gain in plant biomassor other measur able paramete r. However,mycorrhizal infection does not always increaseplant growth or reproduct ion Fitter, 1985;McGon igle, 1988). Possible reasons includehigh efficiency of P acquisition or low Prequirement Koide, 1991; Smith et al., 1992) ofthe plants. P acquisition can be reduced whenexternal hyphae are destroyed by grazing soilanimals Finlay, 1985; McGonigle and Fitter,1988; Rabatin and Stinner, 1988), soildistur bance see below) or fungi cides Haleand Sanders, 1982) or where incompletephysiological integration of the symbionts resultsin low rates of transfer see below). In these andother situations it is important to be able toanalyse the effectiveness of a symbiosis in termswhich can be related to the quantitative aspectsof the nutrient transfer processes, so thatpredictions can be made of the importance ofmycorrhizal associations in particular plantspecies or in particular agricultural or naturalsyste ms. The outcome of the increas edunderstanding will be potential reductions inapplicat ion of chemical fert i l izers andimprovement of the efficiency with which theyare used. The reasons are both economic andconcerned with environmental quality.

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    7/11

    utrient transport in mycorrhizas 109easurement of the eff iciency of nutrient

    acquis i t ionEff ic ient p lants might be de f ined as those which ,e i t h e r w i t h o r w i t h o u t m y c o r r h i z a l i n f e c t i o n ,t h r i ve in nu t r i e n t de f i c i e n t so i ls . The y c an bed e t e c t e d b y tr i a l a n d e r r o r i n n a t u r a le nv i ronme n t s a nd i n s c re e n i ng p rog ra ms , bu t am o r e m e c h a n i s t i c a p p r o a c h i s n e e d e d i n p l a n tb re e d i ng to p roduc e ' e f f i c i e n t ge no t y pe s ' . Th i srequi res a knowle dge of wha t makes a pa r t icula rge no t ype suc c e s s fu l a nd i t ma y t he re fo re ma kesense to speak of a phys io logica l e ff ic ie ncy wi thwhich resources (such as P) a re e i the r acqui redor u t il i zed . These can be de f ined in te rms of thera t e o r a moun t o f nu t r i e n t a bso rbe d pe r un i t o froo t a nd i n t he a moun t o f d ry ma t t e r p roduc e dper uni t of nut r ient absorbed, re spec t ive ly (Baonet a l . , 1992; Smith e t a l . , 1992).

    K o i d e a n d E l l i o t t ( 1 9 8 9 ) d e f i n e d b o t h a Pu t i l i z a t i o n e f f i c i e n c y ( A C '~ / A P W) a n d a Pacquis i t ion e ff ic ie ncy (Apw/ACb), wh ere AC ~ i sthe to ta l ca rbon accumula ted in the whole p lantdur ing uni t t ime , AP W s the P accum ula ted in thep l a n t du r i ng t he s a me pe r i od , a nd AC b i s thec a r b o n e x p e n d e d b e l o w - g r o u n d f o r t heacquis i t ion of tha t P . Ca lcula t ing the e ff ic ien cyof P a c qu i s i t i o n a s the r a t i o o f P a c q u i re d t oc a r b o n e x p e n d e d i s a l o g i c a l a p p r o a c h s i n cec a rbon c a n be r e ga rde d a s t he e ne rgy c u r re nc y o ft he p l a n t (Mo one y , 1972). How e ve r , c a rbon i sn o t t h e o n l y p o s s i b l e c u r r e n c y w i t h w h i c h t oexpress the cos t of P acquis i t ion . For example , i fP were the l imi t ing resource , P would a l so be ana p p r o p r i a t e c u r r e n c y . P a c q u i s it i o n e f f i c i e n c yw o u l d t h e n b e : ( A P ' U A P ~ ) , w h e r e P b i s tha ti n c r e m e n t o f P e x p e n d e d b e l o w - g r o u n d i n t h eacqu isi t ion of A P ~. pb i nc l ude s t wo c ompone n t s :tha t which i s los t f rom the root sys tem throughleakage , dea th , exuda t ion , e tc . , and tha t which i sr e t a i n e d i n t he roo t a nd hypha l t i s su e s o f t hebe l ow -g ro und sys t e m. One mi gh t a rgue t ha t Pand ca rbon a re so c lose ly l inked phys io logica l lytha t the P for P approach cont r ibutes noth ing toou r unde r s t a nd i ng be yond t ha t c on t r i bu t e d by t heP f o r c a r b o n a p p r o a c h . I n d e e d , w h e n Pdef ic iency l imi t s p lant growth i t could be a rguedt h a t i t d o e s s o b y l i m i t i n g c a r b o n a c q u i s i t i o n(He l d t e t a l . , 1977 ; s e e S mi t h a nd Gi a n i na z z i -Pearson, 1988). Mo reove r , in the cons t ruc t io n of

