Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

9
Computational Fluid Dynamics Numerical Methods for Parabolic Equations Grétar Tryggvason Spring 2011 http://www.nd.edu/~gtryggva/CFD-Course/ Computational Fluid Dynamics One-Dimensional Problems Explicit, implicit, Crank-Nicolson Accuracy, stability Various schemes Multi-Dimensional Problems Alternating Direction Implicit (ADI) Approximate Factorization of Crank-Nicolson Splitting Outline Solution Methods for Parabolic Equations Computational Fluid Dynamics Numerical Methods for One-Dimensional Heat Equations Computational Fluid Dynamics b x a t x f t f < < > = , 0 ; 2 2 α which is a parabolic equation requiring ) ( ) 0 , ( 0 x f x f = Consider the diffusion equation Initial Condition ) ( ) , ( ); ( ) , ( t t b f t t a f b a φ φ = = Boundary Condition (Dirichlet) ) ( ) , ( ); ( ) , ( t t b x f t t a x f b a ϕ ϕ = = Boundary Condition (Neumann) or and Computational Fluid Dynamics Parabolic equations can be viewed as the limit of a hyperbolic equation with two characteristics as the signal speed goes to infinity Increasing signal speed x t Computational Fluid Dynamics 2 1 1 1 2 h f f f t f f n j n j n j n j n j + + + = Δ α Explicit: FTCS f j n+1 = f j n + αΔt h 2 f j +1 n 2 f j n + f j 1 n ( ) j-1 j j+1 n n+1 Explicit Method: FTCS - 1 2 f x 2 j n = f j +1 n 2 f j n + f j 1 n h 2 f t j n = f j n+1 f j n Δt f t j n = α 2 f x 2 j n

Transcript of Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Page 1: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

Numerical Methods for!Parabolic Equations!

Grétar Tryggvason!Spring 2011!

http://www.nd.edu/~gtryggva/CFD-Course/!Computational Fluid Dynamics

One-Dimensional Problems!•  Explicit, implicit, Crank-Nicolson!•  Accuracy, stability!•  Various schemes!

Multi-Dimensional Problems!•  Alternating Direction Implicit (ADI)!•  Approximate Factorization of Crank-Nicolson!

Splitting!

Outline!

Solution Methods for Parabolic Equations!

Computational Fluid Dynamics

Numerical Methods for!One-Dimensional Heat

Equations!

Computational Fluid Dynamics

bxatxf

tf <<>

∂∂=

∂∂ ,0;

2

2

α

which is a parabolic equation requiring!

)()0,( 0 xfxf =

Consider the diffusion equation!

Initial Condition!

)(),();(),( ttbfttaf ba φφ == Boundary Condition!(Dirichlet)!

)(),();(),( ttbxftta

xf

ba ϕϕ =∂∂=

∂∂ Boundary Condition!

(Neumann)!

or!

and!

Computational Fluid Dynamics

Parabolic equations can be viewed as the limit of a hyperbolic equation with two characteristics as the signal speed goes to infinity!

Increasing signal speed!

x!

t!

Computational Fluid Dynamics

211

1 2h

ffftff n

jnj

nj

nj

nj −++ +−

=Δ−

α

Explicit: FTCS!

f jn+1 = f j

n +αΔth2

f j+1n − 2 f j

n + f j−1n( )

j-1 j j+1 n

n+1

Explicit Method: FTCS - 1!

∂ 2 f∂x2

⎠⎟ j

n

=f j+1

n − 2 f jn + f j−1

n

h2

∂ f∂t

⎞⎠⎟ j

n

=f j

n+1 − f jn

Δt

∂f∂t

⎛⎝⎜

⎞⎠⎟ j

n

= α ∂2 f∂x2

⎝⎜⎞

⎠⎟ j

n

Page 2: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

Modified Equation!

xxxxxxxxxx fhthtOfrhxf

tf ),,()61(

12422

2

2

2

ΔΔ+−=∂∂−

∂∂ αα

2htr Δ= αwhere!

- Accuracy ! ),( 2htO Δ

- No odd derivatives; dissipative!

Explicit Method: FTCS - 2!Computational Fluid Dynamics

Stability: von Neumann Analysis!

14112<Δ−<−

htα

210

2<Δ≤

htα

Fourier Condition!

