Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National...

19
Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics JINA Outline: rp-process r-process

Transcript of Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National...

Page 1: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Nuclear Astrophysics with fastradioactive beams

Hendrik SchatzMichigan State University

National Superconducting Cyclotron LaboratoryJoint Institute for Nuclear Astrophysics JINA

Outline:• rp-process• r-process

Page 2: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Neutron star(H and He burninto heavier elements)

Companion star(H + He envelope)

Accretion disk(H and He fallonto neutron star)

Accreting neutron stars

X-ray bursts

Superbursts

Bursts and other nuclear processes

probe M,R, cooling dense matter EOS, superfluidity,

meson condensates, quark matter

strange matter

Page 3: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.
Page 4: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

97-98

2000

Precision X-ray observations(NASA’s RXTE)

Need much more precise nuclear data to make full use of high quality observational data

Galloway et al. 2003

Woosley et al. 2003 astro/ph 0307425

Uncertain models due to nuclear physics

Burst models withdifferent nuclear physicsassumptions

Burst models withdifferent nuclear physicsassumptions

GS 1826-24 burst shape changes ! (Galloway 2003 astro/ph 0308122)

Reality check: Burst comparison with observations

Page 5: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Nuclear physics needed for rp-process:

0 12

3 45 6

7 8

9 10

11 12 13

14

15 16

17 18 19 20

21 22

23 24

25 26 27 28

29 30

31 32

33 34 35 36

37 38 39 4041

42 43 44

45 46 47 48

49 5051 52

5354 55

56

57 58

n (0) H (1)

H e (2)L i (3)

Be (4) B (5) C (6) N (7)

O (8) F (9)

N e (10)N a (11)

M g (12)A l (13)S i (14) P (15)

S (16)C l (17)

A r (18) K (19)

C a (20)Sc (21)

Ti (22) V (23)

C r (24)M n (25)

Fe (26)C o (27)

N i (28)C u (29)

Zn (30)G a (31)

G e (32)As (33)

Se (34)B r (35)K r (36)R b (37)

S r (38) Y (39)

Zr (40)N b (41)

M o (42)Tc (43)

R u (44)R h (45)Pd (46)Ag (47)

C d (48)In (49)

Sn (50)Sb (51)

Te (52) I (53)

Xe (54)

some experimental information available(most rates are still uncertain)

Theoretical reaction rate predictions difficult neardrip line as single resonances dominate rate:

Hauser-Feshbach: not applicable

Shell model: available up to A~63 but large uncertainties (often x1000 - x10000)

(Herndl et al. 1995, Fisker et al. 2001)

Need radioactive beam experiments

• -decay half-lives• masses• reaction rates mainly (p,), (,p)

(ok – but corrections needed)

(in progress)

(just begun)

(various methods, ISOL and fast beams)

Page 6: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

33Ar

32Cl + p

Shell model calculation:

3.56 MeV 7/2+

3.97 MeV 5/2+

Ground state

Dominate ratein rp-process

H. Schatz

New experimental techniques at NSCL applied to 32Cl(p,g)33Ar

Herndl et al. 1995

gs 1+

2+89.9 keV

(~ 2.6 MeV)

(1.359 MeV)

predicted level

experimentally known level

Experimental Goal:Measure excitation energies of the relevant states

Page 7: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Focal plane:identify 33Ar

S800 Spectrometer at NSCL:

Plastictarget

Radioactive 34Ar beam84 MeV/u T1/2=844 ms(from 150 MeV/u 36Ar)

33Ar

34Ar

SEGAGe array(14 Detectors)

Beamblocker

H. Schatz

Setup for 34Ar(p,d)33Ar measurement

34Ar

34Ar(p,d)33Ar*

Page 8: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

x10000 uncertainty

shell model only

-rays from predicted 3.97 MeV state

Doppler corrected -rays in coincidence with 33Ar in S800 focal plane:

33Ar level energies measured:

3819(4) keV (150 keV below SM)3456(6) keV (104 keV below SM)

33Ar level energies measured:

3819(4) keV (150 keV below SM)3456(6) keV (104 keV below SM)

H. Schatz

reac

tion

rate

(cm

3/s

/mol

e)

temperature (GK)

x 3 uncertaintywith experimental data

stellar reaction rate

New 32Cl(p,)33Ar rate – Clement et al. PRL 92 (2004) 2502

Typical X-ray burst temperatures

Page 9: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

0 24

68

10 12

14

16 18

20 2224

26 2830

32

3436

3840

42

4446

48

50 52

5456

5860

6264 66

68

70

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

Tim e:Tem perature:

1.041e-04 s0.850 G K

0 24

68

10 12

14

16 18

20 2224

26 2830

32

3436

3840

42

4446

48

50 52

5456

5860

6264 66

68

70

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

Tim e:Tem perature:

1.076e+03 s6.607 G K

Burst peak (~7 GK)

~ 45% Energy

~ 55% Energy

Carbon can explodedeep in ocean/crust(but need x10 enhancement)(Cumming & Bildsten 2001)

(Schatz, Bildsten, Cumming, ApJ Lett. 583(2003)L87crust made of Fe/Ni ?

Heavy nuclei in rp-ashes

• Disintegration can be main source of energy !• Increased opacity leads to correct ignition depth

H. Schatz

Ashes to ashes – the origin of superbursts ?

Page 10: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

r (apid neutron capture) process

Supernovae ? n driven wind ? prompt explosions of ONeMg core ? jets ? explosive He burning ?

What is the origin of about half of elements > Fe(including Gold, Platinum, Silver, Uranium)

Neutron star mergers ?

graph by J. Cowan

H. Schatz

The r(apid neutron capture) process)

Abundance Observations

Nuclear Physics + Abundance Observations

only direct experimental constraint on r-process itself

Nuclear Physics

Page 11: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Pt

Xe

78Ni, 79Cu first bottle necks in n-capture flow (80Zn later)

79Cu: half-life measured 188 ms (Kratz et al, 1991) 78Ni : half-life predicted 130 – 480 ms 3 events @ GSI (Bernas et al. 1997)

Ni

Page 12: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

H. Schatz

Some recent r-process motivated experiments

GSI (in-flight fission)Half-lives, Pn values(Schatz, Santi, Stolz et al.)

ISOLDE (ISOL)Decay spectroscopy(Dillmann, Kratz et al. 2003)

GSI (in-flight fission)Masses (IMS)(Matos & Scheidenberger et al.)

GANIL (fragmentation)Decay spectroscopy, Sorlin et al.

ANL/CPT (Cf source) (Clark & Savard et al.)

Remeasured masses with high precision

ORNL (ISOL)(d,p) and Coulex

MSU/NSCL (fragmentation) Half-lives, Pn values

“Fast beam experiments”

Page 13: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

NSCL Neutron detector NERO

R-process Beam Si Stack

neutron

3He + n -> t + p

Measure:

• -decay half-lives• Branchings for -delayed n-emission

Measure:

• -decay half-lives• Branchings for -delayed n-emission

Detect:• Particle type (TOF, dE, p)• Implantation time and location• -emission time and location• Neutron- coincidences

Detect:• Particle type (TOF, dE, p)• Implantation time and location• -emission time and location• Neutron- coincidences

H. Schatz

First experiment: r-process in the Ni region (Hosmer et al.)

~ 100 MeV/u

Page 14: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Ene

rgy

loss

in S

i ~ Z

r-process nuclei

Time of flight ~ m/q

Particle Identification:

time (ms)

Total 78Ni yield:11 events in 104 h

77Ni78Ni

75Co 74Co 73Co

Page 15: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

0.01

0.1

1

10

71 72 73 74 75 76 77 78 79

This work

Moller 97 (FRDM+QRPA)

Borzov 97(ETFSI+cQRPA)

Moller 03(FRDM+QRPA+ff)

Moller (ETFSI-Q+QRPA+ff)

Borzov03 (QRPA GT+ff)

Nubase 03

P. Hosmer

H. Schatz

Preliminary results

78Ni half-life(11 events)

Hal

f-lif

e (s

)

Mass number

Ni half-lives as a function of mass number – comparison with “global” models

Page 16: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

70 120 170 220

Mass (A)

Ab

un

da

nc

e (

A.U

.)Observed Solar Abundances

Model Calculation: Half-Lives fromMoeller, et al. 97

Series4

H. Schatz

Impact of 78Ni half-life on r-process models

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

70 120 170 220

Mass (A)

Ab

un

da

nc

e (

A.U

.)Observed Solar Abundances

Model Calculation: Half-Lives fromMoeller, et al. 97

Same but with present 78Ni Result

need to readjust r-process model parameters

Page 17: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Known half-life

NSCLcovers large fraction of A<130 r-process• big discrepancies among r-process models• possibility of multiple r-processes

First NSCL experimentscompletedFirst NSCL experimentscompleted

H. Schatz

NSCL and future facilities reach

Rare Isotope Accelerator (RIA)

Experimental Nuclear Physics + Observations Experimental test of r-process models is within reach Vision: r-process as precision probe

Experimental Nuclear Physics + Observations Experimental test of r-process models is within reach Vision: r-process as precision probe

Page 18: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

H. Schatz

Conclusions

Interesting time in Nuclear Astrophysics where observations and experiments zoom in on most extreme (but common) scenarios

Need a complementary approach to nuclear astrophysics• need a variety of experiment types for a wide range of data• need a variety of facilities (ISOL and fragmentation beams, and stable beams too !)• need experiment and nuclear theory to:

• fill in gaps• correct for astrophysical environment• understand nuclear physics

A range of nuclei in the r- and rp-process are now accessible at the NSCL Coupled Cyclotron Facility.

Need a next generation radioactive beam facilities such as RIA or FAIRto address most of the nuclear physics relevant for astrophysics.

Fundamental questions to be answered: The origin of the elements Properties of matter under extreme conditions.

Collaboration

Page 19: Nuclear Astrophysics with fast radioactive beams Hendrik Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute.

Collaboration

MSU:P. HosmerF. MontesR.R.C. ClementA. EstradeS. LiddickP.F. ManticaC. MortonW.F. MuellerM. OuelletteE. PellegriniP. SantiH. SchatzM. SteinerA. StolzB.E. Tomlin

Mainz:O. ArndtK.-L. KratzB. Pfeiffer

Notre Dame:A. AprahamianA. Woehr

Maryland:W.B. Walters

PNNLP. Reeder

H. Schatz

Collaborations

MSU:

R.R.C. ClementD. BazinW. BenensonB.A. BrownA.L. ColeM.W. CooperA. EstradeM.A. FamianoN.H. FrankA. GadeT. GlasmacherP.T. HosmerW.G. LynchF. MontesW.F. MuellerP. SantiH. SchatzB.M. SherrillM.-J. van GoethemM.S. Wallace

Hope College

P.A. DeYoungG.F. Peaslee

r-process rp-process