    roots , in exuda t ion and t i ssue dea th , e tc . , P aswe l l a s c a rbon a re ' e xpe n de d ' . How e ve r , ma nys t ud i e s show t ha t P -de f i c i e n t p l a n ts a c c um ul a t es ta rch in the i r l eaves (e .g . He ldt e t a l . , 1977) ,s u g g e s t i n g t h a t P l i m i t s g r o w t h m o r e d i r e c t l ythan ca rbon when plants are P-def ic ient . Ei the rt he P fo r P o r t he P fo r c a rbon a pp roa c h ma yprove use ful , depending on the objec t ives of ther e s e a r c h , b u t c l e a r l y t h i s t y p e o f m e c h a n i s t i ca p p r o a c h i s r e q u i r e d i f w e a r e t o b e a b l e tounder s tand the bas i s for va r ia t ion am ong plantsin te rms of e ff ic iency.

    Natural vs agricultural systemsAl t hough mos t r e s e a rc h on myc or rh i z a ha s be e ncarr ied out on cul t iva ted p lants , the re i s much tob e l e a r n e d f r o m n a t u r a l e c o s y s t e m s a n d t h eapproach jus t out l ined may be use ful in makingc ompa r i sons . Mos t r e s e arc h has be e n c onc e rne dw i t h s h o r t - l i v e d a n n u a l s a n d t h e r e l a t i o n sh i p b e t w e e n t h e s e a n d m y c o r r h i z a l f u n g i m a yd i f f e r f r o m t h at i n l o n g e r - l i v e d p e r e n n i a l s .A n n u a l s m a y b e a b le t o d e f e r s o m e o f t h e i rpa yme n t s ( i n c a rbon) t o myc or rh i z a l fung i un t i la f t e r r e p r o d u c t i o n h a s o c c u r r e d a n d a l a r g ee x p e n d i t u r e o n f u n g a l s p o r u l a t i o n m a y o c c u rd u r i n g s e n e s c e n c e w i t h o u t n e g a t i v ec o n s e q u e n c e s i n t e r m s o f h a r v e s t a b l e y i e l d .P e r e n n i a l s c a n n o t d o t h i s a nd s o m a y f a c ea d d i t i o n a l c a r b o n c o s t s . M o r e o v e r , t here l a t i onsh i ps be t we e n roo t a nd shoo t g rowt h i nt e r m s o f t e m p o r a l c h a n g e s , a l l o m e t r y a n dp l a s t i c i t y o f roo t / shoo t r a t i o , t oge t he r wi t h t heexplora tory s ize of the root sys tem in re la t ion toP sources (Campbe l l e t a l . , 1991; Koide , 1991)a nd t u rnove r o f roo t s ma y be qu i t e d i f f e re n t i nsho r t a nd l ong - l i ve d spe ci e s . The se d i f f e re nc e sa r e l i k e l y t o h a v e a s t r o n g i n f l u e n c e o n t h ec o n t r i b u t i o n o f m y c o r r h i z a s to n u tr i e n ta c q u i s i t i o n , a s w e l l a s t o t h e ' c o s t s ' o fm a i n t a i n i n g t h e s y m b i o s i s in te r m s o f t h eproport ion of to ta l C (or P) used in the process .

