Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

65
Nonideal Behavior Dicky Dermawan www.dickydermawan.net78.net [email protected] ITK-234 Termodinamika Teknik Kimia II

Transcript of Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Page 1: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Nonideal Behavior

Dicky Dermawanwww.dickydermawan.net78.net

[email protected]

ITK-234 Termodinamika Teknik Kimia II

Page 2: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Nonideal Behavior, Outline

Introduction: Effect of Nonideality Partial Molar Properties Residual Properties

Fugacity & Fugacity Coefficient

Excess Properties Activity & Activity Coefficient

Page 3: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Intorduction: Effect of Nonideality:

Tetrahydrofuran(1)/Carbon-tetrachloride(2)

t-x-y diagramP-x-y diagram

30oC 1 atm

P-xy Diagram Acetonitril(1)/Nitrometana(2) @

75oC

40

45

50

55

60

65

70

75

80

85

0 0.2 0.4 0.6 0.8 1

x1, y1

P

txy diagram Acetonitril(1)/Nitromethane(2)

65

70

75

80

85

90

0 0.2 0.4 0.6 0.8 1x1, y1

t, oC

@ P = 70 kPa

Page 4: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Effect of Nonideality: Chloroform(1)/Tetrahydrofuran(2)

t-x-y diagramP-x-y diagram

30oC 1 atm

P-xy Diagram Acetonitril(1)/Nitrometana(2) @

75oC

40

45

50

55

60

65

70

75

80

85

0 0.2 0.4 0.6 0.8 1

x1, y1

P

txy diagram Acetonitril(1)/Nitromethane(2)

65

70

75

80

85

90

0 0.2 0.4 0.6 0.8 1x1, y1

t, oC

@ P = 70 kPa

Page 5: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Effect of Nonideality: Furan(1)/Carbontetrachloride(2)

t-x-y diagramP-x-y diagram

30oC 1 atm

P-xy Diagram Acetonitril(1)/Nitrometana(2) @

75oC

40

45

50

55

60

65

70

75

80

85

0 0.2 0.4 0.6 0.8 1

x1, y1

P

txy diagram Acetonitril(1)/Nitromethane(2)

65

70

75

80

85

90

0 0.2 0.4 0.6 0.8 1x1, y1

t, oC

@ P = 70 kPa

Page 6: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Effect of Nonideality: Ethanol(1)/Toluene(2)

t-x-y diagramP-x-y diagram

65oC1 atm

P-xy Diagram Acetonitril(1)/Nitrometana(2) @

75oC

40

45

50

55

60

65

70

75

80

85

0 0.2 0.4 0.6 0.8 1

x1, y1

P

txy diagram Acetonitril(1)/Nitromethane(2)

65

70

75

80

85

90

0 0.2 0.4 0.6 0.8 1x1, y1

t, oC

@ P = 70 kPa

Page 7: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Effect of Nonideality: x – y Diagram at Constant P = 1

atm

a. Tetrahydrofuran(1)/Carbon-tetrachloride(2)

b Chloroform(1)/Tetrahydrofuran(2)

c. Furan(1)/Carbontetrachloride(2)

d. Ethanol(1)/Toluene(2)

Page 8: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Partial Molar Properties

.etc,Gor ,V ,S ,H ,UM iiiiii

ii Mx MSolution Properties:

….are properties of component i in the state of mixtures, which, in general

different from that in the state of pure species

Partial Properties:

Pure-species Properties: .etc,Gor ,V ,S ,H ,UM iiiiii

NOT: ii Mx M

What physical interpretation can be given for, viz. partial molar

volume ?

Page 9: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Methanol – Water Mixture, An Example

For pure species at 25oC:Methanol (1) : V1 = 40.727

cm3/molWater (2) : V2 = 18.068 cm3/molWhat is the volume of 10 moles of methanol/water solution containing 30% mol of methanol?