ε n+1

ε n= 1− 4αΔt

h2sin2 k h

2G = 1− 4r sin2 (β / 2)⎡⎣ ⎤⎦

Explicit Method: FTCS - 3!

Computational Fluid Dynamics

Domain of Dependence for Explicit Scheme!

BC! BC!

x

t

Initial Data!

h

P Δt

Boundary effect is not !felt at P for many time !steps!

This may result in!unphysical solution behavior!

In the limit of Δt and Δx going to zero, the computational domain contains the physical domain of dependence since Δt ~ Δx2 for stability !

Explicit Method: FTCS - 4!Computational Fluid Dynamics

2

11

111

1 2h

ffftff n

jnj

nj

nj

nj

+−

+++

+ +−=

Δ−

α

Implicit Method: Backward Euler!

−rf j+1n+1 + 2r +1( ) f jn+1 − rf j−1n+1 = f j

n r = αΔt / h2( )

j-1 j j+1 n

n+1

Tri-diagonal matrix system!

Implicit Method - 1!

Computational Fluid Dynamics

- The + sign suggests that implicit method may be! less accurate than a carefully implemented explicit! method.!

Modified Equation!∂f∂t

−α ∂2 f∂x2

=αh2

12(1+ 6r) fxxxx +O(Δt

2 ,h2Δt,h4 ) fxxxxxx

Implicit Method - 2!

Amplification Factor (von Neumann analysis)!

G = 1+ 2r(1− cosβ)[ ]−1

Unconditionally stable!

Computational Fluid Dynamics

⎟⎟⎠

⎞⎜⎜⎝

⎛ +−+

+−=

Δ− −+

+−

+++

+

211

2

11

111

1 222 h

fffh

ffftff n

jnj

nj

nj

nj

nj

nj

nj α

Crank-Nicolson Method (1947)!

j-1 j j+1 n

n+1

Tri-diagonal matrix system!

−rf j+1n+1 + 2 r +1( ) f jn+1 − rf j−1n+1 = rf j+1n − 2 r −1( ) f jn + rf j−1n

Crank-Nicolson - 1!

Page 3: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

- Second-order accuracy!

Modified Equation!

xxxxxxxxxx fhtfhxf

tf

⎥⎦⎤

⎢⎣⎡ +Δ+=

∂∂−

∂∂ 423

2

2

2

3601

121

12αααα

Crank-Nicolson - 2!

Amplification Factor (von Neumann analysis)!

( )( )β

βcos11cos11

−+−−=

rrG

Unconditionally stable!

),( 22 htO Δ

Computational Fluid Dynamics

⎟⎟⎠

⎞⎜⎜⎝

⎛ +−−+

+−=

Δ− −+

+−

+++

+

211

2

11

111

1 2)1(

2h

fffh

ffftff n

jnj

nj

nj

nj

nj

nj

nj θθα

Generalization!

j-1 j j+1 n

n+1

⎪⎩

⎪⎨⎧

−=

NicolsonCrank1/2Implicit1

(FTCS)Explicit0θ

θ×( )θ−× 1

Combined Method A - 1!

Computational Fluid Dynamics

( )2

11

111

11 21

hfff

tff

tff n

jnj

nj

nj

nj

nj

nj

+−

+++

−+ +−=

Δ−

−Δ−

+ αθθ

Generalized Three-Time-Level Implicit Scheme:!! ! !Richtmyer and Morton (1967)!

j-1 j j+1

n

n+1

⎩⎨⎧

=implicitfully level-Three1/2

Implicit0θ

( )θ+× 1θ×

n-1

Combined Method B - 1!Computational Fluid Dynamics

Modified Equation:!

Combined Method B - 2!

+Δ+⎥⎦⎤

⎢⎣⎡ +Δ⎟

⎠⎞⎜

⎝⎛ −−=− )(

1221 2

22 tOfhtff xxxxxxt

ααθα

Special Cases:!

),(21 22 htO Δ⇒=θ

r121

21 +=θ ),( 42 htO Δ⇒

Computational Fluid Dynamics

211

11 22 h

ffftff n

jnj

nj

nj

nj −+

−+ +−=

Δ−

α

Richardsonʼs Method!