    A n o t h e r i m p o r t a n t d i f f e r e n c e b e t w e e nagricul tura l and na tura l sys tems i s the degree ofd i s t u r b a n c e o f t h e s o i l . T h i s h a s a n e g a t i v ee f f e c t on t h e r a t e an d e x t e n t ot m y c o r r h i z a linfec t ion , and hence on nut r ient acquis i t ion andg r o w t h b e c a u s e o f t h e d i s t u r b a n c e o f t h e

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    8/11

    110 Smith et al.

    m y c e l i a l n e t w o r k ( E v a n s a n d M i l l e r , 1 9 8 8 ;F a i r c h i l d a n d M i l l e r , 1 9 8 8 ; J a s p e r e t a l . , 1 9 8 9 a ,b ) . E v e n n o - t i l l a g r i c u l t u r a l s y s t e m s m a y h a v ef a r l e s s d i v e r s e a s s e m b l a g e s o f m y c o r r h i z a ls p e c i e s t ha n n a t u r a l e c o s y s t e m s , b r o u g h t a b o u tb y t h e d e g r e e o f e c o l o g i c a l s p e c i f i c i t y b e t w e e nh o s t p l a n t s a n d m y c o r r h i z a l f u n g i ( e . g .M c G o n i g l e a n d F i t t e r, 1 9 9 0) . T h e c o n s e q u e n c e so f t h is f o r e f f i c i e n c y o f n u t r ie n t u p t a k e a n d u s ea r e p r e s e n t l y u n k n o w n , b u t i ts r e l e v a n c e i s n o wb e i n g a p p r e c i a t e d a n d w o r k i s i n p r o g r e s s t od e t e r m i n e w h a t a t t r i b u t e s o f t h e s y m b i o n t s ( s u c ha s l e n g th o f e x t e r n a l h y p h a e o r n u tr i e n t f l u x e sa c r o s s t h e i n t e r f a c e ) a r e i m p o r t a n t d e t e r m i n a n t so f f u n g al e f f e c t i v e n e s s ( J a k o b s e n an d P e a r s o n ,u n p u b l i s h e d r e s u l t s ; M o r r i s , D i c k s o n a n d S m i t h ,u n p u b l i s h e d r e s u l t s ) .

    I n m i x e d c r o p p i n g s y s t e m s ( e c o n o m i c a l l ys i g n i f i c a n t i n s o m e c o u n t r i e s ) m y c o r r h i z a s m a yh a v e i m p o r t a n t e f f e c t s o n y i e l d ( P u g n a a n dJ a n o s , u n p u b l i s h e d r e s u l t s ) , j u s t a s t h e y h a v e o nt h e c o m m u n i t y s t r u c t u r e a n d s p e c i e s c o m p o s i t i o ni n n a t u r a l c o m m u n i t i e s ( A l l e n a n d A l l e n , 1 9 8 4 ;E i s s e n s t a t a n d N e w m a n , 1 9 9 0 ; F i t t e r , 1 97 7 ;G a n g e e t a l. , 1 9 90 ; G r i m e e t a l. , 1 9 8 7 ; K o i d e a n dM o o n e y , 1 9 8 7) . T h e b a s i s f o r t h i s m a y b e f o u n di n t e r m s o f i n t e r p l a n t t r a n s p o r t o f b o t h c a r b o na n d m i n e r a l n u t r i e n ts a n d i t w i l l be n e c e s s a r y t od e t e r m i n e t h e c o m m u n i t y e f f i c i e n c y i n a s i m i l a rw a y a s th a t o u t l i n e d a b o v e f o r i n d i v i d u a l p l a n t s .