Most people would think, logically:

Mol of methanol : 0.3 x 10 moles = 3 moles

Mol of water : (1-0.3) x 10 moles = 7 moles

Volume of methanol : 3 moles x 40.727 = 122.181 cm3

Volume of water : 7 moles x 18.068 = 126.476 cm3

Thus, the total volume : 122.181 + 126.476= 248.657 cm3

Wrong answer! The correct answer is 240.251 cm3

Thus there is 240.251 – 248.657 = -8.406 cm3 deviation from expected value

ii Mx M

Page 10: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

More on Partial Molar Properties

jn,P,Ti

i n

nMM

.dn

n

nMdP

P

nMdT

T

nMnMd i

n,P,Tin,Tn,Pj

.),.........n,n,n,P,T(MnM 321

.....dn

n

nMdn

n

nM

dPP

nM dT

T

nMnMd

2,...n,n,P,T2

1,...n,n,P,T1

n,Tn,P

3132

ii Mx MNOT: ii Mx M

Page 11: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Chemical Potential as Partial Molar Property

Criteria for Vapor - Liquid Equilibria

i

PP

TT

ig

i

g

g

jn,P,Tii n

)nG(

The chemical potential of i-th component is

defined as:

Page 12: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Chemical Potential as Partial Molar Property

jn,P,Ti

in

nGG

ii G

.dn

n

nGdP

P

nGdT

T

nGnGd i

n,P,Tin,Tn,Pj

If we set M = G:

Thus:

jn,P,Tii n

)nG(

The definition of chemical potential:

Page 13: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Partial Molar Properties Methanol – Water Mixture Example

Methanol mol fraction

Molar volume, mL/mol

0 18.10.114 20.30.197 21.90.249 23.00.495 28.30.692 32.90.785 35.20.892 37.9

1 40.7

16

20

24

28

32

36

40

0 0.2 0.4 0.6 0.8 1

x1

Mix

ture

Pro

per

ty M

M

2M

1M1

21 x

MxMM

112 x

MxMM

ii Mx M

Page 14: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

ExerciseA group of students came across an unsuspected supply

of laboratory alcohol, containing 96 mass-percent ethanol and 4 mass-percent water.

As an experiment they decided to convert 2 L of this material into vodka, having a composition of 56 mass-percent ethanol and 44 mass-percent water. Wishing to perform the experiment carefully, they search the literature and found the following partial-specific volume data for ethanol – water mixtures at 25oC and 101.3 kPa.

The specific volume of water at 25oC is 1.003 L/kg. How many L of water should be added to the 2

L of laboratory alcohol, and how many L of vodka result?

1.243 1.273 L/kg ,V

0.953 0.816 L/kg ,V

In vodka ethanol 96% In

OHEt

OH2

Page 15: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Fugacity, f

PlndTRdG ig

flndTRdG

lndTRdGR

Ideal gas :

Real gas :

P

f

igR GGG Residual Gibbs energy :

Fugacity coefficient :

lnTR

GR

At constant T

Residual Property

igR VVV

P

RT)1Z(VR

dPVdTSdG

Page 16: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi

dPVdG Ri

Ri

P

0

Ri

Ri dP

RT

V

RT

dG

Pf ii

Real gas :

Pure Component Fugacity Coefficient:

The fugacity :

i

Ri lnTR

G

At constant T:

P

0

i

Ri

P

dP)1Z(

RT

G

P

0

ii P

dP)1Z( ln

P

RT)1Z(V i

Ri

Page 17: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi

From the following compressibility data for hydrogen at 0oC, determine the fugacity of

hydrogen at 950 atm

P, atm Z P, atm Z

100 1.069 600 1.431200 1.138 700 1.504300 1.209 800 1.577400 1.283 900 1.649500 1.356 1000 1.720