Richardson Method!

),( 22 htO Δ

Similar to Leapfrog!

but unconditionally unstable!!

j-1 j j+1

n

n+1

n-1

Computational Fluid Dynamics

21

111

11

2 hffff

tff n

jnj

nj

nj

nj

nj −

−++

−+ +−−=

Δ−

α

The Richardson method can be made stable by !splitting by time average !

j-1 j j+1

n

n+1

DuFort-Frankel - 1!

n-1

njf f j

n+1 + f jn−1( ) / 2

( ) ( )nj

nj

nj

nj

nj fffrfrf 1

11

11 221 −−

+−+ +−+=+

Page 4: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

xxxxxxt fhthff ⎥⎦⎤

⎢⎣⎡ Δ−=−

2

232

121 ααα

Modified Equation!

DuFort-Frankel - 2!

xxxxxxfhtth ⎥⎦⎤

⎢⎣⎡ Δ+Δ−+

4

45234 2

31

3601 ααα

Amplification factor !

rrr

G21

sin41cos2 22

+−±

=ββ Unconditionally !

stable!

Conditionally consistent!

Computational Fluid Dynamics

FTCS!Stable for!

BTCS!Unconditionally!

Stable!

Crank-Nicolson!Unconditionally!

Stable!

Richardson!Unconditionally!

Unstable !

xxt ff α=

211

1 2h

ffftff n

jnj

nj

nj

nj −++ +−

=Δ−

α ( ) xxxxfrh 6112

2

−α

Parabolic Equation - Summary!

21≤r

2

11

111

1 2h

ffftff n

jnj

nj

nj

nj

+−

+++

+ +−=

Δ−

α ( ) xxxxfrh 6112

2

f jn+1 − f j

n

Δt=

α2h2

f j+1n+1 − 2 f j

n+1 + f j−1n+1( )⎡⎣

+ f j+1n − 2 f j

n + f j−1n( )⎤⎦

xxxxxxxxxx ftfh1212

232 Δ+αα

211

11 22 h

ffftff n

jnj

nj

nj

nj −+

−+ +−=

Δ−

α ),( 22 htO Δ

Computational Fluid Dynamics

DuFort-Frankel! Unconditionally!Stable,!

Conditionally!Consistent!

3-Level Implicit!Unconditionally!

Stable!

xxt ff α=

( ) xxxxfrh 22

12112

−α

Parabolic Equation - Summary!

2

11

111

11

2243

hfff

tfff

nj

nj

nj

nj

nj

nj

+−

+++

−+

+−

+−

αxxxxf

h12

21

111

11

2 hffff

tff n

jnj

nj

nj

nj

nj −

−++

−+ +−−=

Δ−

α

And others!!

Computational Fluid Dynamics

Numerical Methods for!Multi-Dimensional Heat

Equations!

Computational Fluid Dynamics

Two-dimensional grid!

j!

j-1!

j+1!

i! i+1!i-1!

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂+

∂∂=

∂∂

2

2

2

2

yf

xf

tf α

Consider a 2-D heat equation!

Computational Fluid Dynamics

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂+

∂∂=

∂∂

2

2

2

2

yf

xf

tf α

Applying forward Euler scheme:!

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ

+−+

Δ+−

=Δ− −+−+

+

21,,1,

2,1,,1,

1, 22

yfff

xfff

tff n

jinji

nji

nji

nji

nji

nji

nji α

2-D heat equation!

hyx =Δ=ΔIf!

( )njinji

nji

nji

nji

nji

nji fffff

htff

,1,1,,1,12,

1, 4−+++=Δ−

−+−+

+ α

Explicit Method - 1!

Page 5: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

In matrix form!

f1,1n+1

f1,2n+1

f1,J

n+1

f2,1n+1

f2,2n+1

fI ,J −1n+1

fI ,Jn+1

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

f1,1n

f1,2n

f1,J

n

f2,1n

f2,2n

fI ,J −1n

fI ,Jn

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

+αΔth2

−4 1 0 0 1 0 1 −4 1 0 0 1 0 1 −4 1 0 1 1 00 10 0 1

0 1 −4

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

f1,1n

f1,2n

f1,J

n

f2,1n

f2,2n

fI ,J −1n

fI ,Jn

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

Explicit Method - 2!Computational Fluid Dynamics

Explicit Method - 3!

Von Neumann Analysis! imyikxnnj eeεε =

εn+1 = εn + αΔth2

eikh + e− ikh + eimh + e−imh − 4( )εn

εn+1

εn=1+ αΔt

h22coskh + 2cosmh − 4( )

⎟⎠⎞⎜

⎝⎛ +Δ−=

2sin

2sin41 22

2

mhkhhtα

Worst case!

1811 2 ≤Δ−≤−htα

41

2 ≤Δhtα

Computational Fluid Dynamics

Δtαh2

=12

Δtαh2

=14

Δtαh2

= 16

One-dimensional flow!

Two-dimensional flow!

Three-dimensional flow!

Stability limits depend on the dimension of the problems!

Different numerical algorithms usually have different stability limits!

Stability!Computational Fluid Dynamics

Implicit time integration!

Computational Fluid Dynamics

f

i , j

n+1 = fi , j

n +Δtαh2

⎛⎝⎜

⎞⎠⎟

fi+1, jn + fi−1, j

n + fi, j−1n + fi, j+1

n − 4 fi, jn( )

Implicit Methods!

f

i , j

n+1 = fi , j

n +Δtαh2

⎛⎝⎜

⎞⎠⎟

fi+1, jn+1 + fi−1, j

n+1 + fi, j−1n+1 + fi, j+1

n+1 − 4 fi, jn+1( )

Evaluate the spatial derivatives at the new time (n+1), instead of at n!

(1+ 4A) f

i , j

n+1 − A fi+1, jn+1 + fi−1, j

n+1 + fi, j−1n+1 + fi, j+1

n+1( ) = fi , j

n

This gives a set of linear equations for the new temperatures:!

Known source term!

Recall forward in time method!

Computational Fluid Dynamics

fi , j

n+1 = 11+ 4A

A fi+1, jn+1 + f i−1, j

n+1 + f i, j−1n+1 + f i, j+1

n+1( ) + fi , j

n( )

Isolate the new fi,j and solve by iteration!

The implicit method is unconditionally stable, but it is necessary to solve a system of linear equations at each time step. Often, the time step must be taken to be small due to accuracy requirements and an explicit method is competitive.!

Implicit Methods!

Page 6: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

Second order accuracy in time can be obtained by using the Crank-Nicolson method!

n

n+1

i i+1

i-1

j+1

j-1

j

Implicit Methods!Computational Fluid Dynamics

The matrix equation is expensive to solve!

Crank-Nicolson!

Crank-Nicolson Method for 2-D Heat Equation!

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂+

∂∂+

∂∂+

∂∂=

Δ− +++

2

2

2

2

2

12

2

121

2 yf

xf

yf

xf

tff nnnnnn α

( )1,11,

11,

1,1

1,12,

1, 4

2++

−++

+−

++

+ −+++Δ+= nji

nji

nji

nji

nji

nji

nji fffff

htff α

hyx =Δ=ΔIf!

( )njinji

nji

nji

nji fffff

ht

,1,1,,1,12 42

−+++Δ+ −+−+α

Computational Fluid Dynamics

Expensive to solve matrix equations. !

Can larger time-step be achieved without having solve the matrix equation resulting from the two-dimensional system?!

The break through came with the Alternation-Direction-Implicit (ADI) method (Peaceman & Rachford-mid1950ʼs)!

ADI consists of first treating one row implicitly with backward Euler and then reversing roles and treating the other by backwards Euler. !

Peaceman, D., and Rachford, M. (1955). The numerical solution of parabolic and elliptic differential equations, J. SIAM 3, 28-41!

Computational Fluid Dynamics

Fractional Step:!

Alternating Direction Implicit (ADI)!

f n+1/ 2 − f n = αΔt2h2

fi+1, jn+1/ 2 − 2 f i, j

n+1/ 2 + f i−1, jn+1/ 2( ) + f i, j+1

n − 2 f i, jn + f i, j−1

n( )[ ]

( )hyx =Δ=Δ

f n+1 − f n+1/ 2 = αΔt2h2

fi+1, jn+1/ 2 − 2 f i, j

n+1/ 2 + f i−1, jn+1/ 2( ) + f i, j+1

n+1 − 2 f i, jn+1 + f i, j−1

n+1( )[ ]

Step 1:!

Step 2:!

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂+

∂∂+

∂∂Δ=−

+++

2

2

2

12

2

2/121

21

2 yf

yf

xftff

nnnnn α

Combining the two becomes equivalent to:!

Midpoint! Trapisodial!

Computational Fluid Dynamics

Computational Molecules for the ADI Method!

n

n+1/2

n+1

i i+1

i-1

j+1

j-1

j

Computational Fluid Dynamics

Instead of solving one set of linear equations for the two-dimensional system, solve 1D equations for each grid line.!

The directions can be alternated to prevent any bias!

Page 7: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

In matrix form, for each row!

fi,1n+1/ 2

fi,2n+1/ 2

fi,N

n+1/ 2

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

=

fi,1n

fi,2n

fi,N

n

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

+αΔth2

−2 1 01 −2 10 1 −2

⎢⎢⎢⎢

⎥⎥⎥⎥

fi,1n+1/ 2

fi,2n+1/ 2

fi,N

n+1/ 2

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

+ source

This equation is easily solved by forward elimination and back-substitution!

Computational Fluid Dynamics

Stability Analysis:!

ADI Method is accurate !

Similarly, !

( )22 ,htO Δimyikxnn

j eeεε =

ε n+1/2 = ε n + αΔth2

ε n+1/2 eikh − 2 + e− ikh( ) + ε n eimh − 2 + e− imh( )⎡⎣ ⎤⎦

ε n+1/2

ε n=1− 2αΔt

h2sin2 kh

21+ 2αΔt

h2sin2 mh

2

ε n+1

ε n+1/2=1− 2αΔt

h2sin2 mh

21+ 2αΔt

h2sin2 kh

2

Computational Fluid Dynamics

Combining !

Unconditionally stable! !

1

2sin21

2sin21

2sin21

2sin21

22

22

22

221

<⎟⎟⎟⎟

⎜⎜⎜⎜

Δ+

Δ−

⎟⎟⎟⎟

⎜⎜⎜⎜

Δ+

Δ−=

+

khht

mhht

mhht

khht

n

n

α

α

α

α

εε

The 3-D version does not have the same desirable stability properties. However, it is possible to generate similar methods for 3D problems!

Computational Fluid Dynamics

Implicit methods for parabolic equations!

• Allow much larger time step (but must be balanced against accuracy!)!

• Preserve the parabolic nature of the equation!

But, require the solution of a linear set of equations and are therefore much more expensive that explicit methods!

ADI provides a way to convert multidimensional problems into a series of 1D problems!

Computational Fluid Dynamics

Approximate factorization!

Splitting!

Computational Fluid Dynamics Approximate Factorization - 1!

The Crank-Nicolson for heat equation becomes !

Define !δ xx ( ) = 1Δx2

( )i−1, j − 2( )i, j + ( )i+1, j⎡⎣ ⎤⎦

δ yy ( ) = 1Δy2

( )i, j−1 − 2( )i, j + ( )i, j+1⎡⎣ ⎤⎦

f n+1 − f n

Δt=α2δ xx f n+1 + f n( ) + α

2δ yy f n+1 + f n( ) +O(Δt 2 ,Δx2 ,Δy2 )

1− αΔt2

δ xx −αΔt2

δ yy⎛⎝⎜

⎞⎠⎟f n+1 = 1+ αΔt

2δ xx +

αΔt2

δ yy⎛⎝⎜

⎞⎠⎟f n

+ΔtO(Δt 2 ,Δx2 ,Δy2 )

which can be rewritten as !

Page 8: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics Approximate Factorization - 2!

Factoring each side !

+ΔtO(Δt 2 ,Δx2 ,Δy2 )

1− αΔt2

δ xx⎛⎝⎜

⎞⎠⎟1− αΔt

2δ yy

⎛⎝⎜

⎞⎠⎟f n+1 − α 2Δt 2

4δ xxδ yy f

n+1 =

or !

1+ αΔt2

δ xx⎛⎝⎜

⎞⎠⎟1+ αΔt

2δ yy

⎛⎝⎜

⎞⎠⎟f n − α 2Δt 2

4δ xxδ yy f

n

1− αΔt2

δ xx⎛⎝⎜

⎞⎠⎟1− αΔt

2δ yy

⎛⎝⎜

⎞⎠⎟f n+1 = 1+ αΔt

2δ xx

⎛⎝⎜

⎞⎠⎟1+ αΔt

2δ yy

⎛⎝⎜

⎞⎠⎟f n

+α 2Δt 2

4δ xxδ yy f n+1 − f n( ) + ΔtO(Δt 2 ,Δx2 ,Δy2 )

Crank-Nicolson!

Computational Fluid Dynamics Approximate Factorization - 3!

The ADI method can be written as !

1− αΔt2

δ xx⎛⎝⎜

⎞⎠⎟f n+1/2 = 1+ αΔt

2δ yy

⎛⎝⎜

⎞⎠⎟f n

1− αΔt2

δ yy⎛⎝⎜

⎞⎠⎟f n+1 = 1+ αΔt

2δ xx

⎛⎝⎜

⎞⎠⎟f n+1/2

Eliminating fn+1/2 !

1− αΔt2

δ yy⎛⎝⎜

⎞⎠⎟1− αΔt

2δ xx

⎛⎝⎜

⎞⎠⎟f n+1 = 1+ αΔt

2δ yy

⎛⎝⎜

⎞⎠⎟1+ αΔt

2δ xx

⎛⎝⎜

⎞⎠⎟f n+1

Computational Fluid Dynamics

αΔt2

⎛ ⎝ ⎜

⎞ ⎠ ⎟ 2

δyyδxx f n+1 − f n( ) ≈ α2

⎛ ⎝ ⎜

⎞ ⎠ ⎟ 2

Δt 3δxxδyy∂f∂t

= O(Δt 3)

Up to a factor:!

ADI is an approximate factorization of the Crank-Nicolson method!

Approximate Factorization - 4!Computational Fluid Dynamics

The Peaceman-Rachford methods does not have the same stability properties in 3D as in 2D. A method with similar properties is:!

1− αΔt2

δ xx⎛⎝⎜

⎞⎠⎟f n+1* = 1+ αΔt

2δ xx + 2δ yy + 2δ zz( )⎡

⎣⎢⎤⎦⎥f n

1− αΔt2

δ yy⎛⎝⎜

⎞⎠⎟f n+1** = f n+1* − αΔt

2δ yy f

n

1− αΔt2

δ zz⎛⎝⎜

⎞⎠⎟f n+1 = f n+1** − αΔt

2δ zz f

n

Several other splitting methods have been proposed in the literature.!

Approximate Factorization - 5!

Computational Fluid Dynamics

Similar ideas can be used for time splitting:!

fi, jn+1/2 = 1+αΔtδ xx( ) fi, jn

fi, jn+1 = 1+αΔtδ yy( ) fi, jn+1/2

fi, jn+1 = 1+αΔtδ yy( ) 1+αΔtδ xx( ) fi, jn

Eliminate the half step:!

Which is equivalent to the standard FTC method, except for the!

α 2Δt 2δ yyδ xx fi, jn

term, which is higher order.!

Approximate Factorization - 6!Computational Fluid Dynamics

Why splitting? !

1.  Stability limits of 1-D case apply.!

2.  Different Δt can be used in x and y directions.!

Page 9: Numerical Methods for Parabolic Equations Numerical Methods for One-Dimensional Heat Equations

Computational Fluid Dynamics

Implicit time marching by fast

elliptic solvers!

Computational Fluid Dynamics

fi, jn+1 − fi, j

n

Δt= α∇h

2 fi, jn+1

∇h2 fi, j

n+1 −fi, jn+1

αΔt= −

fi, jn

αΔt

∇h2 fi, j

n+1 − λ fi, jn+1 = S

Backward Euler!

Rearrange!

or!

Can be solved by elliptic solvers!

Computational Fluid Dynamics

One-Dimensional Problems!•  Explicit, implicit, Crank-Nicolson!•  Accuracy, stability!•  Various schemes!

Multi-Dimensional Problems!•  Alternating Direction Implicit (ADI)!•  Approximate Factorization of Crank-Nicolson!

Splitting!

Outline!

Solution Methods for Parabolic Equations!