    onc lus ions

    I d e n t i f i c a t i o n o f e f f i c i e n t g e n o t y p e s o f b o t hf u n g u s a n d h o s t a n d u n d e r s t a n d i n g t h e w a y t h e i rf u n c t i o n i s i n t e g r a t e d d e p e n d s , a s w e h a v e s a i db e f o r e ( S m i t h a n d G i a n i n a z z i - P e a r s o n , 1 9 8 8 ) , o nt h e i d e n t i f i c a t i o n a n d q u a n t i f i c a t i o n o f th e k e yp r o c e s s e s i n v o l v e d in n u t ri e n t u p t a k e a n d u s e .M u c h o f th e e m p h a s i s o f m y c o r r h i z a l r e s e a r c h i na n a g r i c u l t u r a l c o n t e x t h a s b e e n o n t h e w a y i nw h i c h m y c o r r h i z a s i n c r e a s e n u t r ie n t u p t a k e v i a t h em y c e l i a l n e t w o r k i n s o il . T h i s i s a c r u c i a l p r o c e s si n e x p l o i t a t i o n o f s o i l r e s o u r c e s , b u t i s u s e l e s su n l e s s w e a l s o h a v e a q u a n t i t a t i v e u n d e r s t a n d i n go f t h e c o m p l e m e n t a r y p r o c e s s e s o f n u t r i e n tt r a n s f e r t o r o o t c e l l s a n d t h e w a y t h e s y m b i o s i s i sm a i n t a i n e d w i t h r e s p e c t t o a l lo c a t i o n o f c a r b o na n d o t h e r n u t r i e n t s b e t w e e n t h e p a r t n e r s .

    References

    Alexander T, Meier R, Toth R and Weber H C, 1988 Dynamicsof arbuscule development and degeneration in mycorrhizasof Triticum aestivum L. and Avena sativa L. with referenceto Zea mays. New Phytol. 110, 363-370.Allen E B and A llen M F 1984 Competition between plants ofdifferent successional stages: mycorrhizas as regulators. Can.J. Bot. 62, 2625-2629.Ashford A E and Allaway W G 1982 A sheathing mycorrhizaon Pisonia grandis R. BR. (Nyctaginaceae) wi thdevelopment of transfer cells rather than a Hartig net. NewPhytol. 90, 511-517.Ashford A E, Petersen C A, Carpenter J L, Cairney J W G andAllaw ay W G 1988 Structure and permeability of the fungalsheath in the Pisonia mycorrhiza. Protoplasma 147, 149-161.Ashford A E, Allaway W G, Peterson C A and Cairney J W G1989 Nutrient transfer and the fungus-root interface. Aust. J.Plant Physiol. 16, 85-97.Baon J B, Smith S E, Alston A M and Wheeler R D 1982Phosphorus ef f iciency of three cereals as related toindigenous mycorrhizal infection. Aust. J. A gric. Res. 43,479--491.Beever R E and Burns D J W 1980 Phosphorus uptake, storageand utilization by fungi. Adv. Bot. Res. 8, 127-129.Bevege D I, Bowen G D and Skinner M F 1975 Comparativecarbohydrate physiology of ecto- and endo-mycorrhizas. InEndomycorrhizas. Eds. F E Sanders, B Mosse and P BTinker. pp 149-174. A cadem ic Press, London.Bonfante-Fasolo P 1984 Anatomy and morphology. In VAMycorrhizas. Eds. C L Powell and D J Bagyaraj . pp 5-33.CRC Press, Boca Raton, FL.Bonfante-Fasolo P and Gianinazzi -Pearson V 1982Ultrastructural aspects of endomycorrhiza in the Ericaceae.I I I . Morphology of the d issociated symbionts andmodifications occurring during their reassociation in axenicculture. New Phytol. 91,691-70 4.Bonfante-Fasolo P and G rippiolo R 198 2 Ultrastructural andcytochemical changes in the wall of a vesicular-arbuscularmycorrhizal fungus during symbiosis. Can. J. Bot. 60,2303-2312.Bonfante-Fasolo P, Vian B, Perotto S, Facci o A and Knox J P1990 Cel lu lose and pect in local izat ion in roots ofmycorrhizal Allium porrum : labelling continuity betweenhost cell wall and interfacial material. Planta 180, 537-547.Bonfante-Fasolo P, Tamagnone L, Peretto R, Esquerr6-Tugay6D, Mazau D, Mosiniak M and Vian B 1991Immunocytochemical locat ion of hydroxyprol ine r ichglycoproteins at the interface between a mycorrhizal fungusand its host plants. Protoplasma 165, 127-138.Cairney J W G and Alexa nder I J 1992a A study of ageing ofspruce Picea sitchensis Bong. Carr.) ectomycorrhizas. II.Carbohydrate allocation in ageing Picea sitchensis/Tylosporafibrillosa (Burt.) Donk ectomycorrhizas. New Phytol. 122,153-158.Cairney J W G and Alexander I J 1992b A study of ageing ofspruce Picea sitchensis Bong. Carr.) ectomycorrhizas. III.Phosphate absorpt ion and t ransfer in ageing Piceasitchensis/Tylospora f ibril losa (Burt .) Donkectomycorrhizas. New Phytol. 122, 159-164.