Page 18: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi

From the following compressibility data for isobutane,

determine the fugacity of butane at various temperature and pressure

P/bar 340 K 350 K 360 K 370 K 380 K

Page 19: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi from

Equation of State

RT

PB1Z

RT

PV ii

i RT

PB ln i

i

10

c

c BBTR

PB

Virial :

6.1r

0

T

422.0083.0B

2.4r

1

T

172.0139.0B

cr T

TT

10

r

ri BB

T

P ln

cr P

PP

Page 20: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Critical Constants & Accentric Factors:Paraffins

Tc/K Pc/bar Vc/10-6m3.mol-1 Zc

Page 21: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Critical Constants & Accentric Factors:

Olefin & Miscellaneous Organics

Tc/K Pc/bar Vc/10-6m3.mol-1 Zc

Page 22: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Critical Constants & Accentric Factors:

Miscellaneous Organic CompoundsTc/K Pc/bar Vc/10-6m3.mol-1 Zc

Page 23: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Critical Constants & Accentric Factors:

Elementary Gases

Tc/K Pc/bar Vc/10-6m3.mol-1 Zc

Page 24: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Critical Constants & Accentric Factors:

Miscellaneous Inorganic CompoundsTc/K Pc/bar Vc/10-6m3.mol-1 Zc

Page 25: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi from Virial Equation of State, Example

Using virial equation of state,

calculate the fugacity and fugacity coefficient of:

1. Pure methyl-ethyl-ketone

2. Pure toluene

at 50oC and 25 kPa.

The required data:

ij Tcij/K Pcij/bar Vcij/cm3.mol-1 Zcij wij

11=MEK 535.6 41.5 267 0.249 0.32912=Toluene 591.7 41.1 316 0.264 0.257

Page 26: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi from

Equation of State

TRZ

Pbh i

ci

5.2ci

2

i P

TR42748.0a

h1

h

TRb

a

h1

1Z

5.1i

i

Redlich-Kwong:

5.1TRb

aZ)h1(ln1Z ln

ci

cii P

TR08664.0b

}to be solved simultaneously

Page 27: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi from Redlich-Kwong Equation of StateUsing Redlich - Kwong equation of state,

calculate the fugacity and fugacity coefficient of:

1. Pure methyl-ethyl-ketone

2. Pure toluene

at 50oC and 25 kPa.

The required data:

ij Tcij/K Pcij/bar Vcij/cm3.mol-1 Zcij wij

11=MEK 535.6 41.5 267 0.249 0.32912=Toluene 591.7 41.1 316 0.264 0.257

Page 28: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi :

Pitzer’s Generalized Correlation

T,Pf rr0

i

1

i0

ii

T,Pf rr1

i

cr P

PP

cr T

TT

Page 29: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi :

Pitzer’s Generalized Correlation

cr P

PP

cr T

TT

0i

Page 30: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi :

Pitzer’s Generalized Correlation

cr T

TT

0i

cr P

PP

Page 31: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi :

Pitzer’s Generalized Correlation

cr P

PP

cr T

TT

1i

Page 32: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi :

Pitzer’s Generalized Correlation

cr P

PP

cr T

TT

1i

Page 33: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Pure Component Fugacity, fi : Pitzer Correlation

Using Pitzer Correlation,

calculate the fugacity and fugacity coefficient of:

1. Pure methyl-ethyl-ketone

2. Pure toluene

at 50oC and 25 kPa.

The required data:

ij Tcij/K Pcij/bar Vcij/cm3.mol-1 Zcij wij

11=MEK 535.6 41.5 267 0.249 0.32912=Toluene 591.7 41.1 316 0.264 0.257

Page 34: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of LiquidPure Component Fugacity, fi

dPVTR

1

f

fln

P

P

isati

i

sati

Poynting factor

Fugasity of saturated vapor,

calculated exactly as calculating gas phase fugacity

TR

PPVexpP f

satiisat

isat

ii

Since Vl is a weak function of P at temperatures well below Tc:

Page 35: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Estimation of Liquid Density

Rackett Equation:

cr P

PP

cr T

TT

V

Vcr

2857.0r )T1(

ccsat ZVV

Page 36: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Examples ofEvaluation of Liquid Pure Component Fugacity, fi

11.5

Estimate the fugacity of liquid acetone at 110oC and 275 bar.