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    9/11

    Nutr ient trans port in mycorrhiza ~ 111

    Cairney J W G and Smith S E 1992a Influence of intracellularphosphorus concentration on phosphate absorption by theectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol.Res. 96. 673-676.

    Cairney J W G and Smith S E 1992b Effect of monovalentcations on efflux of phosphate from the ectomycorrhizalfungus Pisolithus tinctorius. In Mycorrhiza in Ecosystems.Eds. D J Read, D H Lewis, A H Fitter and I J Alexander. pp352-355. CAB International, Oxon, UK.

    Cairney, J.W.G. and Smith, S.E. 1993 Efflux of phospha tefrom the ectomycorrhizal basidiomycete Pisolithustinctorius: general characteristics and the influence ofintracellular phosphorus concentration. Mycol. Rcs. (inpress).

    Cair ney .1 W G, Ashf ord A E and All awa y W G 1989Distribution of photosynthetically fixed carbon within rootsystems of Eucalyptus pilularis ectomycorrhizal withPisolithus tinctorius. New Phytol. 112, 495-500.

    Campbell B D, Grime J P and Mackey J M L 1991 A trade-offbetween scale and precision in resource foraging. Oecologia87, 532-538.

    Clarkson D T 1985 Factors affecting mineral acquisition byplants. Ann. Rev. Plant Physiol. 36, 77-115,

    Clarkson D T and Scattergood C B 1982 Growth andphosphate transport in barley and tomato plants during thedevelopment of, and recovery from, phosphate stress. J. Exp.Bot. 33,865-875.

    Clipson N J W, Cairney J W G and Jennings D H 1987 Thephysiology of basidiomycetc linear organs. 1. Phosphateuptake by cords and mycelium in the laboratory and in thefield. New Phytol. 105,449-457.

    Cosgrove D J and Hedrich R 1991 Stretch-activated chloride,potassium, and calcium channels coexisting inplasmamembranes of guard cells of Vicia faba L. Planta 186,143-153.

    Cox G and Tinker P B 1976 Translocation and transfer ofnutrients in vesicular-arbuscular mycorrhizas. 1. Thearbuscule and phosphorus transfer: a quantitativeultrastructural study. New Phytol. 77, 371-378.

    Dexheimer J, Gianinazzi S and Gianinazzi-Pearson V 1979Ultrastructural cytochemistry of the host- fungus interfaces inthe cndomycorrhizal association Glomus mosseae/Alliumcepa. Z. Pflanzenphysiol. 92, 191-206.

    Dexheimer J, Aubert -Dufresne M-P, Gdrard J, Le Tacon F andMousain D 1986 l~tude de ]a localisation ultrastructurale desactivitds phosphatasiques acides dans deux typcsd ectomycorrhize s. Bull. Soc. Bot. Fr. 133,343-352.

    Downes G M, Alexander 1 J and Cairney J W G 1992 A studyof ageing of spruce Picea sitchensis Bong. Carr.)cctomyeorrhizas. 1. Morphological and cellular changes inmycorrhizas formed by Tylospora fibrillosa (Burt.) Donk andPaxillus involutus (Batsch.) Ft. New Phytol. 122, 141-152.

    Duddridgc J A 1986 Specificity and recogni tion in mycorrhizalassociations. In Physiological and Genetical Aspects ofMycorrhizae. Eds. V Gianinazzi-Pearson and S Gianinazzi.pp 45-58.1NRA, Paris.

    Duddridge J A and Read D J 1984 Modification of the hostfungus interface in mycorrhizas synthesi zed between Suillusbovinus (FR.) O. Kuntz and Pinus sylvestris L. New Phytol.96, 583-588.

    Eissenstat D M and Newman E I 1990 Seedling establishmentnear large plants: effects of vesicular-arbuscular mycorrhizason the intensity of plant competition. Functional Ecol. 4,95-99.

    Evans D G and Miller M H 1988 Vesicular-arbuscularmycorrhizas and the soil-disturbance-induced reduction ofnutrient absorption in maize. I. Causal relations. New Phytol.110, 67-74.

    Fairchild G L and Miller M H 1988 Vesicular-arbuscularmycorrhizas and the soil-disturbance-induced reduction ofnutrient absorption in maize. II. Development of the effect.New Phytol. 110, 75-84.

    Finlay R D 1985 Interactions between soil micro-arthropodsand endomycorrhizal associations of higher plants. InEcological Interactions in Soil, Eds. A H Fitter, D Atkinson,D J Read and MB Usher. pp 319-331. Blackwell Scienti ficPublications, Oxford.

    Fitter A H 1985 Functioning of vesicular-arbuscularmycorrhizas under field conditions. New Phytol. 99,257-265.

    Fitter A H 1977 Influence of mycorrhizal infection oncompetition for phosphorus and potassium by two grasses.New Phytol. 79, 119-125.

    Gange A C, Brown V K and Farmer L M 1990 A test formycorrhizal benefit in an early successional plantcommunity. New Phytol. 115, 85-9l .

    Garcia Romcra 1, Garcia Garrido J M, Martinez-Molina E andOcampo J A 1991 Production of pectolytic enzymes inlettuce root colonized by Glomus mosseae. Soil Biol.Biochem. 23 ,597-601.

    Gianinazzi-Pearson V 1984 Host-fungus specificity,recognition and compatibility in mycorrhizae. In GenesInvolved in Microbe Plant Interactions. Eds. ES Dennis, BHohn, Th Hohn, P King , 1 Schell and DPS Verma. pp225-253. Springer-Verlag, Vienna.

    Gianinazzi-Pearson V 1986 Cellular modifications during host-fungus interactions in endomycorrhizae. NATO-ASI, SeriesH, Vol. 1, 29-37.

    Gianinazzi-Pearson V, Bonfante-Fasolo P and Dexheimer J1986 Ultrastructural studies of surface interactions duringadhesion and infection by ericoid endomycorrhizal fungi.NATO-ASI, Series H, Vol. 4, 273-282.

    Gianinazzi-Pearson V, Gianinazzi S and Brewin N J 1990Immunocytochemical localization of antigenic sites in theperisymbiotic mcmbranc of cndomycorrhiza usingmonoclonal antibodies reacting against the peribacteroidmembranes of nodulcs. Endocyt obiology IV, pp 127-131.INRA, Paris.Gianinazzi-Pcarson V, Smith SE, Gianinazzi S and Smith FA1991 Enzymatic studies on the metabolism of vesicular-arbuscular mycor rhizas. V. Is H+-ATPasc a component ofATP-hydrolysing enzyme activit ies in plant-fung usinterface? New Phytol. 117, 61-76.

    Grime J P, Mackcy J M L, Hillier S H and Read D J 1987Floristic diversity in a model system using experimentalmicrocosms. Nature 328, 420-422.

    Hadley G 1975 Organization and fine structure of orchidmycorrhiza. In Endomycorrhizas . Eds. F E Sanders, B Mosseand P B Tinker. pp 335-351. Academic Press, London.

    ttale K A and Sanders F E 1982 Effects of benomyl on

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    10/11

    112 Sm i th e t aL

    vesicular-arbuscular mycorrhizal infection of red cloverTri fol ium pratense L.) and consequences for phosphorus

    inflow. J. Plant Nutr. 5, 1355-1367.Harley J L and Smith S E 1983 Mycorrhizal Symbiosis.

    Academic Press, London. 483 p.Harley J L and Brierley J K 1955 The uptake of phosphate by

    excised mycorrhizal roots of the beech. VII. Active transportof 32p from fungus to host during uptake of phospha te fromsolution. New Phytol. 54, 296-301.

    Harley J L and Loughman B C 1963 The uptake of phosphateby excised mycorrhizal roots of the beech. IX. The nature o fthe phosphate compounds passing into the host. New Phytol.62, 350-359.

    Hedrich R and Schroeder J I 1989 The physiology of ionchannels and electrogenic pumps in higher plants. Ann. Rev.Plant Physiol. and Plant Mol. Biol. 40, 539-569.

    Heldt H H, Chon C J, Maronde D, Herold A, Stankovic Z Sand Walker D A 1977 Role of orthophosphate and otherfactors in the regulation of starch formation in leaves andisolated chloroplasts. Plant Physiol. 59, 1146-1155.

    Jasper D A, Abbott L K and Robson A D 1989 Soil disturbancereduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol. 112, 93-99.

    Jasper D A, Abbott L K and Robson A D 1989 Hyphae of avesicutar-arbuscular mycorrhizal fungus maintain infectivityin dry soil, except when the soil is disturbed. New Phytol.112, 101-107.

    Jeanmaire C, Dexheimer J, Marx C, Gianinazzi S andGianinazzi-Pearson V 1985 Effect of vesicular-arbuscularmycorrhizal infection on the distribution of neutralphosphatase activities in root cortical cells. J. Plant Physiol.119, 285-293.

    Keifer D W and Lucas W J 1982 Potassium channels in Characorallina. Control and interaction with the ele ctrogenic H pump. Plant Physiol. 86, 841-847.

    Koide R T 1991 Nutrient supply, nutrient demand and plantresponse to mycorrhizal infection. New Phytol. 117,365-386.

    Koide R T and Elliott G 1989 Cost, benefit and efficiency ofthe vesicular-arbuscula r mycorrh izal symbiosis. Funct. Ecol.3, 252-255.

    Koide R T and Mooney H A 1987 Spatial variation ininoculum potential of vesicular-arbuscular mycorrhizal fungicaused by formation of gopher mounds. New Phytol. 107,173-182.

    Lee R B 1982 Selectivi ty and kinetics of ion uptake by barleyplants following nutrient deficiency. Ann. Bot. 50, 429--449.

    Lei J and Dexheimer J 1988 Ultrastructural localization ofATPase activity in the Pinus sy lves tr is /Laccaria laccataectomycorrhiza l associat ion. New Phytol. 108, 329-334.

    Lei J, Lapeyrie F, Malajczuk N and Dexheimer J, 1990Infectivity of pine and eucalypt isolates of P i s o l i t h u stinctorius (Pers.) Coker and Couch on roots of Eucalyptusu r o p h y l l a S.T. Blake in vitro. 1I. Ultrastructural andbiochemical changes at the early stage of mycorrhizaformation. New Phytol. 116, 115-122.

    Martin F, Ramstedt M and S6derh~ill K 1987 Carbon andnitrogen metabolism in ectomycorrhizal fungi andectomycorrhizas. Biochimie 69, 569-581.

    Marx C, Dexheimer J, Gianinazzi-Pearson V and Gianinazzi S

    1982 Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. IV. Ultrastructural evidence(ATPase) for active transfer processes in the host-arbusculeinterface. New Phytol. 90, 37-43.

    McGonigle T P 1988 A numerical analysis of published fieldtrials with vesicular-arbuscular mycorrhizal fungi.Functional Ecol. 2, 473-478.

    McGonigle T P and Fitter A H 1988 Ecological consequencesof arthropod grazing on VA mycorrhizal fungi. Proc. R. Soc.Edinburgh 94B, 25-32.

    McGonigle T P and Fitter A H 1990 Ecological specificity ofvcsicular-arbuscular mycorrhizal associations. Mycol. Res.94, 120-122.

    Mooney H A 1972 The carbon balance of plants. Annu. Rev.Ecol. Syst. 3,315-346.

    Patrick J W 1989 Solute efflux from the host atplant-microorganism interfaces. Aust. J. Plant Physiol. 16,53-67.

    Pearson V and Read D J 1975 The physiology of themycorrhizal endophyte of Calluna vulgaris L. Hull. Trans.Br. Mycol. Soc. 64, 1-7.

    Pohlaven F 1989 The influence of cytokinin 2iPA on growth,ion transport and membrane fluidity in mycelia of themycorrhizal fungus Suillus variegatus. Agric. Ecos. Environ.28, 399-402.

    Rabatin S C and Stinner B R 1988 Indirect ef fects of interactionsbetween VAM fungi and soil-inhabiting invertebrates on plantprocesses. Agric. Ecos. Environ. 24, 135-146.

    Scannerini S and Bonfante-Fasolo P 1983 Comparativeultrastructural analysis of mycorrhizal associations. Can. J.Bot. 61,917-943.

    Schwab S M Menge J A and Tinker P B 1991 Regulation ofnutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol. 117, 387-398.Serrigny J 1982 Etudes cytologique, cytochimique, etcytoenzymologique d une orchid6e tropicale : Epidendrumsp. Dipl6me d Etude Approfondie , Universit6 of Nancy. 32 p.

    Slayman C L 1965 Electrical properties of Neurospora crassa.Effects of external cations on the intracellular potential. J.Gen. Physiol. 49, 69-92.

    Smith D C, Muscatine L and Lewis D 1969 Carbohydratemovement from autotrophs to heterotrophs in parasitic andmutualistic symbiosis. Biol. Rev. 44, 17-90.

    Smith F A and Smith S E 1986 Movement across membranes:physiology and biochemistry. In Physiological and GeneralAspects of Mycorrhizae. Eds. V Gianinazzi-Pcarson and SGianinazzi. pp 75-84. INRA, Paris.

    Smith F A and Smith S E 1989. Membrane transport at thebiotrophic interface: an overview. Aust. J. Plant Physiol. 16,33---43.

    Smith S E 1974. Mycorrhizal fungi. CRC Critical Reviews inMicrobiology, 275-313.

    Smith S E and Dickson S 1991 Quantification of activevesicular-arbuscular mycorrhizal infection using imageanalysis and other techniques. Aust. J. Plant Physiol. 18,637-648.Smith S E and Gianinazzi-Pearson V 1988 Physiologicalinteractions between symbionts in vesicular-arbuscularmycorrhizal plants. Ann. Rev. Plant Physiol. Mol. Biol. 39,211-244.

  • 8/13/2019 Nutrient Transport Mycorrhizas Structure

    11/11

    Nutrient transport in myco rrhizus 113Smith S E and Smith F A 1990 Structure and function of the

    interfaces in biotrophic symbioses as they relate to nutrienttransport. New Phytol. 114 1-38.

    Smith S E Long C M and Smith F A 1989 Infection of rootswith a dimorphic hypodermis: possible effects on soluteuptake. Agric. Ecosy. Environ. 29 403-40 7.

    Smith S E Robson A D and Abbott L K 1992 The involvemen tof mycorrhizas in the a sses sment of genetically dependentefficiency of nutrient uptake and use. Plant Soil 146169-179.

    Straker C J and Mitchell D T 1987 Kinetic characterization ofa dual phosphate uptake system in the endomycorrhizalfungus ofErica hispidula L. New Phytol. 106 129-137 .

    Strullu D G Grellier B Garrec J P McCready c c and Harley JL 1986 Effects of monovalent and divalent cations onphosphate absorption by beech mycorrhizas. New Phytol.103 403-416.

    Tester M 1990 Plant ion channels: whole-cell and single-

    channel studies. New Phytol. 114 305-34 0.Tes ter M A Smith F A and Smith S E 1992 The rolc of ion

    channels in controlling solute exchange in mycorrhizalassociations. In Mycorrhiza in Ecosystems Eds. DJ ReadDH Lewis AH Fitter and IJ Alexand er. pp 348- 351. C ABInternational Oxon UK.

    Thoms on B D Clarkson D T and Brain P 1990 Kinetics ofphosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus Gigaspora margarita NewPhytol. 116 647-653.

    Woolhouse H W 1975 Membrane structure and transportproblems considered il l relation to phosphorus andcarbohydrate movemen ts and the regulation of endotrophicmycorrhizal associations . In Endomy corrhizas. Eds. F ESanders B Mosse and P B Tinker. pp 209-239. AcademicPress London.

    Wyse R E Zamski E and Tomos A D 1986 Effect of turgor onkinetics of sucrose uptake. Plant Physiol. 81. 478-481.