At 110oC the vapor pressure of acetone is 4.36 bar and the molar volume of

saturated-liquid acetone is 73 cm3.mol-1

11.6

Estimate the fugacity of liquid n-butane at 120oC and 34 bar.

At 120oC the vapor pressure of n-butane is 22.38 bar and the molar volume of

saturated-liquid n-butane is 137 cm3.mol-1

Page 37: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Examples ofEvaluation of Liquid Pure Component Fugacity, fi11.10

The normal boiling point of n-butane is 0.5oC.

Estimate the fugacity of liquid n-butane at this temperature

and 200 bar.

11.11

The normal boiling point of 1-pentene is 30.0oC.

Estimate the fugacity of liquid 1-pentene at this temperature

and 350 bar.

11.12

The normal boiling point of isobutane is -11.8oC.

Estimate the fugacity of liquid isobutane at this temperature and

150 bar.

Page 38: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Examples ofEvaluation of Gas & Liquid Pure Component Fugacity, fi

253 P1041.11P1086.91Z

11.13

Prepare plots of f vs P and f vs P for isopropanol at 200oC for the pressure range

from 0 to 50 bar. For the vapor phase, values of Z are given by:

Where P is in bars. The vapor pressures of isopropanol at 200oC is 31.92 bar, and

the liquid-phase isothermal compressibility k at 200oC is 0.3.10-3 bar-1,

independent of P.

TP

V

V

1

Hint: Critical constants:

Vc = 219 cm3/mol Tc 508,8 K

Pc = 53,7 bar Zc = 0,278

Page 39: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Examples ofEvaluation of Gas & Liquid Pure Component Fugacity, fi

11.14

Prepare plots of f vs P and f vs P for 1,3-butadiene at 40oC for the pressure range

from 0 to 10 bar. At 40oC The vapor pressures of 1,3-butadiene is 4.287 bar.

Assume virial model to be valid for the vapor phase.

The molar volume of saturated liquid 1,3-butadiene at 40oC is 90.45 cm3.mol-1

Page 40: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Fugacity of Steam and Water,Using Steam Table

)SS(T

HH

R

1

*P

fln *

ii

*iii

P* : lowest value of P in steam table

At P >= Pisat, i.e. liquid phase water:

TR

PPVexpP f

satiisat

isat

ii

Up to Pisat, i.e. gas phase water (steam):

Page 41: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Example of Steam and Water Fugacity Calculation Using Steam Table

11.7

From data in the steam tables, determine a good estimate for f/fsat of liquid water at

100oC and 100 bar, where fsat is the fugacity of saturated liquid at 100oC.

11.8

Steam at 13000 kPa and 380oC undergoes an isothermal change of state to a pressure of

275 kPa. Determine the ratio of the fugacity in the final state to that in the initial

state

11.9

Steam at 1850 psia and 700oF undergoes an isothermal change of state to a pressure of

40 psia. Determine the ratio of the fugacity in the final state to that in the initial

state

Page 42: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Fugacity of Mixtures

By Byy2ByB 222

21221112

1

1ij

0

cij

cijjiij BB

P

TRBB

i

ijj

ji ByyB

Are formulated exactly as calculation for pure component, but we use Mixing

Rules to obtain the parameters

Virial

:

For binary mixtures, i = 1,2 and j = 1,2

icomponent pure of BBB iii

2ji

ij

)k1(TTT ijcjcicij2

1

cij

cijcijcij V

TRZP

2

ZZZ

cjcicij

3

cjcicij 2

VVV

31

31

RT

PB ln i

i

Page 43: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Example of Calculation forFugacity of Mixtures Using Virial EquationEstimate the fugacity and fugacity coefficient of an equimolar mixture of methyl-ethyl-ketone

(1) and toluene (2) at 50oC and 25 kPa

The required data are as follows:

ij Tcij/K Pcij/bar Vcij/cm3.mol-1 Zcij wij

11=MEK 535.6 41.5 267 0.249 0.32912=Toluene 591.7 41.1 316 0.264 0.257

Page 44: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Fugacity of Components in Mixture

Py

f̂ˆ i

ii

n

lnn ˆln

jnP,T,ii

i

Ri ˆ lnTR

G

Thus:

i

Ri lnTR

G

is partial molar property of)ˆln( i )ln( i

Virial, binary mixtures:

)yB(RT

Pˆ ln

)yB(RT

Pˆ ln

122

1222

122

2111

12111212 BBB2

Page 45: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Fugacity of Components in Binary Mixtures, Example using Virial Eqn.Estimate the fugacity and fugacity coefficient of methyl-ethyl-ketone (1) and toluene (2) for an

equimolar mixture at 50oC and 25 kPa.

Set all kij = 0

The required data are as follows:

ij Tcij/K Pcij/bar Vcij/cm3.mol-1 Zcij wij

11=MEK 535.6 41.5 267 0.249 0.32912=Toluene 591.7 41.1 316 0.264 0.257

11.18

Estimate the fugacity and fugacity coefficient of ethylene (1) and propylene (2) for a binary

mixture of 25% ethylene as a gas at 200oC and 20 bar.

Set all kij = 0

Page 46: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

More on Virial Eqn:Fugacity of Ternary and Multicomponent Mixtures

iiikikkk )2(yy

2

1B

TR

Pˆ ln

1ij

0

cij

cijjiij BB

P

TRBB

i

ijj

ji ByyB

Mixing Rules :

For ternary mixtures, i = 1,2,3 and j = 1,2,3

icomponent pure of BBB iii

BBB2

BBB2

iiii

kkiiikik

ikki

kk

ii

0

0

Page 47: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

More on Virial: Fugacity ofTernary & Multicomponent Mixtures Example

11.19

Estimate the fugacity and fugacity coefficient of each component in a ternary mixture of

methane (1) / ethane (2) / propane (3) at 40oC and 20 bar with the composition of 17%

methane and 35% ethane

Set all kij = 0

Page 48: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Mixture Fugacity, f, from Equation of

State

TRZ

Pbh

i j

ijji ayya

h1

h

TRb

a

h1

1Z

5.1

Redlich-Kwong:

5.1TRb

aZ)h1(ln1Z ln

i

ii byb

}to be solved simultaneously

Page 49: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Mixture Fugacity, f , using Redlich-Kwong Equation of StateUsing Redlich - Kwong equation of state,

calculate the fugacity and fugacity coefficient of an equimolar mixture of methyl-ethyl-

ketone (1) and toluene (2) at 50oC and 25 kPa

The required data:

ij Tcij/K Pcij/bar Vcij/cm3.mol-1 Zcij wij

11=MEK 535.6 41.5 267 0.249 0.32912=Toluene 591.7 41.1 316 0.264 0.257

Page 50: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Component Fugacity in Mixture Fugacity, f, from

Equation of State

)h1ln(a

ax2

b

b

RTb

a)h1(Zln)1Z(

b

bˆ ln kk1k

15.1

11

Redlich-Kwong:

5.1TRb

aZ)h1(ln1Z ln

)h1ln(a

ax2

b

b

RTb

a)h1(Zln)1Z(

b

bˆ ln kk2k

25.1

22

Page 51: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Evaluation of Mixture Fugacity, f , using Redlich-Kwong Equation of StateUsing Redlich - Kwong equation of state,

calculate the fugacity and fugacity coefficient of MEK and toluene in equimolar

mixture of methyl-ethyl-ketone (1) and toluene (2) at 50oC and 25 kPa

The required data:

ij Tcij/K Pcij/bar Vcij/cm3.mol-1 Zcij wij

11=MEK 535.6 41.5 267 0.249 0.32912=Toluene 591.7 41.1 316 0.264 0.257

Page 52: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

UTS 1

Page 53: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Excess Gibbs Energy

igR GGG

jn,P,Ti

i n

GnM

ii Mx MSolution Properties:

Partial Properties:

Pure-species Properties: .etc,Gor ,V ,S ,H ,UM iiiiii

Residual Property

Excess Property idE GGG Partial Property of the Excess Property id

iiE

i GGG

Partial Property of the Excess Property igii

Ri GGG

Page 54: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Excess Gibbs Energy

igR GGG

.etc,Gor ,V ,S ,H ,UM iiiiii

ii Mx MSolution Properties:

Partial Properties:

Pure-species Properties: .etc,Gor ,V ,S ,H ,UM iiiiii

Residual Property

Excess Property idE GGG Partial Property of the Excess Property id

iiE

i GGG

Partial Property of the Excess Property igii

Ri GGG

Page 55: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Activity Coefficient

i

iii f

f̂lnTRGG

flndTRdG

)xln(TRGG iiid

i

Definition of fugacity:

Integration

ii

iidii fx

f̂lnTRGG

ii

iE

i

fx

f̂ln

TR

G

The definition of activity coefficient gi

(Ideal solution)

in,P,Ti

Eln

n

RT/Gn

j

ii

Elnx

TR

G

Page 56: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Models for Binary Mixtures Activity Coefficient:Margules(1856 – 1920)

21212121

ExAxA

RTxx

G

jn,P,Ti

E

i n

RT/Gnln

22112212

12

11221122

21

x)AA(2Axln

x)AA(2Axln

Page 57: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Models for Binary Mixtures Activity Coefficient:van Laar

2'

211'

12

'21

'12

21

E

xAxA

AA

RTxx

G

jn,P,Ti

E

i n

RT/Gnln

2

1'12

2'21'

212

2

2'21

1'12'

121

xA

xA1Aln

xA

xA1Aln

Page 58: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Models for Binary Mixtures Activity Coefficient:Wilson

RT

aexp

V

V 21

2

121

RT

aexp

V

V 12

1

212

i2112

21

x& T of tindependen ,tstanconsa,a

2 & 1 liquid pure of memolar volu V ,V

Page 59: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Models for Binary Mixtures Activity Coefficient:Renon: NonRandom Two-Liquid (NRTL)

Page 60: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Models for Multicomponent MixturesActivity Coefficient:Wilson

i j

ijji

Exlnx

RT

G

j k

jkjj

kikijji

x

xxln1 ln

j)(i 1

j)(i RT

aexp

V

V

ij

ij

i

jij

ncompositio & T of tindependen ,tstanconsa

i liquid pure of memolar volu V

ij

i

Page 61: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

Models for Multicomponent Mixtures Activity Coefficient:

UNIversal QUAsi Chemical (UNIQUAC)(Abrams & Prausnitz)

Page 62: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

UNIquac Functional-groupActivity Coefficient (UNIFAC)(Aa Fredenslund,Rl Jones & JM Prausnitz)

Models for Multicomponent Mixtures Activity Coefficient:

Ri

Cii ln ln ln

Page 63: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

UNIFAC: Rk & Qk

Models for Multicomponent Mixtures Activity Coefficient:

Page 64: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

UNIFAC: Rk & Qk

Example

Models for Multicomponent Mixtures Activity Coefficient:

Page 65: Nonideal Behavior Dicky Dermawan @gmail.com ITK-234 Termodinamika Teknik Kimia II.

UNIFAC: amk

Models for Multicomponent Mixtures Activity Coefficient: